Theories of Class F and Their Anomalies ## Craig Lawrie 1806.xxxxx CL, D. Martelli, S. Schäfer-Nameki 1705.04679 C. Couzens, CL, D. Martelli, S. Schäfer-Nameki, J. Wong 1612.05640 CL, S. Schäfer-Nameki, T. Weigand ### Roadmap - Introduction: Theories of Class S - Part I: Theories of Class F [CL, Martelli, Schäfer-Nameki] - \rightarrow M5-brane wrapping $C_{g,n}$ fibration - \rightarrow 4d theories with varying couplings and duality defects - \rightarrow determine anomaly polynomials, I_6 , from I_8 - Part II: Compactifications of Class F - \rightarrow class F on complex curve C with topological duality twist - \rightarrow 2d chiral SCFTs with anomaly polynomial I_4 - \rightarrow compare with AdS₃ duals of D3-branes on C with varying τ [Couzens, CL, Martelli, Schäfer-Nameki, Wong] - Part III: Extensions - \rightarrow more examples of fibral dimensional reductions # Introduction: Class S #### Theories of Class S Class S are 4d $\mathcal{N}=2$ theories [Gaiotto] - \rightarrow twisted dimensional reduction of the 6d $\mathcal{N}=(2,0)$ SCFT on $C_{g,n}$ - $\rightarrow C_{g,n}$ a complex curve, with genus g and n punctures $$M_6 = M_4 \times C_{g,n}$$ - Couplings in 4d depend on complex structure moduli of $C_{g,n}$ - Class S are generically non-Langrangian and strongly coupled - Information about degrees of freedom of these theories can be obtained from their anomalies #### Anomalies A theory with an anomaly under group G \Rightarrow Z not invariant under G-transformation of fields with parameter δ $$\mathcal{A}_{\delta} = \int_{M_D} I_D$$ An anomaly can be captured by a formal D+2-form on spacetime M_D via Wess–Zumino descent $$I_{D+2} = dI_{D+1}^{(0)}, \quad \delta I_{D+1}^{(0)} = dI_D^{(1)}$$ The contribution to the anomaly polynomial, I_{D+2} from a chiral fermion is $$ch(F_{\mathbf{R}})\widehat{A}(M_D)|_{D+2\text{-form}}$$, for fermion in represention \mathbf{R} of symmetry group G # Anomalies for 6d(2,0) SCFT The 6d (2,0) SCFT of type G has anomaly polynomial [Witten; (Freed), Harvey, Minasian, Moore; Intriligator; Yi; Ohmori, Shimizu, Tachikawa, Yonekura] $$I_8 = \frac{r_G}{48} \left[p_2(N_5) - p_2(M_6) + \frac{1}{4} (p_1(N_5) - p_1(M_6))^2 \right] + \frac{h_G^{\vee} d_G}{24} p_2(N_5)$$ N_5 : SO(5) R-symmetry bundle M_6 : 6d spacetime r_G, d_G, h_G^{\vee} : rank, dimension, dual Coxeter number of G I_8 is formal expansion in Chern roots of $$T_{M_6} \leftrightarrow \pm \lambda_1, \pm \lambda_2, \pm \lambda_3$$ $N_5 \leftrightarrow \pm n_1, \pm n_2, 0$ #### Anomalies for Class S Anomalies for class S from $C_{g,n}$ have been computed [Gaiotto, (Maldacena); Chacaltana, Distler, (Tachikawa); Tachikawa] \rightarrow without punctures can be determined from I_8 [Bah, Beem, Bobev, Wecht; Alday, Benini, Tachikawa] (See [Bah, Nardoni] for extensions including punctures) Let $M_6 = M_4 \times C_g$ and $\pm \lambda_3$ Chern roots of T_{C_g} Topological twist $$n_1 = 2r - \lambda_3 \,, \quad n_2 = 2\alpha \,,$$ where α is Chern root of $SU(2)_R$ and r of $U(1)_R$ $$\int_{C_g} I_8 = (g-1) \left[-\left(\frac{4}{3} d_G h_G^{\vee} + r_G\right) c_2(R) c_1(R) + \frac{1}{3} r_G c_1(R)^3 - \frac{1}{12} r_G c_1(R) p_1(M_4) \right]$$ ### Roadmap - Introduction: Theories of Class S - Part I: Theories of Class F [CL, Martelli, Schäfer-Nameki] - \rightarrow M5-brane wrapping $C_{g,n}$ fibration - \rightarrow 4d theories with varying couplings and duality defects - \rightarrow determine anomaly polynomials, I_6 , from I_8 - Part II: Compactifications of Class F - \rightarrow class F on complex curve C with topological duality twist - \rightarrow 2d chiral SCFTs with anomaly polynomial I_4 - \rightarrow compare with AdS₃ duals of D3-branes on C with varying τ [Couzens, CL, Martelli, Schäfer-Nameki, Wong] - Part III: Extensions - \rightarrow more examples of fibral dimensional reductions # Part I: Theories of Class F #### Theories of Class F Consider the 6d (2,0) theory on a fibration M_6 , $$\begin{array}{ccc} C_{g,n} & \hookrightarrow & M_6 \\ & \downarrow \\ & & M_4 \end{array}$$ - \rightarrow 4d theory when $\operatorname{vol}(C_{g,n}) \rightarrow 0$ - \rightarrow fibration is trivial \Rightarrow class S - \rightarrow complex structure of $C_{g,n}$ varies over spacetime - \Rightarrow couplings vary over spacetime - \rightarrow global fibration \Rightarrow monodromies in mapping class group \mathfrak{MCG}_g Such theories will be denoted $$T[C_g, \mathcal{F}, G]$$ where \mathcal{F} is the data describing the fibration ### Duality Defects The $C_{g,n}$ fibration has singular fibers - \Rightarrow couplings undergo monodromy in $\mathfrak{MCG}_{g,n}$ - \rightarrow S-duality transformation Class F: 4d supersymmetric field theories with consistent global network of duality defects #### Torus Fibrations and $\mathcal{N} = 4$ SYM ``` Simplest case \rightarrow g = 1, n = 0 \rightarrow \mathcal{N} = 4 SYM with a non-trivial \tau-profile over M_4 ``` $\mathcal{N}=4$ with spacetime dependent coupling has recently been studied in [Martucci; Haghighat, Murthy, Vafa, Vandoren; Assel, Schäfer-Nameki; CL, Schäfer-Nameki, Weigand; Choi, Fernandez-Melgarejo, Sugimoto; ...] Degrees of freedom living on duality defects was studied in [Martucci; Assel, Schäfer-Nameki] - $\mathcal{N}=4$ SYM arises as worldvolume theory of D3-brane stack in IIB - \rightarrow coupling τ in 4d comes from 10d axio-dilaton τ^{IIB} - \rightarrow varying axio-dilaton sourced by 7-branes - \rightarrow duality defects are 3–7 strings # $\mathcal{N} = 4$ SYM with Varying Coupling Consider $\mathcal{N}=4$ SYM in a background with holomorphically varying τ \rightarrow there is a local U(1) symmetry from background sector [Bergshoeff, de Roo, de Wit; Maxfield] $\to SL(2,\mathbb{Z})$ action must be compensated by U(1) transformation [Bachas, Bain, Green; Kapustin, Witten; Martucci; Assel, Schäfer-Nameki] $$\gamma: \tau \to \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \quad \to \quad e^{i\alpha(\gamma)} \equiv \frac{c\tau + d}{|c\tau + d|} \in U(1)_D$$ We have a $U(1)_D$ connection $$Q = -\frac{\mathrm{d}\tau_1}{2\tau_2}$$ and associated line bundle $\mathcal{L}_D \Rightarrow$ fermions transform as sections of $\mathcal{L}_D \rightarrow \mathcal{L}_D$ is trivial \Rightarrow constant coupling # Anomaly from Bulk Spectrum of $\mathcal{N} = 4$ SYM with Varying Coupling The gauginos transform under $Spin(1,3) \times SU(4)_R \times U(1)_D$ as $$({f 2},{f 1},{f 4})_{1/2}\oplus ({f 1},{f 2},\overline{f 4})_{-1/2}$$ A single vector multiplet of abelian $\mathcal{N}=4$ contributes $$\frac{1}{2}\left(ch(S_6^+\otimes\mathcal{L}_D^{1/2})-ch(S_6^+\otimes\mathcal{L}_D^{-1/2})\right)\widehat{A}(M_4)$$ S_6^{\pm} : spin bundles on M_4 under which \pm chirality fermions transform The anomaly polynomial from each gaugino is $$I_6^F = \frac{1}{2}c_3(S_6^+) - \frac{1}{2}c_2(S_6^+)c_1(\mathcal{L}_D) + \frac{1}{12}c_1(\mathcal{L}_D)^3 - \frac{1}{12}c_1(\mathcal{L}_D)p_1(M_4)$$ #### Wess–Zumino Interactions For non-abelian $\mathcal{N}=4$ SYM with varying coupling \rightarrow consider theory on Coulomb branch: $G \rightarrow U(1)^{r_G}$ Integrating out massive fermions - \Rightarrow Wess–Zumino interaction terms \rightarrow contribute to the anomaly - \rightarrow for constant coupling contribution is [Intriligator] $$I_6^{WZ} = \frac{1}{2}(d_G - r_G)c_3(S_6^+)$$ Conjecture: interaction terms contribute in the same way for varying τ Anomaly polynomial from vector multiplets is $$I_6 = \frac{1}{2} d_G c_3(S_6^+) - \frac{1}{2} r_G c_2(S_6^+) c_1(\mathcal{L}_D) + \frac{1}{12} r_G c_1(\mathcal{L}_D)^3 - \frac{1}{12} r_G c_1(\mathcal{L}_D) p_1(M_4)$$ There are, in addition, defect modes \rightarrow this is not the complete anomaly polynomial # Anomaly from M5 on T^2 Fibration A theory of class F is specificed by $T[C_g, \mathcal{F}, G]$ - $\rightarrow \mathcal{F}$ denotes data describing the fibration - \rightarrow when $C_g = T^2$ $$\mathcal{F} = (f, g, \mathbb{L})$$ - $\rightarrow \mathbb{L}$ is the Weierstrass line bundle - $\rightarrow f$, g are sections of appropriate powers of L - \rightarrow describes τ -profile: how complex structure of T^2 varies over M_4 Note: \mathbb{L} is related to the relative tangent bundle of the fibration \Rightarrow the connection on \mathbb{L} enters in the 6d spin connection [Assel, Schäfer-Nameki] ### Integration over the Fiber For a fibration $\pi: M_6 \to M_4$ with $\pi^{-1}(x) = C_g$ then $$I_6 \supset \int_{ ext{fiber}} I_8 = \pi_* I_8$$ For an elliptic fibration $\pi: M_6 \to M_4$ we $$\pi_* I_8 = \frac{r_G}{48} \left[\pi_* \left(-p_2(M_6) + \frac{1}{4} p_1(M_6)^2 \right) - \frac{1}{2} p_1(N_5) \pi_* p_1(M_6) \right]$$ The spin bundle associated to N_5 , $S(N_5)$, will become an SO(5) subbundle of the SO(6) R-symmetry bundle of the $\mathcal{N}=4$ SYM - \rightarrow we only see anomalies sensitive to this subbundle - \rightarrow the SO(6) R-symmetry is emergent \Rightarrow not seen directly Determining $I_6 \Rightarrow$ we must calculate these pushforwards #### Pushforwards of Chern Classes To determine the integral over the fiber of I_8 we need to know the pushforward of polynomials in the Chern classes of M_6 onto M_4 $$\pi_*c(M_6) = 12c_1(\mathbb{L})c(M_4)(1 + \mathcal{O}(c_1(\mathbb{L}), \cdots))$$ The prefactor is universal – it is identical for any elliptic fibration \rightarrow can compute universal part of I_6 – independent of τ -profile # Anomaly Polynomial for $T[T^2, \mathcal{F}]$ One finds $$I_6 = \pi_* I_8 = \left[-\frac{1}{2} r_G c_2(S(N_5)) c_1(\mathbb{L}) - \frac{1}{24} (-6r_G) c_1(\mathbb{L}) p_1(M_4) + \cdots \right]$$ Comparison with the direct, bulk(!), 4d anomaly polynomial $$I_6 = \left[-\frac{1}{2} r_G c_2(S_6^+) c_1(\mathcal{L}_D) - \frac{1}{24} (2r_G) c_1(\mathcal{L}_D) p_1(M_4) + \cdots \right]$$ Given $\mathbb{L} = \mathcal{L}_D$ [Assel, Schäfer-Nameki] - \rightarrow first term is identical - \rightarrow second term differs by $8r_G$ - \rightarrow defect degrees of freedom contribute to $c_1(\mathcal{L}_D)p_1(M_4)$ anomaly - \rightarrow later: on compactification to 2d, known defect contribution [CL, Schäfer-Nameki, Weigand] #### $\mathcal{N}=2$ Theories of Class F There is not a universal construction of all g > 1 C_g fibrations \rightarrow consider special case of plane curve fibrations Take a line bundle $\mathcal{J} \to M_4$ and hypersurface M_6 in the projective bundle $$\mathbb{P}(\mathcal{O}\oplus\mathcal{J}^a\oplus\mathcal{J}^b)$$ of degree $dH + ec_1(\mathcal{J})$ \rightarrow the genus of the fibered curve is $$g = \frac{(d-1)(d-2)}{2}$$ - \rightarrow for g=1 line bundle $\mathcal{J}=\mathbb{L}$ - \rightarrow bundle measures the non-triviality of the fibration - \rightarrow connection on \mathcal{J} is $U(1)_D$ connection #### Anomalies of $\mathcal{N}=2$ Theories of Class F The C_g fiber now has non-trivial curvature \rightarrow partial topological twist along the fiber $$n_1 = 2r - (c_1(M_6) - c_1(M_4) + (e - a - b)c_1(\mathcal{J})), \quad n_2 = 2\alpha$$ \rightarrow notice: if fibration is trivial, twist is just with $c_1(C_g) \Rightarrow \text{class S}$ After twisting one can pushforward $$I_6 = \pi_* I_8 = \kappa_1 c_2(R) c_1(R) + \kappa_2 c_1(R)^3 + \kappa_3 c_1(R) p_1(M_4) + c_1(\mathcal{J})(\cdots)$$ Question: intrinsic 4d description of such anomaly polynomials? # Part II: Compactifications to 2d # Compactifications of $T[T^2, \mathcal{F}]$ Specialise: $\mathcal{N}=4$ SYM where τ varies over 2d subspace of M_4 , Σ - \Rightarrow 2d chiral SCFTs - \rightarrow corresponding to D3-branes wrapping Σ in F-theory Two alternate approaches to compare with: - abelian $\mathcal{N}=4$ compactified on Σ with topological duality twist [Haghighat, Murthy, Vafa, Vandoren; CL, Schäfer-Nameki, Weigand] Topological duality twist (TDT): To preserve SUSY compensate non-trivial transformation of supercharges under holonomy of C and $U(1)_D$ by R-symmetry transformation. [Martucci] \rightarrow explicit reduction of the $\mathcal{N}=4$ vector multiplet - \rightarrow explicit reduction of the $\mathcal{N}=4$ vector multip. - AdS₃ solutions of F-theory - \rightarrow Type IIB solutions where 10d axio-dilaton varies over spacetime, with monodromies in the $SL(2,\mathbb{Z})$ duality group [Couzens, CL, Martelli, Schäfer-Nameki, Wong; Couzens, Martelli, Schäfer-Nameki] AdS₃/CFT₂ Solutions of F-theory ### F-theory Overview F-theory geometrizes the axio-dilaton $(\tau = C_0 + ie^{-\phi})$ in Type IIB - \to Type IIB $SL(2,\mathbb{Z})$ S-duality acts on au [Vafa], [Morrison, Vafa] - \rightarrow auxilliary elliptic fibration over compactification space - \rightarrow complex structure τ of torus above $b \in B$ is axio-dilaton b $$\begin{array}{ccc} \mathbb{E}_{\tau} & \hookrightarrow & Y \\ & \downarrow \\ & B & \supset \Sigma \end{array}$$ - \rightarrow singular fibers \Rightarrow 7-branes sourcing τ - \rightarrow elliptic fibration \Rightarrow consistent configuration of (p,q) 7-branes D3-branes in F-theory - $SL(2,\mathbb{Z})$ of axio-dilaton $\Rightarrow SL(2,\mathbb{Z})$ Montonen-Olive duality of $\mathcal{N}=4$ - \rightarrow natural home of $\mathcal{N}=4$ SYM with varying coupling # Strings of F-theory 2d SCFTs arise in "string sector" of F-theory \rightarrow D3-branes on $\Sigma \subset B$ Strings of 6d $\mathcal{N} = (1,0)$ SCFTs [del Zotto, Lockhart] - tensionless strings are hallmark of superconformal symmetry in 6d - \bullet instanton part of 6d Nekrasov PF \leftrightarrow elliptic genera of strings Strings of 6d $\mathcal{N} = (1,0)$ Supergravities [Haghighat, Murthy, Vafa, Vandoren] - 5d BPS black holes arise from 6d BPS strings on S^1 - microstate counting of strings in 6d \rightarrow macroscopic entropy ## General Solutions for IIB with AdS_3 Factor and (0,2) SUSY Consider general Type IIB solutions with an AdS_p factor preserving some supersymmetry - \rightarrow no previously known solutions with full $SL(2,\mathbb{Z})$ monodromy - \rightarrow for poles in au^{IIB} see [Couzens], [D'Hoker, Gutperle, Uhlemann] Dual CFTs can be difficult to understand (p,q) 7-branes \Rightarrow genuinely non-perturbative effects General starting point: $$ds^{2} = e^{2A}ds^{2}(AdS_{3}) + ds^{2}(M_{7})$$ $F_{5} = (1 + *)vol(AdS_{3}) \wedge F^{(2)}$ To preserve (0,2) SUSY solve Killing spinor equation $$\nabla_{M}\epsilon + \frac{i}{192} \Gamma^{P_{1}P_{2}P_{3}P_{4}} F_{MP_{1}P_{2}P_{3}P_{4}} \epsilon = 0$$ # General Solutions for IIB with AdS_3 Factor and (0,2) SUSY #### General solution [Couzens, CL, Martelli, Schäfer-Nameki, Wong] [Couzens, Martelli, Schäfer-Nameki] $$S^1 \hookrightarrow M_7$$ $$\downarrow$$ $$M_6$$ S^1 fibration provides $U(1)_r$ R-symmetry of (0,2) au variation combines into an auxilliary Kähler elliptic fibration M_8 over M_6 with non-trivial constraint $$\Box_8 R_8 - \frac{1}{2} R_8^2 + R_{8ij} R_8^{ij} = 0$$ First consider more SUSY \rightarrow (0,4) SUSY \Rightarrow dual to strings in 6d, F-theory on CY_3 # Preserving (0,4) SUSY Requiring (0,4) is highly constrained A = const and Killing spinors transform in $(\mathbf{2},\mathbf{1})$ of S^3 isometry $$SO(4) = SU(2)_r \times SU(2)_L$$ $SU(2)_r \to \text{superconformal R-symmetry}$ $SU(2)_L \to \text{additional flavour symmetry when } \Gamma = 1$ We preserve the same SUSY for $\Gamma \subset SU(2)_L$ finite subgroup ## (0,4) Solution General F-theory solution of Type IIB SUGRA dual to 2d (0,4) is $$\mathbb{E}_{\tau} \hookrightarrow Y_3$$ $$\downarrow$$ $$AdS_3 \times S^3/\Gamma \times B_2$$ with F_5 flux $$F_5 = (1 + *) \operatorname{vol}(AdS_3) \wedge J_B$$ J_B is Kähler form on B Poincaré dual to a curve Σ $\Rightarrow \Sigma$, wrapped by D3-brane, ample in B Central charge: $$c_R = 3N^2\Sigma \cdot \Sigma + 3Nc_1(B) \cdot \Sigma$$ Generalisation of previously known solutions: $$AdS_3 \times S^3 \times T^4$$ and $AdS_3 \times S^3 \times K3$ Consider $T[T^2, \mathcal{F}]$ on Σ with \mathcal{L}_D supported on Σ $\to I_4 = \int_{\Sigma} I_6$ only has contributions from universal part of I_6 $\Sigma \subset B_2 \subset CY_3 \Rightarrow \text{R-symmetry bundle decomposes}$ $$S_6^+ \to N^+ \otimes U \oplus N^- \otimes \overline{U}$$ $\rightarrow N^{\pm}$: $SU(2)_{\pm}$ bundles – transverse rotations to CY $\rightarrow U$: U(1) bundle – normal to $\Sigma \subset B_2$ Integrating I_6 : $$I_4 = d_G \left(c_2(N^-) - c_2(N^+) \right) \int_{\Sigma} c_1(U)$$ $$- \frac{1}{2} r_G \left(c_2(N^+) + c_2(N^-) - \frac{1}{2} p_1(M_2) \right) \int_{\Sigma} c_1(\mathcal{L}_D)$$ Topological duality twist relates $$c_1(U) = -\frac{1}{2}c_1(T_{\Sigma}) + \frac{1}{2}c_1(\mathcal{L}_D)$$ and for 6d supersymmetry [Bianchi, Collinucci, Martucci] $$\mathcal{L}_D = \mathcal{O}(-K_B)$$ Thus $$I_4 = c_2(N^-) \left(\frac{1}{2} d_G \Sigma \cdot \Sigma - \frac{1}{2} r_G c_1(B) \cdot \Sigma \right)$$ $$+ c_2(N^+) \left(-\frac{1}{2} d_G \Sigma \cdot \Sigma - \frac{1}{2} r_G c_1(B) \cdot \Sigma \right)$$ $$+ \frac{1}{4} r_G c_1(B) \cdot \Sigma p_1(TW_2).$$ Matches AP for strings in 6d [Berman, Harvery; Shimizu, Tachikawa] #### Central charge: $$c_R = 6k_+ = 3d_G\Sigma \cdot \Sigma + 3r_Gc_1(B) \cdot \Sigma$$ Matches AdS₃ supergravity dual Similar comparisons - \rightarrow APs for abelian $\mathcal{N}=4$ SYM on $\Sigma\subset B\subset K3,CY_3,CY_4,CY_5$ - ightarrow directly from zero-mode spectrum [CL, Schäfer-Nameki, Weigand] Recall: $\mathcal{N} = 4$ bulk AP differed from AP from integrating I_8 by $8r_G c_1(\mathcal{L}_D)p_1(M_4)$ In 2d this is $$8r_G c_1(B) \cdot \sum p_1(M_4)$$ → exact gravitational anomaly contribution from defects/3–7 strings [CL, Schäfer-Nameki, Weigand] # Part III: Extensions #### 6d Conformal Matter Theories on T^2 Fibration Recently a large class of 6d (1,0) SCFTs has been found [Heckman, Morrison, (Rudelius,) Vafa; Bhardwaj] \rightarrow can equally consider compactifications on fiber of C_q fibration In [Ohmori, Shimizu, Tachikawa, Yonekura] shown that compactification of 6d (2,0) of type G on punctured S^2 is the same as (G,G) minimal conformal matter [Del Zotto, Heckman, Tomasiello, Vafa] on T^2 - \rightarrow the reduction on a T^2 fibration should be in class F - \rightarrow generalised bifundamental with varying coupling ${\cal I}_8^{(G,G)}$ known from [Ohmori, Shimizu, Tachikawa, Yonekura] and $$\pi_* I_8^{(G,G)} = \left[\frac{N}{2} (|\Gamma|(r_G + 1) - 2) - \frac{d_G}{2} \right] c_2(R) c_1(\mathbb{L}) + \left[\frac{N}{4} - \frac{d_G}{24} \right] c_1(\mathbb{L}) p_1(B)$$ $$- \left[\frac{1}{4} \left(\operatorname{tr}_{\operatorname{adj}} F_0^2 + \operatorname{tr}_{\operatorname{adj}} F_N^2 \right) \right] c_1(\mathbb{L}) + \cdots$$ Duality twisted compactification to 2d on Σ agrees with [Apruzzi, Hassler, Heckman, Melnikov] # Conclusions/Future Directions - Occidence Occidence - \rightarrow Duality defects \Rightarrow new terms in anomaly polynomial of 4d SUSY theories $$I_6 = \frac{1}{2} d_G c_3(S_6^+) - \frac{1}{2} r_G c_2(S_6^+) c_1(\mathcal{L}_D) - \frac{1}{24} (-6r_G) c_1(\mathcal{L}_D) p_1(T_4) - \frac{61}{4} r_G c_1(\mathcal{L}_D)^3$$ - \rightarrow Seen by reducing 6d (2,0) AP along fiber of C_g fibration - \rightarrow for T^2 fibration, interpretation as $\mathcal{N}=4$ SYM with varying coupling - \rightarrow 4d theories compactified on Σ match known AdS₃ duals - Future Directions - → Punctures anomaly analysis as in [Bah, Nardoni] - \rightarrow Realisations of hyperelliptic fibrations general $\mathcal{N}=2$ theories - \rightarrow Duality defects - \rightarrow Fibral dimensional reductions of different theories 6d $\mathcal{N}=(1,0),\ldots$