Theories of Class F and Their Anomalies

Craig Lawrie

1806.xxxxx CL, D. Martelli, S. Schäfer-Nameki 1705.04679 C. Couzens, CL, D. Martelli, S. Schäfer-Nameki, J. Wong 1612.05640 CL, S. Schäfer-Nameki, T. Weigand

Roadmap

- Introduction: Theories of Class S
- Part I: Theories of Class F
 [CL, Martelli, Schäfer-Nameki]
 - \rightarrow M5-brane wrapping $C_{g,n}$ fibration
 - \rightarrow 4d theories with varying couplings and duality defects
 - \rightarrow determine anomaly polynomials, I_6 , from I_8
- Part II: Compactifications of Class F
 - \rightarrow class F on complex curve C with topological duality twist
 - \rightarrow 2d chiral SCFTs with anomaly polynomial I_4
 - \rightarrow compare with AdS₃ duals of D3-branes on C with varying τ [Couzens, CL, Martelli, Schäfer-Nameki, Wong]
- Part III: Extensions
 - \rightarrow more examples of fibral dimensional reductions

Introduction: Class S

Theories of Class S

Class S are 4d $\mathcal{N}=2$ theories

[Gaiotto]

- \rightarrow twisted dimensional reduction of the 6d $\mathcal{N}=(2,0)$ SCFT on $C_{g,n}$
 - $\rightarrow C_{g,n}$ a complex curve, with genus g and n punctures

$$M_6 = M_4 \times C_{g,n}$$

- Couplings in 4d depend on complex structure moduli of $C_{g,n}$
- Class S are generically non-Langrangian and strongly coupled
- Information about degrees of freedom of these theories can be obtained from their anomalies

Anomalies

A theory with an anomaly under group G

 \Rightarrow Z not invariant under G-transformation of fields with parameter δ

$$\mathcal{A}_{\delta} = \int_{M_D} I_D$$

An anomaly can be captured by a formal D+2-form on spacetime M_D via Wess–Zumino descent

$$I_{D+2} = dI_{D+1}^{(0)}, \quad \delta I_{D+1}^{(0)} = dI_D^{(1)}$$

The contribution to the anomaly polynomial, I_{D+2} from a chiral fermion is

$$ch(F_{\mathbf{R}})\widehat{A}(M_D)|_{D+2\text{-form}}$$
,

for fermion in represention \mathbf{R} of symmetry group G

Anomalies for 6d(2,0) SCFT

The 6d (2,0) SCFT of type G has anomaly polynomial [Witten; (Freed), Harvey, Minasian, Moore; Intriligator; Yi; Ohmori, Shimizu, Tachikawa, Yonekura]

$$I_8 = \frac{r_G}{48} \left[p_2(N_5) - p_2(M_6) + \frac{1}{4} (p_1(N_5) - p_1(M_6))^2 \right] + \frac{h_G^{\vee} d_G}{24} p_2(N_5)$$

 N_5 : SO(5) R-symmetry bundle

 M_6 : 6d spacetime

 r_G, d_G, h_G^{\vee} : rank, dimension, dual Coxeter number of G

 I_8 is formal expansion in Chern roots of

$$T_{M_6} \leftrightarrow \pm \lambda_1, \pm \lambda_2, \pm \lambda_3$$

 $N_5 \leftrightarrow \pm n_1, \pm n_2, 0$

Anomalies for Class S

Anomalies for class S from $C_{g,n}$ have been computed

[Gaiotto, (Maldacena); Chacaltana, Distler, (Tachikawa); Tachikawa]

 \rightarrow without punctures can be determined from I_8

[Bah, Beem, Bobev, Wecht; Alday, Benini, Tachikawa]

(See [Bah, Nardoni] for extensions including punctures)

Let $M_6 = M_4 \times C_g$ and $\pm \lambda_3$ Chern roots of T_{C_g}

Topological twist

$$n_1 = 2r - \lambda_3 \,, \quad n_2 = 2\alpha \,,$$

where α is Chern root of $SU(2)_R$ and r of $U(1)_R$

$$\int_{C_g} I_8 = (g-1) \left[-\left(\frac{4}{3} d_G h_G^{\vee} + r_G\right) c_2(R) c_1(R) + \frac{1}{3} r_G c_1(R)^3 - \frac{1}{12} r_G c_1(R) p_1(M_4) \right]$$

Roadmap

- Introduction: Theories of Class S
- Part I: Theories of Class F
 [CL, Martelli, Schäfer-Nameki]
 - \rightarrow M5-brane wrapping $C_{g,n}$ fibration
 - \rightarrow 4d theories with varying couplings and duality defects
 - \rightarrow determine anomaly polynomials, I_6 , from I_8
- Part II: Compactifications of Class F
 - \rightarrow class F on complex curve C with topological duality twist
 - \rightarrow 2d chiral SCFTs with anomaly polynomial I_4
 - \rightarrow compare with AdS₃ duals of D3-branes on C with varying τ [Couzens, CL, Martelli, Schäfer-Nameki, Wong]
- Part III: Extensions
 - \rightarrow more examples of fibral dimensional reductions

Part I: Theories of Class F

Theories of Class F

Consider the 6d (2,0) theory on a fibration M_6 ,

$$\begin{array}{ccc} C_{g,n} & \hookrightarrow & M_6 \\ & \downarrow \\ & & M_4 \end{array}$$

- \rightarrow 4d theory when $\operatorname{vol}(C_{g,n}) \rightarrow 0$
 - \rightarrow fibration is trivial \Rightarrow class S
- \rightarrow complex structure of $C_{g,n}$ varies over spacetime
 - \Rightarrow couplings vary over spacetime
 - \rightarrow global fibration \Rightarrow monodromies in mapping class group \mathfrak{MCG}_g

Such theories will be denoted

$$T[C_g, \mathcal{F}, G]$$

where \mathcal{F} is the data describing the fibration

Duality Defects

The $C_{g,n}$ fibration has singular fibers

- \Rightarrow couplings undergo monodromy in $\mathfrak{MCG}_{g,n}$
- \rightarrow S-duality transformation

Class F: 4d supersymmetric field theories with consistent global network of duality defects

Torus Fibrations and $\mathcal{N} = 4$ SYM

```
Simplest case \rightarrow g = 1, n = 0
\rightarrow \mathcal{N} = 4 SYM with a non-trivial \tau-profile over M_4
```

 $\mathcal{N}=4$ with spacetime dependent coupling has recently been studied in [Martucci; Haghighat, Murthy, Vafa, Vandoren; Assel, Schäfer-Nameki; CL, Schäfer-Nameki, Weigand; Choi, Fernandez-Melgarejo, Sugimoto; ...]

Degrees of freedom living on duality defects was studied in [Martucci; Assel, Schäfer-Nameki]

- $\mathcal{N}=4$ SYM arises as worldvolume theory of D3-brane stack in IIB
 - \rightarrow coupling τ in 4d comes from 10d axio-dilaton τ^{IIB}
 - \rightarrow varying axio-dilaton sourced by 7-branes
 - \rightarrow duality defects are 3–7 strings

$\mathcal{N} = 4$ SYM with Varying Coupling

Consider $\mathcal{N}=4$ SYM in a background with holomorphically varying τ \rightarrow there is a local U(1) symmetry from background sector [Bergshoeff, de Roo, de Wit; Maxfield]

 $\to SL(2,\mathbb{Z})$ action must be compensated by U(1) transformation [Bachas, Bain, Green; Kapustin, Witten; Martucci; Assel, Schäfer-Nameki]

$$\gamma: \tau \to \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \quad \to \quad e^{i\alpha(\gamma)} \equiv \frac{c\tau + d}{|c\tau + d|} \in U(1)_D$$

We have a $U(1)_D$ connection

$$Q = -\frac{\mathrm{d}\tau_1}{2\tau_2}$$

and associated line bundle $\mathcal{L}_D \Rightarrow$ fermions transform as sections of $\mathcal{L}_D \rightarrow \mathcal{L}_D$ is trivial \Rightarrow constant coupling

Anomaly from Bulk Spectrum of $\mathcal{N} = 4$ SYM with Varying Coupling

The gauginos transform under $Spin(1,3) \times SU(4)_R \times U(1)_D$ as

$$({f 2},{f 1},{f 4})_{1/2}\oplus ({f 1},{f 2},\overline{f 4})_{-1/2}$$

A single vector multiplet of abelian $\mathcal{N}=4$ contributes

$$\frac{1}{2}\left(ch(S_6^+\otimes\mathcal{L}_D^{1/2})-ch(S_6^+\otimes\mathcal{L}_D^{-1/2})\right)\widehat{A}(M_4)$$

 S_6^{\pm} : spin bundles on M_4 under which \pm chirality fermions transform

The anomaly polynomial from each gaugino is

$$I_6^F = \frac{1}{2}c_3(S_6^+) - \frac{1}{2}c_2(S_6^+)c_1(\mathcal{L}_D) + \frac{1}{12}c_1(\mathcal{L}_D)^3 - \frac{1}{12}c_1(\mathcal{L}_D)p_1(M_4)$$

Wess–Zumino Interactions

For non-abelian $\mathcal{N}=4$ SYM with varying coupling

 \rightarrow consider theory on Coulomb branch: $G \rightarrow U(1)^{r_G}$

Integrating out massive fermions

- \Rightarrow Wess–Zumino interaction terms \rightarrow contribute to the anomaly
- \rightarrow for constant coupling contribution is

[Intriligator]

$$I_6^{WZ} = \frac{1}{2}(d_G - r_G)c_3(S_6^+)$$

Conjecture: interaction terms contribute in the same way for varying τ Anomaly polynomial from vector multiplets is

$$I_6 = \frac{1}{2} d_G c_3(S_6^+) - \frac{1}{2} r_G c_2(S_6^+) c_1(\mathcal{L}_D) + \frac{1}{12} r_G c_1(\mathcal{L}_D)^3 - \frac{1}{12} r_G c_1(\mathcal{L}_D) p_1(M_4)$$

There are, in addition, defect modes

 \rightarrow this is not the complete anomaly polynomial

Anomaly from M5 on T^2 Fibration

A theory of class F is specificed by $T[C_g, \mathcal{F}, G]$

- $\rightarrow \mathcal{F}$ denotes data describing the fibration
 - \rightarrow when $C_g = T^2$

$$\mathcal{F} = (f, g, \mathbb{L})$$

- $\rightarrow \mathbb{L}$ is the Weierstrass line bundle
- $\rightarrow f$, g are sections of appropriate powers of L
- \rightarrow describes τ -profile: how complex structure of T^2 varies over M_4

Note: \mathbb{L} is related to the relative tangent bundle of the fibration

 \Rightarrow the connection on \mathbb{L} enters in the 6d spin connection

[Assel, Schäfer-Nameki]

Integration over the Fiber

For a fibration $\pi: M_6 \to M_4$ with $\pi^{-1}(x) = C_g$ then

$$I_6 \supset \int_{ ext{fiber}} I_8 = \pi_* I_8$$

For an elliptic fibration $\pi: M_6 \to M_4$ we

$$\pi_* I_8 = \frac{r_G}{48} \left[\pi_* \left(-p_2(M_6) + \frac{1}{4} p_1(M_6)^2 \right) - \frac{1}{2} p_1(N_5) \pi_* p_1(M_6) \right]$$

The spin bundle associated to N_5 , $S(N_5)$, will become an SO(5) subbundle of the SO(6) R-symmetry bundle of the $\mathcal{N}=4$ SYM

- \rightarrow we only see anomalies sensitive to this subbundle
- \rightarrow the SO(6) R-symmetry is emergent \Rightarrow not seen directly

Determining $I_6 \Rightarrow$ we must calculate these pushforwards

Pushforwards of Chern Classes

To determine the integral over the fiber of I_8 we need to know the pushforward of polynomials in the Chern classes of M_6 onto M_4

$$\pi_*c(M_6) = 12c_1(\mathbb{L})c(M_4)(1 + \mathcal{O}(c_1(\mathbb{L}), \cdots))$$

The prefactor is universal – it is identical for any elliptic fibration \rightarrow can compute universal part of I_6 – independent of τ -profile

Anomaly Polynomial for $T[T^2, \mathcal{F}]$

One finds

$$I_6 = \pi_* I_8 = \left[-\frac{1}{2} r_G c_2(S(N_5)) c_1(\mathbb{L}) - \frac{1}{24} (-6r_G) c_1(\mathbb{L}) p_1(M_4) + \cdots \right]$$

Comparison with the direct, bulk(!), 4d anomaly polynomial

$$I_6 = \left[-\frac{1}{2} r_G c_2(S_6^+) c_1(\mathcal{L}_D) - \frac{1}{24} (2r_G) c_1(\mathcal{L}_D) p_1(M_4) + \cdots \right]$$

Given $\mathbb{L} = \mathcal{L}_D$ [Assel, Schäfer-Nameki]

- \rightarrow first term is identical
- \rightarrow second term differs by $8r_G$
 - \rightarrow defect degrees of freedom contribute to $c_1(\mathcal{L}_D)p_1(M_4)$ anomaly
 - \rightarrow later: on compactification to 2d, known defect contribution

[CL, Schäfer-Nameki, Weigand]

$\mathcal{N}=2$ Theories of Class F

There is not a universal construction of all g > 1 C_g fibrations \rightarrow consider special case of plane curve fibrations

Take a line bundle $\mathcal{J} \to M_4$ and hypersurface M_6 in the projective bundle

$$\mathbb{P}(\mathcal{O}\oplus\mathcal{J}^a\oplus\mathcal{J}^b)$$

of degree $dH + ec_1(\mathcal{J})$

 \rightarrow the genus of the fibered curve is

$$g = \frac{(d-1)(d-2)}{2}$$

- \rightarrow for g=1 line bundle $\mathcal{J}=\mathbb{L}$
 - \rightarrow bundle measures the non-triviality of the fibration
 - \rightarrow connection on \mathcal{J} is $U(1)_D$ connection

Anomalies of $\mathcal{N}=2$ Theories of Class F

The C_g fiber now has non-trivial curvature

 \rightarrow partial topological twist along the fiber

$$n_1 = 2r - (c_1(M_6) - c_1(M_4) + (e - a - b)c_1(\mathcal{J})), \quad n_2 = 2\alpha$$

 \rightarrow notice: if fibration is trivial, twist is just with $c_1(C_g) \Rightarrow \text{class S}$

After twisting one can pushforward

$$I_6 = \pi_* I_8 = \kappa_1 c_2(R) c_1(R) + \kappa_2 c_1(R)^3 + \kappa_3 c_1(R) p_1(M_4) + c_1(\mathcal{J})(\cdots)$$

Question: intrinsic 4d description of such anomaly polynomials?

Part II: Compactifications to 2d

Compactifications of $T[T^2, \mathcal{F}]$

Specialise: $\mathcal{N}=4$ SYM where τ varies over 2d subspace of M_4 , Σ

- \Rightarrow 2d chiral SCFTs
- \rightarrow corresponding to D3-branes wrapping Σ in F-theory

Two alternate approaches to compare with:

- abelian $\mathcal{N}=4$ compactified on Σ with topological duality twist [Haghighat, Murthy, Vafa, Vandoren; CL, Schäfer-Nameki, Weigand] Topological duality twist (TDT): To preserve SUSY compensate non-trivial transformation of supercharges under holonomy of C and $U(1)_D$ by R-symmetry transformation. [Martucci] \rightarrow explicit reduction of the $\mathcal{N}=4$ vector multiplet
- \rightarrow explicit reduction of the $\mathcal{N}=4$ vector multip.
- AdS₃ solutions of F-theory
 - \rightarrow Type IIB solutions where 10d axio-dilaton varies over spacetime, with monodromies in the $SL(2,\mathbb{Z})$ duality group [Couzens, CL, Martelli, Schäfer-Nameki, Wong; Couzens, Martelli, Schäfer-Nameki]

AdS₃/CFT₂ Solutions of F-theory

F-theory Overview

F-theory geometrizes the axio-dilaton $(\tau = C_0 + ie^{-\phi})$ in Type IIB

- \to Type IIB $SL(2,\mathbb{Z})$ S-duality acts on au [Vafa], [Morrison, Vafa]
 - \rightarrow auxilliary elliptic fibration over compactification space
 - \rightarrow complex structure τ of torus above $b \in B$ is axio-dilaton b

$$\begin{array}{ccc} \mathbb{E}_{\tau} & \hookrightarrow & Y \\ & \downarrow \\ & B & \supset \Sigma \end{array}$$

- \rightarrow singular fibers \Rightarrow 7-branes sourcing τ
- \rightarrow elliptic fibration \Rightarrow consistent configuration of (p,q) 7-branes D3-branes in F-theory
- $SL(2,\mathbb{Z})$ of axio-dilaton $\Rightarrow SL(2,\mathbb{Z})$ Montonen-Olive duality of $\mathcal{N}=4$
 - \rightarrow natural home of $\mathcal{N}=4$ SYM with varying coupling

Strings of F-theory

2d SCFTs arise in "string sector" of F-theory \rightarrow D3-branes on $\Sigma \subset B$

Strings of 6d $\mathcal{N} = (1,0)$ SCFTs

[del Zotto, Lockhart]

- tensionless strings are hallmark of superconformal symmetry in 6d
- \bullet instanton part of 6d Nekrasov PF \leftrightarrow elliptic genera of strings

Strings of 6d $\mathcal{N} = (1,0)$ Supergravities [Haghighat, Murthy, Vafa, Vandoren]

- 5d BPS black holes arise from 6d BPS strings on S^1
- microstate counting of strings in 6d \rightarrow macroscopic entropy

General Solutions for IIB with AdS_3 Factor and (0,2) SUSY

Consider general Type IIB solutions with an AdS_p factor preserving some supersymmetry

- \rightarrow no previously known solutions with full $SL(2,\mathbb{Z})$ monodromy
- \rightarrow for poles in au^{IIB} see [Couzens], [D'Hoker, Gutperle, Uhlemann]

Dual CFTs can be difficult to understand

(p,q) 7-branes \Rightarrow genuinely non-perturbative effects

General starting point:

$$ds^{2} = e^{2A}ds^{2}(AdS_{3}) + ds^{2}(M_{7})$$

 $F_{5} = (1 + *)vol(AdS_{3}) \wedge F^{(2)}$

To preserve (0,2) SUSY solve Killing spinor equation

$$\nabla_{M}\epsilon + \frac{i}{192} \Gamma^{P_{1}P_{2}P_{3}P_{4}} F_{MP_{1}P_{2}P_{3}P_{4}} \epsilon = 0$$

General Solutions for IIB with AdS_3 Factor and (0,2) SUSY

General solution

[Couzens, CL, Martelli, Schäfer-Nameki, Wong] [Couzens, Martelli, Schäfer-Nameki]

$$S^1 \hookrightarrow M_7$$

$$\downarrow$$

$$M_6$$

 S^1 fibration provides $U(1)_r$ R-symmetry of (0,2)

au variation combines into an auxilliary Kähler elliptic fibration M_8 over M_6 with non-trivial constraint

$$\Box_8 R_8 - \frac{1}{2} R_8^2 + R_{8ij} R_8^{ij} = 0$$

First consider more SUSY

 \rightarrow (0,4) SUSY \Rightarrow dual to strings in 6d, F-theory on CY_3

Preserving (0,4) SUSY

Requiring (0,4) is highly constrained A = const and

Killing spinors transform in $(\mathbf{2},\mathbf{1})$ of S^3 isometry

$$SO(4) = SU(2)_r \times SU(2)_L$$

 $SU(2)_r \to \text{superconformal R-symmetry}$ $SU(2)_L \to \text{additional flavour symmetry when } \Gamma = 1$

We preserve the same SUSY for $\Gamma \subset SU(2)_L$ finite subgroup

(0,4) Solution

General F-theory solution of Type IIB SUGRA dual to 2d (0,4) is

$$\mathbb{E}_{\tau} \hookrightarrow Y_3$$

$$\downarrow$$

$$AdS_3 \times S^3/\Gamma \times B_2$$

with F_5 flux

$$F_5 = (1 + *) \operatorname{vol}(AdS_3) \wedge J_B$$

 J_B is Kähler form on B Poincaré dual to a curve Σ $\Rightarrow \Sigma$, wrapped by D3-brane, ample in B

Central charge:
$$c_R = 3N^2\Sigma \cdot \Sigma + 3Nc_1(B) \cdot \Sigma$$

Generalisation of previously known solutions:

$$AdS_3 \times S^3 \times T^4$$
 and $AdS_3 \times S^3 \times K3$

Consider $T[T^2, \mathcal{F}]$ on Σ with \mathcal{L}_D supported on Σ $\to I_4 = \int_{\Sigma} I_6$ only has contributions from universal part of I_6

 $\Sigma \subset B_2 \subset CY_3 \Rightarrow \text{R-symmetry bundle decomposes}$

$$S_6^+ \to N^+ \otimes U \oplus N^- \otimes \overline{U}$$

 $\rightarrow N^{\pm}$: $SU(2)_{\pm}$ bundles – transverse rotations to CY $\rightarrow U$: U(1) bundle – normal to $\Sigma \subset B_2$

Integrating I_6 :

$$I_4 = d_G \left(c_2(N^-) - c_2(N^+) \right) \int_{\Sigma} c_1(U)$$
$$- \frac{1}{2} r_G \left(c_2(N^+) + c_2(N^-) - \frac{1}{2} p_1(M_2) \right) \int_{\Sigma} c_1(\mathcal{L}_D)$$

Topological duality twist relates

$$c_1(U) = -\frac{1}{2}c_1(T_{\Sigma}) + \frac{1}{2}c_1(\mathcal{L}_D)$$

and for 6d supersymmetry [Bianchi, Collinucci, Martucci]

$$\mathcal{L}_D = \mathcal{O}(-K_B)$$

Thus

$$I_4 = c_2(N^-) \left(\frac{1}{2} d_G \Sigma \cdot \Sigma - \frac{1}{2} r_G c_1(B) \cdot \Sigma \right)$$
$$+ c_2(N^+) \left(-\frac{1}{2} d_G \Sigma \cdot \Sigma - \frac{1}{2} r_G c_1(B) \cdot \Sigma \right)$$
$$+ \frac{1}{4} r_G c_1(B) \cdot \Sigma p_1(TW_2).$$

Matches AP for strings in 6d [Berman, Harvery; Shimizu, Tachikawa]

Central charge:

$$c_R = 6k_+ = 3d_G\Sigma \cdot \Sigma + 3r_Gc_1(B) \cdot \Sigma$$

Matches AdS₃ supergravity dual

Similar comparisons

- \rightarrow APs for abelian $\mathcal{N}=4$ SYM on $\Sigma\subset B\subset K3,CY_3,CY_4,CY_5$
 - ightarrow directly from zero-mode spectrum [CL, Schäfer-Nameki, Weigand]

Recall: $\mathcal{N} = 4$ bulk AP differed from AP from integrating I_8 by $8r_G c_1(\mathcal{L}_D)p_1(M_4)$

In 2d this is

$$8r_G c_1(B) \cdot \sum p_1(M_4)$$

→ exact gravitational anomaly contribution from defects/3–7 strings [CL, Schäfer-Nameki, Weigand]

Part III: Extensions

6d Conformal Matter Theories on T^2 Fibration

Recently a large class of 6d (1,0) SCFTs has been found [Heckman, Morrison, (Rudelius,) Vafa; Bhardwaj]

 \rightarrow can equally consider compactifications on fiber of C_q fibration

In [Ohmori, Shimizu, Tachikawa, Yonekura] shown that compactification of 6d (2,0) of type G on punctured S^2 is the same as (G,G) minimal conformal matter [Del Zotto, Heckman, Tomasiello, Vafa] on T^2

- \rightarrow the reduction on a T^2 fibration should be in class F
- \rightarrow generalised bifundamental with varying coupling

 ${\cal I}_8^{(G,G)}$ known from [Ohmori, Shimizu, Tachikawa, Yonekura] and

$$\pi_* I_8^{(G,G)} = \left[\frac{N}{2} (|\Gamma|(r_G + 1) - 2) - \frac{d_G}{2} \right] c_2(R) c_1(\mathbb{L}) + \left[\frac{N}{4} - \frac{d_G}{24} \right] c_1(\mathbb{L}) p_1(B)$$
$$- \left[\frac{1}{4} \left(\operatorname{tr}_{\operatorname{adj}} F_0^2 + \operatorname{tr}_{\operatorname{adj}} F_N^2 \right) \right] c_1(\mathbb{L}) + \cdots$$

Duality twisted compactification to 2d on Σ agrees with [Apruzzi, Hassler, Heckman, Melnikov]

Conclusions/Future Directions

- Occidence
 Occidence
 - \rightarrow Duality defects \Rightarrow new terms in anomaly polynomial of 4d SUSY theories

$$I_6 = \frac{1}{2} d_G c_3(S_6^+) - \frac{1}{2} r_G c_2(S_6^+) c_1(\mathcal{L}_D) - \frac{1}{24} (-6r_G) c_1(\mathcal{L}_D) p_1(T_4) - \frac{61}{4} r_G c_1(\mathcal{L}_D)^3$$

- \rightarrow Seen by reducing 6d (2,0) AP along fiber of C_g fibration
- \rightarrow for T^2 fibration, interpretation as $\mathcal{N}=4$ SYM with varying coupling
- \rightarrow 4d theories compactified on Σ match known AdS₃ duals
- Future Directions
 - → Punctures anomaly analysis as in [Bah, Nardoni]
 - \rightarrow Realisations of hyperelliptic fibrations general $\mathcal{N}=2$ theories
 - \rightarrow Duality defects
 - \rightarrow Fibral dimensional reductions of different theories 6d $\mathcal{N}=(1,0),\ldots$