Galaxy Clustering:
An EFT Approach

Fabian Schmidt
MPA

with
Alex Barreira, Elisa Chisari,Vincent Desjacques, Cora Dvorkin,
Donghui Jeong, Mehrdad Mirbabayi, Zvonimir Vlah, Matias Zaldarriaga

April 2018



Motivation

® The clustering of galaxies (large-scale structure,
LSS) is historically one of the key probes of
cosmology

Peebles; Efstathiou+ ’90 predicted a positive cosmological
constant A\ from LSS observations

® From ~1998 until recently, most spectacular
results came from “cleaner” probes - Supernovae
and the cosmic microwave background (CMB)

® Now, again, in a new golden age of LSS with
plenty of experiments under way: BOSS, DES,
DESI, PFS, SphereX, Euclid, WFIRST, ...
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Motivation

® |nflation: reconstruct the properties of the initial
conditions, and look for gravitational waves

® Dark Energy and Gravity: the growth of
structure depends sensitively on the expansion
history of the Universe, and the nature of
gravity
Growth equation: D' + o HD' = 47 GpD

® Dark Matter: how “cold” is cold dark matter ?
What is the sum of neutrino masses !
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from small to large scales

Perturbative expansion in
fluctuations on large scales

Millennium simulation / MPA
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Theory of Large-Scale
Structure

® Well-
established WH . linear nonlinear
tools: Tk Boltzmann large
1 . scales
® |inear e Fully GR
Boltzmann h ~Typical perturbations in
" "o, (observable) universe
¢ N-bOd)’ | small
methods scales

* and hydrodynamics o(k,t) = pm(k,t)/pm — 1



Theory of Large-Scale
Structure

® Foundation: separation between nonlinear
scale and horizon

knt, =~ 0.1A 1\/[]@(:_1 > aH
® |inear theory: Fourier modes evolve

independently; solved problem

® However, bulk of information in LSS is on
nonlinear scales (Nmodes ~ Kmax3)
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Theory of galaxy
clustering

® We cannot yet simulate the formation of galaxies™
fully realistically

® Need to abstract from the incomplete understanding
on small scales

® Only hope for rigorous results is on scales k < knr

* Of course, everything in following will apply to any tracer of LSS.



Theory of galaxy
clustering

® We cannot yet simulate the formation of galaxies™
fully realistically

® Need to abstract from the incomplete understanding
on small scales

® Only hope for rigorous results is on scales k < knr

® (oal: describe galaxy clustering up to a given scale
and accuracy using a finite number of free bias
parameters p,:

59 (X) — Z bo O(X) (at fixed time)
O

* Of course, everything in following will apply to any tracer of LSS.



All of what | will talk about, and much more, can be found in:

Large-Scale Galaxy Bias

Vincent Desjacques®P”, Donghui Jeong®, Fabian Schmidt?

arXiv:1611.09787

Physics Reports, in press



Large-Scale Galaxy Bias

Vincent Desjacques®P”, Donghui Jeong®, Fabian Schmidt?

arXiv:1611.09787
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EFT approach in LSS

® Effective field theory: write down all terms
(in Lagrangian or equations of motion) that
are consistent with symmetries

® Gravity: general covariance

® Galaxy density: 0-component of 4-vector
(momentum density)

® Order contributions by perturbative order,
and number of spatial derivatives
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EFT approach in LSS

® |SS is non-relativistic: velocities v << ¢

® Only relevant metric component is time-
time component: gravitational potential ¢

® Relevant remaining gauge symmetries:

T — T+ C(T) S — b+ C(T) Time rescaling

=+ E(1)e P — &4 A;j(r)x" Time-dependent
. . . Lorentz boost
vt — vt + fz/(T) (“generalized Galilei
transformation”)

) T ]
r — R jaj Rotations
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EFT bias expansion

T—o>T7+c(r)e P — 0+ C(7)

ot st (1) & D = D+ Ai(r)x!

vt = v+ EY(T)

® What can (and thus has to) appear?

® Stress-energy (matter): v — R
. Do
5, 0%, V3, 0=0", ——, -+
b ’ " Dr o
® But not velocity (forbidden by gauge symmetry) 0= pmﬁ P
® Time derivatives have to be convective: D ;
— = 87- + U 6’2

DT

® Gravity (potential):

D
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EFT bias expansion

® We are not done yet however... Two issues:

® Many terms are redundant, as they are related through the
equations of motion for matter and gravity

® Cumbersome, but no problem - can eliminate redundant
terms order by order in perturbations

® So far, we have written the EFT as local in time and space

® Only makes sense if spatial and time derivatives are
suppressed

® True for spatial derivatives, but not for time derivatives!
Galaxies form over many Hubble times (as does matter field)

® Theory is “nonlocal in time”



Galaxy formation

® Consider coarse-grained (large
scale) view of region that forms a

galaxy at conformal time T

® Formation happens over long time
scale, but small spatial scale R+

® For halos, expect R, < R;,



Galaxy formation

® Consider large-scale perturbations

x = Xq(7) 7
® Galaxy density then becomes a

local function in space™

® Using equations of motion, we can
eliminate dependence on matter
density and velocity

® We are left with nonlinear, xq(7")
nonlocal-in-time functional of tidal
tensor:

Ng (X7 T) = by [&iajq)(xﬂ(T/)? T/)]

* higher spatial derivatives are suppressed
by O\/R*)z -> |ater Mirbabayi, FS, Zaldarriaga ’ 14

— \



Non-locality in time

e Consider operator (field) O(x,t) that is constructed from 9;,0;,® *

e For simplicity, consider linear dependence of galaxy on O

® Linear functional in time:

ny (@, 7) = / ar fo(r. ) Olza(r). )

in

* From Poisson equation, § o< V2®, so this includes “local bias” terms dn

Senatore ’|4; Mirbabayi, FS, Zaldarriaga ’ | 4




Non-locality in time

Consider operator (field) O(x,t) that is constructed from 9,0, 9 *
For simplicity, consider linear dependence of galaxy on O

Linear functional in time:

ny (@, 7) = / ar fo(r. ) Olza(r). )

in

In perturbation theory, we know the time evolution of all these operators, e.g.
O(za,7) = D™(1)0"™) (x4, 70) + D™ (7)O" V) (2, 70) + - - -

At n-th order, there can be at most n different time dependences, and hence <=n
independent terms!

Equivalently: arbitrarily high time derivatives can be written in terms of <= n terms

* From Poisson equation, § o« V2®, so this includes “local bias” terms dm

Senatore ’|4; Mirbabayi, FS, Zaldarriaga ’ | 4
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Complete bias expansion

By reordering, we obtain a compact list of terms up to any order,
e.g. up to fourth:
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Complete bias expansion

By reordering, we obtain a compact list of terms up to any order,
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Complete bias expansion

By reordering, we obtain a compact list of terms up to any order,
e.g. up to fourth:

15¢ tr[TTH] . o
ond er[(TT)2] ([T Time derivatives <.~.>ai3j ;
3" er[(TU)?], te[(TT)?) eI, (te[TT])2 ] [T | V2
), el e, ()" @mt,
e[ e[ Mot el i)
1 -
where ng] — 0,0,P(x, ) Small-scale modes !eadl to
stochastic contributions:
n] D 1) "
Hij X DTH 1 €1
ond eo Tr|IL;;]
starts at n-th order in pert. theory 374 e Tr[(I)?], e (Tr[;])°
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Complete bias expansion

® Some virtues of this expansion:
® |inearly independent at each order

® Complete in the EFT sense: closed under
renormalization (proof see MSZ)

® Equivalent expansions in Eulerian and
Lagrangian space

® Bias parameters can be mapped from
one frame to another unambiguously



Spatial nonlocality and
scale-dependent bias

® Beyond large-scale limit: need to expand

spatial nonlocality of galaxy formation

—

® Higher derivative biases are suppressed
with scale R+

® Eg’ sz25 —_— 59(1{,7') = (bl + bv25l{72Rz) 5(1{, 7')



Spatial nonlocality and
scale-dependent bias

Beyond large-scale limit: need to expand
spatial nonlocality of galaxy formation

—

Higher derivative biases are suppressed
with scale R+

Eg, R2V25 — 6,(k,7) = (b1 + byzsk? R?) 5(k,7)

This also allows for baryonic physics,
which has to come with additional derivatives

e Example: pressure perturbations ép = c26p
® Pressure force: F' = Vip ox V9
At higher order in derivatives, time

evolution no longer determined by gravity
alone
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® (alaxy velocities are important probe of cosmology - but how
related to matter velocity?

® Recall that bias expansion for galaxy density cannot includeV®

® The same is true for any observable - in particular also the
relative velocity between matter and galaxies



Velocity bias

Galaxy velocities are important probe of cosmology - but how
related to matter velocity?

Recall that bias expansion for galaxy density cannot includeV®

The same is true for any observable - in particular also the
relative velocity between matter and galaxies

Hence, relative velocity can be written as
i i __ i 2
v, — v =0 {(5, (0;0,D)°, }
Necessarily higher derivative ~ R«2 ! Cf. pressure forces F' = Vip o< V¢

® Also small-scale stochastic velocities, with power spectrum
~ k4, which captures virial motions

Summary: Galaxy velocities are unbiased on large scales.



Transformation to
redshift space

® Observed galaxy statistics are obtained from rest-frame

statistics via coordinate transformation to redshift space

VN .
Tobs = T aHn




Transformation to
redshift space

® Observed galaxy statistics are obtained from rest-frame
statistics via coordinate transformation to redshift space
VDN
aH
® By combining three ingredients, we can obtain
consistent theoretical description for observed galaxy
statistics (n-point functions in redshift space):

A

Lobs — L

® Perturbation theory for matter
® Bias expansion

® Velocity bias expansion



Impact of initial conditions

® So far, assumed Gaussian, adiabatic initial conditions

® |f these assumptions are violated at most weakly
(as indicated by CMB), can perturbatively include
these:

® Primordial non-Gaussianity

® Relative density/velocity perturbations between
CDM and baryons (from pre-recombination)

® |nh each case, obtain well-defined finite set of
additional terms in bias expansion




Application: galaxy
power spectrum

® Assume we can measure rest-frame galaxy density

® That is, neglect redshift-space distortions and
other projection effects

® | eading-order galaxy power spectrum at fixed
time:
Pyg(k) = b1 Py (k) + P1%
® Valid on very large scales

® ) free parameters



Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters:

PYO(k) = by [PYO(K) — 202 ok Py (k)] + PO (k)
PO (k) = by2 00N (k) + by TN (k) + (bm+ btd) Favo (k)P (k)

— by2sk® Py (k) + kP12

Ppi0(k) = (b1)? [Prio(k) — 2C2 qk® Pu(k)] + 201 P (k) + ) bobo 199N (k) + K2 P{?}
0,0'e{6?,K?}

fuot) =4 [ [EE=BE ] it -pirio

2[ So(k —p,p)So/(k —p,p)P.(p)PL(|k — pl|)
with
/&xnm%<nmpwa@,

Fy(ki, ks), O =63
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Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters:
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Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters:

Py (k) = b1 [Poin (k) — 207 gk Pu(k)] + B (k)

Byt (k) Wﬁ(k) W”’KQ](@ + (sz + Fvo (k) Pu (k)

2Pr(k) + k2 P2

P (k) = (b)* PN (k) — 2C2 gk Pu(k)] + 201 0 () + ) bObO/I[O’O'](k)Jrk
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Application: galaxy
power spectrum

® (Quadratic and cubic terms scale like

B ( k‘ )3—|—n ( k‘ )1.3
€loop = — ~
0P =\ ko 0.25 h Mpc ™!

® Controlled by shape of P(k) and nonlinear scale

® Higher-derivative contributions scale as

1.2 D2
€deriv. = k R*

® Obviously, NLO corrections become important
toward smaller scales (higher k)

® |Importantly: Two independent expansion parameters!



lllustration of NLO contributions to galaxy power spectrum
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® Many contributions have very similar shape

® |f only interested in power spectrum, can
significantly reduce number of free parameters



Further applications
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Further applications

® Galaxy density and velocity are not the only
application of EFT approach/general bias expansion:

|. Galaxy shapes = intrinsic alignments: symmetric,

trace-free 2-tensor FS, Chisari, Dvorkin 2015
Vlah, Chisari, FS, in prep.

2. Complete description of counterterms in EFT of
matter Zaldarriaga & Mirbabayi, 2015

3. Small scale power spectrum =“responses’”
symmetric 2-/4-/6-/... tensor

® Describes nonlinear matter n-point functions in

squeezed limit (bispectrum, covariance, ...) Wagner. FS et al 2015

Barreira & FS 2017a,b
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Summary

LSS contains a wealth of information on dark energy, growth of structure, and
the early Universe

To use this, we need to understand nonlinear (and nonlocal) relation between
initial conditions and observed galaxies

We now have a complete framework for galaxy biasing (on perturbative
scales)

® Also for galaxy velocities

Leads to well-defined prediction for all n-point functions of galaxies
® “Just compute”

® Lots of free parameters, but many of them quasi-degenerate

Next challenges:

® How much information in nonlinear galaxy clustering, given many free
parameters!?

® How best to extract it!?
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