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Singularities and Holography

• Near singularities, the equations of General Relativity or their 
cousin – supergravity – break down.

• What replaces them ?

• Holographic  correspondences which arise from String Theory 
provide a possible clue.

• Here, gravity in the bulk is an approximate description of 
possibly a more fundamental non-gravitational theory in lower 
number of dimensions.

• Question : can we use this description to ask what happens near 
singularities ?

• This talk : use the AdS/CFT correspondence.



• In this talk I will discuss one approach to understand this 
problem.

• There are several other approaches –

Craps, Hertog, Turok

Horowitz,  Lawrence, Silverstein

The basic approach used in our work has been developed in 
some earlier papers,

S.R.D., J. Michelson, K. Narayan and S. Trivedi, PRD 74:026002,2006.

A. Awad, S.R.D., K. Narayan and S. Trivedi, PRD 77:046008,2008.



The Basic Setup

• Simplest setting – IIB string 
theory in                         dual to 
a                                 Yang-Mills 
theory living on the boundary.

IIB (closed) String

Yang-Mills



• Simplest setting – IIB string 
theory in                         dual to 
a                                 Yang-Mills 
theory living on the boundary.

• When                and the ‘t Hooft
coupling is large,          
the bulk theory may be 
approximated by (classical) 
supergravity and usual notions 
of space and time apply.                                   

IIB (closed) String

Yang-Mills



• When                    the gauge theory is still well-formulated.

• However, now the curvatures are large compared to the string 
scale.  Supergravity breaks down and there is no meaningful 
interpretation in terms of a 10 dimensional local gravitational 
theory.

From the supergravity point of view this may appear as a 
spacelike singularity for all physical purposes.

• If                   we can still ignore quantum effects in this string 
theory,  but we need to understand stringy effects

• Very little is known about  even classical string theory in such 
backgrounds.

• The hope is that we can use the Yang-Mills description in this 
regime.



• In the supergravity regime,  normalizable deformations of the 
conformally invariant                           geometry correspond to 
excited states of the gauge theory. 

• Non-normalizable modes of the supergravity fields change the 
boundary values – these correspond to deformations of the 
Yang-Mills theory by addition of source terms to the action :

• Where       is the gauge theory operator dual to the mode 

• The supergravity mode which is dual to the gauge coupling is the 
dilaton .



• We will investigate toy models of cosmological singularities by 
considering                  Yang-Mills theory with a time-dependent  
‘t Hooft coupling .

In the bulk this corresponds to a time dependent dilaton , 

and               becomes small at some intermediate time ,

making  the curvatures  large.

t



• We will start the system in the vacuum of the gauge theory, with 
a large value of the ‘t Hooft coupling. The dual space-time is now 
pure

Once we turn on the time dependent source, the gauge theory 
evolves according to the deformed hamiltonian.

.



• We will start the system in the vacuum of the gauge theory, with 
a large value of the ‘t Hooft coupling. The dual space-time is now 
pure

Once we turn on the time dependent source, the gauge theory 
evolves according to the deformed hamiltonian.

In this regime,  the bulk  is described by a non-normalizable
dilaton mode . This evolves via the supergravity equations of 
motion – and produces a non-trivial metric  by back-reaction.



• Once the gauge theory becomes weakly coupled, the 
supergravity description is not valid any more.

Now we take recourse to the gauge theory.

We will ask if the gauge theory can meaningfully describe time 
evolution beyond this time.



• Once the gauge theory becomes weakly coupled, the 
supergravity description is not valid any more.

Now we take recourse to the gauge theory.
We will ask if the gauge theory can meaningfully describe time 
evolution beyond this time.
If not, we would like to learn – what precisely is the problem ?

?



Slowly varying dilatons

• A breakdown of super-gravity can be achieved even by a 
coupling which is slowly varying, starting  with a large      in the 
past.

• Since the gauge theory is defined on a      whose radius can be 
taken to be     , slow variation means  

• Therefore, if such a variation takes place over a timescale

one can reach 



Supergravity Solutions

• In the infinite past (in terms of global time), the space-time is 
pure                     with a constant  dilaton such that  the 
string frame curvature is small in string units.  The Einstein frame 
metric is 

This provides the initial condition.

• The source on the boundary is a boundary value of the dilaton,  
which has been chosen as we described above -

This provides the boundary condition.



• The solution to lowest order in       is smooth everywhere – there 
are no horizons - no black holes are formed.

• We have used – and will keep using - units.



• The metric components are



• The fact that black holes are not formed for slowly varying 
dilaton driving is not surprising.
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• When the variation becomes fast enough we expect black holes 
to form – staying in the supergravity approximation.   (see e.g. 
Bhattacharya and Minwalla for an analysis with small amplitude 
dilaton).



• The fact that black holes are not formed for slowly varying 
dilaton driving is not surprising.

• When the variation becomes fast enough we expect black holes 
to form – staying in the supergravity approximation.   (see e.g. 
Bhattacharya and Minwalla for an analysis with small amplitude 
dilaton).

• In the gauge theory this means that so long as the ‘t Hooft
coupling is large – so that the supergravity calculation can be 
trusted – thermalization does not happen and energy is not 
dissipated.

• Furthermore, if we performed this analysis in Poincare 
coordinates – with a            which depends only on Poincare time, 
a black hole will always form.



• Holographic   RG  calculation of the energy yields

• While the expectation value of the operator dual to the dilaton
is 

• The Noether relation is satisfied

• Therefore, if we always stay in the supergravity regime –
nothing dramatic  happens : when the coupling gets back to a 
constant value – all the energy which was pumped into the 
system is extracted out and we have a perfect bounce.



• What else could have happened ?

• One could repeat the same exercise for a black 3-brane with a 
dilaton varying slowly compared to the temperature. This is like 
changing the coupling of  the gauge theory on flat space at a 
finite temperature. In that case

• The rate of change of the temperature is

• The  temperature therefore keeps increasing – the energy 
pumped into the system by a time-varying coupling gets 
dissipated.

[Bhattacharya, Loganayagam, Minwalla, Nampuri, Trivedi ,Wadia (2008)]



• A key feature of the above calculation is the decoupling of the 
various modes at leading order in     

• The equation for the dilaton decouples from the equations for 
the metric components.

• This happens because we have started with the vacuum and 
driving the system by banging on the boundary with a force with 
frequency    .  

• The source on the boundary couples directly to the dilaton –
other modes are excited by nonlinear couplings of the dilaton to 
these modes.

• Since these couplings necessarily involve derivatives of the 
dilaton,  they are suppressed at small      .



The Stringy Regime

• We have been talking about the regime of large ‘t Hooft
coupling, 



The Stringy Regime

• We have been talking about the regime of large ‘t Hooft
coupling, 

• But we really want to know what happens when the coupling 
has become small



• In this regime of weak coupling in the gauge theory, the 
curvature is large, and stringy effects cannot be ignored any 
more

We want to turn to the gauge theory to see what happens.



Adiabatic Approximation

• The boundary gauge theory is a standard quantum mechanical  
system with

(1) A slowly varying time dependent parameter – the coupling
(2) The instantaneous  Hamiltonian has a  discrete spectrum with 
a gap above the ground state.

• This latter  follows from the fact that the theory lives on       and  
that  the states form a unitary  representation of the conformal 
algebra for any value of the coupling.

• The appropriate approximation scheme is the Adiabatic 
Approximation.



• Consider a hamiltonian which depends on a time 
dependent parameter         . Consider the eigenstates of the 
instantaneous hamiltonian

• The Adiabatic Theorem implies  that if                in the far past, 
and we start with the ground state             of              in the far 
past,  the state at any time      is well approximated by 

where                     is the ground state of the instantaneous  
hamiltonian corresponding  to                    .            is the value of 
the ground state energy for                    .         



• The leading corrections  are given by

• Where

• This  correction  is small provided

• Note that the quantity                        is  the energy gap between 
the ground state and the first excited state.



• In our case - Yang-Mills  theory  on         of unit radius, and a 
time dependent coupling ,

• Furthermore

• Where             is the operator dual to the spherically symmetric 
modes of the bulk dilaton. Thus the condition for validity of the 
adiabatic approximation is

• It may be easily seen that                                               , and since                                         
we are using                units,                                     this   condition  
becomes



• The  adiabatic  approximation of course has nothing to do with 
the value of the coupling constant – so this holds for weak ‘t 
Hooft coupling as well.

• If      is  so small that this condition holds, the adiabatic theorem 
ensures that at late times – when we again have a space-time 
interpretation of the gauge theory – we get back                       
with exponentially small corrections.

• However this condition                   is much stronger than the 
condition              which we used in performing the supergravity
analysis.

• We need to find a scheme which has an overlapping regime of 
validity with supergravity.



Coherent  States and Adiabaticity

• The adiabatic approximation described above is good for 
description of the system in terms of states of the gauge theory 
which are obtained by a finite number of operators on the 
vacuum – these are states containing a finite number of particles 
in the bulk.

• Classical solutions in the bulk are, however, described by 
coherent states.

• In the boundary theory these are coherent states of gauge 
invariant operators.     



• A general coherent state has the form

• Where           are  the creation parts of gauge invariant operators 
in the theory.  For example,  the operator  dual  to the  
spherically  symmetric  dilaton is

• The adiabatic  vacuum  is  denoted  by  

• The algebra of the operators        , together  with the Schrodinger 
equation determines the evolution of the coherent state 
parameters           and            .

• At                 these states  go over to  classical configurations –
which have a good description in terms of local fields in the large 
‘t Hooft coupling  regime.



• Each operator of the gauge theory can be associated with a field 
in the bulk.

• The dynamics of these fields is in general given by a horrible 
non-local collective field theory.

• Only in special situations this collective field theory becomes 
local and useful, e.g.

(i) For a single matrix quantum mechanics – here the 
collective field theory is the string field theory of the two 
dimensional string.

(ii) Strong ‘t Hooft coupling limit of N=4. Here the collective 
field theory is classical supergravity.



• Usually this is an impossible plan to implement. The algebra of the 
operators is complicated  and  they all couple to each other. 

• In our situation, however, the dynamics of these modes are driven 
entirely by a time dependent coupling constant.  This directly 
drives the dynamics of the mode which comes with the operator            
.  

• Other modes are excited due to non-trivial 3-point functions

so that the corresponding probability goes as         . However, as 
we will see soon,  a coherent state produced by this slow driving 
has  roughly                 quanta, so that the effective 3 point 
coupling in such states is suppressed relative to the 2 point 
function by a factor of   

• Thus  for               these operators can be considered to be 
independent of each other with small  non-linearities.

(Normalized operators)



• To lowest order in      it is therefore sufficient to consider a 
coherent state of the operator dual to the s-wave dilaton.

• Express this operator as a sum over oscillators

• Construct the coherent state

• Then the Schrodinger equation implies
Adiabatic
Vacuum

The initial conditions are                         , and the boundary 
dilaton has the property  that

Fixed by 2 point
function



• This equation can be solved exactly。
• However,  we want to write this solution somewhat differently –

by successively integrating by parts

This is an expansion in time derivatives – the adiabatic 
approximation we are seeking.

As promised the coherent state parameter is            - so that the 
average number of quanta is 

• Note that we have assumed that the oscillators are independent 
– this is valid for small         ,      .  This means that only the first 
two terms in this expansion are significant.



• This adiabatic  approximation  is valid  provided

• It is clearly sufficient to have

• Note that  2n  is the characteristic frequency, which is quantized 
since the theory lives on        . If  there  was no gap in the 
spectrum,  the frequency could be arbitrarily small and the 
adiabatic approximation would not hold.

• The  condition for validity is exactly what we had in our 
supergravity analysis.



• However , for this to describe nice coherent states which 
become classical in the                  limit, we must also have

• This condition can be seen to be equivalent to

• In this case we can compare our gauge theory answers with 
supergravity. They agree upto numerical factors



Small ‘t Hooft coupling

• The framework developed above applies to all values of the ‘t 
Hooft coupling – therefore can be extended to the regime of 
small couplings as well.

• Now, however, we have an infinite tower of string modes –
whose duals are gauge invariant operators which become as 
important as the ones which are dual to supergravity modes.

• This is because for large       the dimensions of operators dual to 
higher stringy modes - and hence the frequencies of the 
corresponding oscillators - are  as opposed to supergravity
modes whose frequencies are           .

• For small      , however,  the dimensions of all these modes are 
comparable.



• Nevertheless, the basic ingredients which went into our 
coherent state adiabatic approximation are still in place

(1)  The couplings between different oscillators are still  
suppressed by      .

(2)  The frequencies are still              for any value of      , so 
that the system is always far from resonance.

(3)  For                   the states are still classical.

• It would therefore appear that the adiabatic  approximation  still 
holds.

• If this is really true……



After passing through the stringy region of high curvature, one 
would  essentially  have                           with exponentially small 
corrections.



After passing through the stringy region of high curvature, one 
would  essentially  have                           with exponentially small 
corrections.



After passing through the stringy region of high curvature, one 
would  essentially  have                           with exponentially small 
corrections.



• However,  there  is  another  possibility.

• There are              stringy modes (non-chiral operators) , while  
there  are  only            supergravity modes.

• While individual  couplings  are suppressed by      , there is a 
possibility that  whatever energy is transferred to these modes 
may  thermalize.

• If thermalization does happen – the energy is dissipated and 
cannot  be extracted back when the coupling rises again to large 
values.

• At late times one would have                    thermalized energy in 
the system.



• At late times, the ‘t Hooft coupling is again large and we can use 
known results  of  AdS/CFT   to guess the outcome.  

• This depends on how small       is.

• For                                  the result would be a gas of supergravity
modes.

• For                                                              one would have a gas of 
higher string modes.

• For                                            one would have small black holes, 
i.e.  Black holes whose size is much smaller than               

• This is the worst that can happen – large black holes require an 
energy               which is much larger than the energy we have.

They will not form.

• In any case most of space-time would be close to                



• It is difficult to determine whether thermalization would indeed 
occur – the time scale involved in interactions is the same as the 
time scale by which the system is driven – and there is no 
obvious answer to this question.

• Perhaps the most significant result of our analysis is that in this 
case of slowly varying coupling, a big black hole is never formed.

• In the far future one might be left with small black holes. They 
will evaporate, but that time scale is much larger -

• In any case, the formalism developed can be, in principle, used 
to provide a smooth description of time evolution through what 
appears as a singularity from the gravity viewpoint.



NOW – SOME DETAILS



I: The Supergravity Solution

• Initial condition : In the asymptotic past the gauge theory is in its 
vacuum state – the dual space-time is 

• Boundary condition : The boundary value of the dilaton field is 
specified to be a function of time



• We need to solve the equations of motion in a power series 
expansion in 

• Expand the fields

• Derivatives with respect to    are not small.

• To the lowest nontrivial order in     the solution is  very simple. 
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• We need to solve the equations of motion in a power series 
expansion in 

• Expand the fields

• Derivatives with respect to    are not small.

• To the lowest nontrivial order in     the solution is  very simple. 



• First let us look at the corrections to the metric. Define

• Then Einstein’s equations become

• Each term on the RHS is at least of order            . 

• This immediately means that              



• Now consider the dilaton equation of motion

• Since the          correction to the metric vanishes,              and the 
equation now becomes

• Clearly, we must have                 so that the equation becomes

This is simply the linearized equation for a scalar field in the AdS
background in the presence of a source.



• Since         is already of order             and each time derivative 
costs a power of         , to lowest order any time derivative on      
can be ignored.

• Furthermore the boundary value of the dilaton is a 
function of time only, we have now reduced the equation to an 
ordinary differential equation.

• We need to solve this with the boundary condition

• We also need to impose boundary conditions at the origin

• We will look for  solutions which are regular at the origin. 

• This is not guaranteed. But let’s see.



• The solution to the ODE for      

• The first line is regular at   

• However,  the factor multiplying            diverges 

• Therefore we indeed have solutions regular at the origin by 
choosing  

Integration constants



• Finally, the remaining integration constant is determined by 
imposing the boundary condition                          at all times, 
setting

• The final solution is 



• The backreaction on the metric is also calculated in this 
derivative expansion. The general form of a spherically 
symmetric metric is

• Note that

• Using this, it is possible to perform coordinate transformations 
such that 

• The final form of the metric we will work with is



• We now need to solve Einstein’s equations

• Since                                   we have

• Therefore, upto the dilaton can be set to its boundary 
value         .

• Furthermore, as argued above,                                  - this means 
that in the calculation of the components of the Ricci tensor we 
can ignore all time derivatives.

• Therefore, to           ,Einstein’s equations have the form

• Where         is a differential operator in the radial variable. The 
time dependence of the solution is therefore entirely given by 
the boundary value of the dilaton,



• Once again the solution with given initial and boundary 
conditions is completely smooth – there are no horizons



• An important feature of this calculation is that the equations for 
the fluctuations of the metric                 ,                and fluctuations 
of the dilaton decouple to this lowest non-trivial order.

• We will see that this feature will persist beyond the
supergravity regime.



• Holographic   RG  calculation of the energy yields

• While the expectation value of the operator dual to the dilaton
is 

• The Noether relation is satisfied

• Therefore, if we always stay in the supergravity regime –
nothing dramatic  happens : when the coupling gets back to a 
constant value – all the energy which was pumped into the 
system is extracted out and we have a perfect bounce.



• In the small derivative expansion it is always possible to find a 
solution which is regular at the origin.

• However, this would not be possible if the variation of the 
boundary field is fast.

• Consider, e.g. a complementary regime,
(1) The amplitude of the dilaton is small, 
(2) However             is nonzero only for        

Bhattacharya and Minwalla studied this problem in an 
expansion in     ..
They found that a regular solution can be found only when

On the other hand, they could also solve the problem in the 
regime                       consistently – and found that a horizon is 
formed.                    



Regular - Thermal Gas

Small Black Holes

Large Black Holes

Phase Diagram of Solutions of  Bhattacharyya and Minwalla



II :Usual Adiabatic Approximation 
• We argued that the standard form of the Adiabatic 

approximation holds provided

• Here             is the gauge theory operator which is dual to the 
bulk dilaton, and                      is the energy gap.

• The states             for which the LHS is non-zero are those which 
are created by the operator           acting on the vacuum. This is 
because the  N=4  theory has a state-operator correspondence.

• Since                                     the normalized state is

• Therefore

• Since                                   this leads to the condition



III: Driven Harmonic Oscillator

• Consider a driven harmonic oscillator

• The adiabatic vacuum is the ground state of the instantaneous 
Hamiltonian – the hamiltonian where          is regarded as a time-
independent constant. In this case it is trivial to write this down 

• Where       is the standard creation operator and       

• is  a normalization constant.



• Define the shifted annihilation/creation operators

• The adiabatic vacuum is annihilated by      , 

• In terms of these the Hamiltonian is

• While its time derivative is

• The usual adiabatic approximation would require

• Since                                   and            can only be the single 
oscillator state,  this condition becomes



• Let us now solve this problem classically. With the vacuum 
initial condition (                                          ) the solution is

• When the source is slowly varying, 

• Expand the denominator and perform fourier transform

• This is the adiabatic approximation to the classical solution.

• The condition                      which we encountered in the 
quantum adiabatic expansion does not appear.

Instantaneous minimum



• Classical solutions correspond to coherent states. So we need to 
formulate a version of adiabatic approximation for such 
coherent states.

• In fact – as we have seen – the instantaneous minimum itself 
corresponds to the adiabatic vacuum – which is a coherent state

• When the source is turned on, the state of the system which 
began initially as the vacuum (which is the same as the adiabatic 
vacuum at early times) would be a coherent state of the form

• Where           is a normalization factor.  We need to determine 
this and the coherent state parameter         by imposing the 
Schrodinger equation on this state.



• This leads to the following equations

• With initial condition                         the solution for          is

• By successive integration by parts this may be written as

• This will become the classical adiabatic expansion for 



• For this adiabatic expansion we only need

In fact the condition that this reproduces the classical solution, 
i.e.                 becomes

Which is exactly the opposite of what the usual quantum 
mechanical adiabatic approximation required.



Large-N Coherent States
• The set of all gauge-invariant operators in a large-N gauge theory  

correspond to an infinite set of collective fields.

• The coupling constant of the “collective field theory” is 1/N.

• That does not mean, of course, we can ignore all interactions 
when                – this depends on the kind of states we have.

• For example, in any field theory with a coupling     , field 
configurations which are themselves of                 certainly 
contribute at weak coupling.

• These field configurations correspond to coherent states whose 
coherent state parameters are of             .  

• Such coherent states have               quanta – this cancels the 
effect of large-N suppression of couplings.            



• Consider for example a coherent state of the form

• When the parameters         are              we expect these to describe 
classical configurations in the                limit.

• However, in our present context this state is the result of the time 
dependence of the boundary dilaton. In fact we will self-consistently 
find that the coherent state parameter is 

• This means that there are                   quanta in such a state.

• Which implies that while there is no large-N suppression of interaction 
terms in the collective field theory, there is a suppression by powers of           
.

• The       -point coupling is in fact suppressed by                .         

• Therefore to lowest non-trivial order in      we can treat the collective 
fields as free fields – collections of harmonic oscillators.

• In our case it is sufficient to consider the operator dual to dilaton.



• To leading order in      the s-wave dilaton operators can be 
written as a sum of harmonic oscillators

• In the strong ‘t Hooft coupling regime          creates a single 
particle dilaton state  in the bulk with zero        angular 
momentum

• The integer      is a “radial” quantum number,  conjugate to the 
extra dimension.  The energy of this single particle state is      .

• The factor             can be determined by requiring that the above 
expansion leads to the correct 2 point function



• The oscillators         are the analogs of the shifted oscillators of 
the driven Harmonic Oscillator problem,      

• In fact,

• Compare this with the expression in the driven oscillator

• Thus

• We can now translate all our results for the driven harmonic 
oscillator to the present problem.



• Consider a coherent state of the form

• Where             is  a normalization factor.

• The equation satisfied by           is

• The initial conditions are                         , and the boundary 
dilaton has the property  that

• This equation can be of course solved exactly  



• However,  we want to write this solution somewhat differently –
by successively integrating by parts

• This is an expansion in time derivatives – the adiabatic 
approximation we are seeking.



• This adiabatic  approximation  is valid  provided

• It is clearly sufficient to have

• Note that  n  is the characteristic frequency, which is quantized 
since the theory lives on        . If  there  was no gap in the 
spectrum,  the frequency could be arbitrarily small and the 
adiabatic approximation would not hold.

• The  condition for validity is exactly what we had in our 
supergravity analysis.



• However for this to be applicable to coherent states which 
behave classically, we must also have

• Recall

So we must have

Since for large n,                          so we have  the condition

In this regime we can compare our answers with supergravity.

They agree upto numerical factors -



• The framework developed above applies to all values of the ‘t 
Hooft coupling – therefore can be extended to the regime of 
small couplings as well.

• The basic ingredients which went into our coherent state 
adiabatic approximation are still in place

(1)  The couplings between different oscillators are still  
suppressed by      .

(2)  The frequencies are still              for any value of      , so 
that the system is always far from resonance.

(3)  For                   the states are still classical.

• It would therefore appear that the adiabatic theorem still holds.

Small ‘t Hooft Coupling



• Now, however, we have an infinite tower of string modes –
whose duals are gauge invariant operators which become as 
important as the ones which are dual to supergravity modes.

• This is because for large       the dimensions of higher stringy 
modes - and hence the frequencies of the corresponding 
oscillators - are  as opposed to supergravity modes 
whose frequencies are          .

• For small      , however,  the dimensions of all these modes are 
comparable.



• So,  there  is  another  possibility.

• There are              stringy modes (non-chiral operators) , while  
there  are  only            supergravity modes.

• While individual  couplings  are suppressed by      , there is a 
possibility that  whatever energy is transferred to these modes 
may  thermalize.

• If thermalization does happen – the energy is dissipated and 
cannot  be extracted back when the coupling rises again to large 
values.

• At late times one would have                    thermalized energy in 
the system.



• At late times, the ‘t Hooft coupling is again large and we can use 
known results  of  AdS/CFT   to guess the outcome using entropic 
arguments.

• For                                   the result would be a gas of supergravity
modes.

• For                                                              one would have a gas of 
higher string modes.

• For                                            one would have small black holes, 
i.e.  Black holes whose size is much smaller than               

• This is the worst that can happen – large black holes require an 
energy               which is much larger than the energy we have.

They will not form.

• In any case most of space-time would be close to                



• The time scale of interactions between the various collective 
fields (the string modes) is    .

• The time scale for variation of the gauge theory coupling      is 
also      .

• Since there is no separation of these time scales, it is not easy to 
determine whether thermalization indeed takes place.



Epilogue

• The region of strong curvature which we studied in this work 
using gauge theory dual corresponds to a stringy regime in the 
bulk.

• Quantum corrections are still suppressed.

• Can worldsheet string theory tell us something about this region 
– particularly about the question of thermalization ?

• String theory in                        is notoriously hard.  However in our 
case some approximate methods may lead to some insight –
currently being investigated with Simeon Hellerman.



Concluding Remark

• Most of recent work in this area aims to arrive at toy models of 
cosmology  where the meaning and physics of singularities can 
be studied in a controlled fashion.

• This is clearly a caricature of cosmology – and the investigation is 
in its early stages.

• Hopefully (in Sidney Coleman’s words) this is a recognizable 
carricature.



ありがとうございました
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