Susy Bolt solutions and their free energy via localization

Chiara Toldo, KITP Santa Barbara

IPMU, July 6, 2018

based on 1712.08861 with B. Willett and work in progress

Intro and motivation

Black holes seen as thermodynamic ensembles: they emit radiation and possess entropy. Microstate counting and entropy matching by [Strominger,Vafa '96] etc..

Black hole microstates via AdS/CFT:

Recently, entropy of AdS₄ black hole entropy was matched with computation in 3d dual field theory. [Benini, Hristov, Zaffaroni '15]

Intro and motivation

 AdS_4 black hole solutions which admit embedding in M theory with field theory duals in the class of ABJM [Aharony, Bergman, Jafferis, Maldacena, '08] .

1/4 BPS static black hole solutions exist in 4d N = 2 gauged supergravity: scalar potential allows for susy AdS₄ vacua.

- \bullet extremal black holes are flows from AdS_4 to $AdS_2 \times \Sigma_g$ near horizon geometry
- magnetic configurations: they realize the topological twist

Intro and motivation

Constant scalars require the horizon to be a Riemann surface Σ_g with genus g>1 [Romans '92], [Sabra '99], [Caldarelli,Klemm '99]

Nontrivial scalar profiles and reduced amount of susy preserved = genuine static BPS black holes with *spherical* event horizon

1/4 BPS black holes [Cacciatori and Klemm, '09]

Previous static 1/2 BPS solutions [Duff and Liu,'99] contain naked singularities.

イロト 不得下 イヨト イヨト

Intro and motivation

ABJM partition function on $S^1 \times \Sigma_g$ with magnetic fluxes s_i on Σ_g computed via susy localization, in the large *N* limit, [Benini, Hristov, Zaffaroni '15], [Benini, Zaffaroni '16]

$$\log \mathcal{Z}_{S^1 \times \Sigma_g} \approx -\frac{2\pi N^{3/2}}{3} \sqrt{2m_1 m_2 m_3 m_4} \sum_{i=1}^4 \frac{s_i}{m_i}$$

reproduces BPS black hole entropy upon extremization on m_i :

$$S_{BH} = rac{A_{BH}}{4G_N} = \log \mathcal{Z}|_{crit}(s^i)$$

Extremization corresponds to the attractor mechanism in supergravity.

Intro and motivation

Extend these considerations to more general case of $\mathcal{M}_{g,p} = S^1$ p-bundle over 2d Riemann surfaces Σ_g [Closset, Kim, Willett '17]

$$ds^2 = (d\psi + a)^2 + d\Omega_\kappa^2 \qquad - rac{1}{4\pi}\int_{\Sigma_g} da = p$$

- case of $\mathcal{M}_{g,0} \simeq S^1 \times \Sigma_g$ reduces to the [Benini,Zaffaroni '15] and makes contact with black hole physics
- $\mathcal{M}_{0,1} \simeq S^3$ free energy (extensively studied, F-theorem, etc)
- holographic check with bulk dual solutions

Outline

Outline of the talk:

- BPS solutions: NUTs and Bolts
- Computation of the gravity on-shell action
- ABJM partition function on $\mathcal{M}_{g,p}$
- Conclusions and outlook

イロト イヨト イヨト

General solution with NUT BPS NUTs and Bolts Regularity and flux

Minimal gauged $\mathcal{N}=2$ supergravity

Euclidean minimal 4d gauged supergravity contains only the gravity multiplet (no vector multiplets or hypermultiplets). Bosonic action is Einstein-Maxwell- Λ :

$$S = \int \mathrm{d}^4 x \sqrt{g} \left[R - F_{\mu\nu} F^{\mu\nu} + \frac{6}{l^2} \right]$$

For a BPS solution the gravitino susy variation is zero

$$\delta_{\epsilon}\psi = \left(\partial_{\mu} + \frac{1}{4}\omega_{ab}\gamma^{ab} + \frac{i}{2I}\gamma_{\mu} + \frac{i}{I}A_{\mu} + \frac{i}{4}F_{\nu\rho}\gamma^{\nu\rho}\gamma_{\mu}\right)\epsilon = 0$$

where $\gamma_{\mu} \in Cliff(4,0)$ and $\{\gamma_{\mu}, \gamma_{\nu}\} = 2g_{\mu\nu}$. Any solution M_4 of this theory uplifts locally to a solution of $M_4 \times Y^7$ of 11d supergravity.

General solution with NUT BPS NUTs and Bolts Regularity and flux

General solution with NUT

and

 $\mathcal{M}_{g,p}$ boundary: related to the presence of NUT charge *s*.

General solution to the equations of motion: [Chamblin, Emparan, Johnson, Myers '98]

$$ds^{2} = \frac{\lambda(r)}{r^{2} - s^{2}} (d\tau + 2s f(\theta) d\phi)^{2} + \frac{dr^{2}(r^{2} - s^{2})}{\lambda(r)} + (r^{2} - s^{2}) d\Omega_{k}^{2}$$
$$\lambda(r) = (r^{2} - s^{2})^{2} + (\kappa - 4s^{2})(r^{2} + s^{2}) - 2Mr + P^{2} - Q^{2}$$

$$f(\theta) = \begin{cases} \cos \theta & \\ -\theta & \\ -\cosh \theta & \\ -\cosh \theta & \end{cases} d\Omega_{\kappa}^{2} = \begin{cases} d\theta^{2} + \sin^{2}\theta d\phi^{2} & \text{for} & \kappa = 1 \\ d\theta^{2} + d\phi^{2} & \text{for} & \kappa = 0 \\ d\theta^{2} + \sinh^{2}\theta d\phi^{2} & \text{for} & \kappa = -1 \end{cases}$$

Compact Σ_g obtained by appropriately taking the quotient of \mathbf{R}^2 and \mathbf{H}^2

General solution with NUT BPS NUTs and Bolts Regularity and flux

General solution

The gauge field is

$$A_{\tau} = \frac{-2sQr + P(r^2 + s^2)}{r^2 - s^2}$$

$$A_{\phi} = \begin{cases} \cos \theta \frac{P(r^{2}+s^{2})-2s \, Q \, r}{r^{2}-s^{2}} & \text{for} & \kappa = 1\\ -\theta \frac{P(r^{2}+s^{2})-2s \, Q \, r}{r^{2}-s^{2}} & \text{for} & \kappa = 0\\ -\cosh \theta \frac{P(r^{2}+s^{2})-2s \, Q \, r}{r^{2}-s^{2}} & \text{for} & \kappa = -1 \end{cases}$$

Boundary $(r
ightarrow \infty)$ is a circle bundle over a constant curvature Σ_g

$$ds^2 = rac{dr^2}{r^2} + r^2 \left(4s^2(d\psi + f(\theta)d\phi)^2 + d\Omega_\kappa^2
ight)$$

In particular for the choice p = 1, g = 0 and imposing periodicity $\Delta \psi = 4\pi$ the boundary is a biaxially squashed S^3 .

General solution with NUT BPS NUTs and Bolts Regularity and flux

NUTs and Bolts (spherical)

Impose regularity (non-singular solutions). Two classes depending on the dimension of the fixed point for the Killing vector ∂_{τ} .

- "NUT" (AdS-Taub-NUT): isolated fixed point
- "BOLT" (AdS-Taub-Bolt): 2d fixed point

イロト イポト イラト イラト

General solution with NUT BPS NUTs and Bolts Regularity and flux

(spherical) NUTs and Bolts

"NUT" (\mathbf{R}^4 topology)

- $\lambda(r)$ has double root at r = s
- Regularity condition gives $\Delta \psi = 4\pi$ (if $\Delta \psi = 4\pi/p$ "mildly singular")
- Boundary is a squashed 3-sphere S³
- "Bolt" (topology $\mathcal{O}(-p)
 ightarrow S^2)$
 - $\lambda(r)$ has simple root at $r_b > s$
 - regularity condition gives $\Delta \psi = 4\pi/p$
 - boundary is squashed Lens space S^3/\mathbb{Z}_p

General solution with NUT BPS NUTs and Bolts Regularity and flux

more general NUTs and Bolts

Spherical NUTs and Bolts can be generalized into configurations where Σ_g is a higher genus Riemann surface:

• toroidal and higher genus Bolt solutions, with topology $\mathcal{O}(-p) \rightarrow \Sigma_g$ and $\Delta \psi = \frac{4\pi(g-1)}{p}$ for g > 1, $\Delta \psi = \frac{4\pi}{p}$ (g=1).

Imposing regularity (+BPS) in general restricts the moduli space of solutions. i.e. constraints between the parameters Q(s), M(s), P(s) and solutions might exist for a certain squashing interval $s \in [0, s_0]$.

イロト 不得下 イヨト イヨト

General solution with NUT BPS NUTs and Bolts Regularity and flux

BPS solutions

BPS solutions are found for both NUTs and Bolts.

Lorentzian solutions (black holes) with NUT charge, along with their susy properties, studied in [Alonso-Alberca, Meessen, Ortin, '99] and more recently in [Nozawa, Klemm '13]. Euclidean spherical Taub-NUT-AdS and Taub-Bolt analyzed in [Martelli, Passias, Sparks '12].

They preserve 1/2 or 1/4 of supersymmetry.

イロト イヨト イヨト

General solution with NUT BPS NUTs and Bolts Regularity and flux

BPS solutions

BPS solutions:

[Alonso-Alberca, Meessen, Ortin, '99]; [Martelli, Passias, Sparks '12].

1/2 BPS solution

$$P = -s\sqrt{4s^2 - 1} \qquad M = Q\sqrt{4s^2 - 1}$$

1/4 BPS solution

$$P = \frac{1}{2}(4s^2 - 1)$$
 $M = 2sQ$

Focus on the 1/4 BPS solutions, and impose regularity. End goal is to compute the on-shell action and compare with the ABJM free energy on $\mathcal{M}_{g,p}$ computed via localization.

(ロ) (同) (E) (E) (E)

General solution with NUT BPS NUTs and Bolts Regularity and flux

BPS NUTs and Bolts

Generalize these BPS solutions to $\boldsymbol{\Sigma}_g$, construct Killing spinor [Toldo, Willett]

1/4 BPS solution

$$P = \frac{1}{2}(4s^2 - \kappa) \qquad M = 2sQ$$

Killing spinor equation $\delta_\epsilon\psi=0$ is solved by

$$\epsilon_{\pm} = \begin{pmatrix} f_1(r) \\ f_2(r) \end{pmatrix} \otimes \chi \qquad f_1(r) = \sqrt{\frac{(r-r_3)(r-r_4)}{r+s}} \qquad f_2(r) = i\sqrt{\frac{(r-r_1)(r-r_2)}{r-s}}$$

with $\chi = \begin{pmatrix} 0 \\ \chi_{(0)} \end{pmatrix}$, $\chi_{(0)}$ constant. In particular, Killing spinor has only radial dependence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

General solution with NUT BPS NUTs and Bolts Regularity and flux

Regularity and parameter range

- NUT solutions are obtained by a double root at r = s, giving $Q = \frac{1}{2}(4s^2 \kappa)$.
- For the Bolt we need to impose the regularity condition

$$\left.\frac{r^2-s^2}{2s\lambda'(r)}\right|_{r_0}=\frac{2}{p}$$

which constrains the value of Q:

$$Q_{+}^{\pm} = \frac{p^{2} \mp (16s^{2} - p)\sqrt{f_{+}}}{128s^{2}} \qquad Q_{-}^{\pm} = -\frac{p^{2} \mp (16s^{2} + p)\sqrt{f_{-}}}{128s^{2}}$$
$$f_{\pm} = (16s^{2} \pm p)^{2} - 128\kappa s^{2}$$

obtaining up to four different branches, denoted with Bolt_{\pm} .

イロト 不得下 イヨト イヨト

General solution with NUT BPS NUTs and Bolts Regularity and flux

Regularity and flux

Regularity imposes constraints on the range of parameter *s* [Martelli, Passias, Sparks '12]. Bolt solutions exist for a finite range of *s* for p = 1, 2. For $p \ge 3$ Bolts are present for every s > 0.

Flux through the Bolt computed as

$$\mathcal{F}_{Bolt\pm} = \int_{\Sigma_g} rac{F}{2\pi} = (g-1)\pm rac{p}{2}$$

needs to be quantized for the uplift in 11d to be well defined:

$$\pm p + 2(g-1) = 0 \mod I(Y^7)$$
 for uplift on S^7

In particular $I(S^7) = 4$, hence $\pm p + 2(g - 1) = 0 \mod 4$.

Renormalized on-shell action Counterterms Bolt branches free energy

Renormalized on-shell action

Evaluating bulk supergravity action

$$I = -\frac{1}{16\pi G_4} \int d^4 x \sqrt{g} (R + 6 - F^2)$$

on a NUT/Bolt solution leads to divergencies: regularize with the introduction of cutoff r_{inf} and add the boundary term from holographic renormalization [Skenderis, '02]

$$I_{ct} = \frac{1}{8\pi G_4} \int_{\partial M} d^3 x \sqrt{\gamma} \left(2 + \frac{1}{2}R(\gamma) - K\right)$$

Manifold closes off at $r_0 = s$ for NUT and $r_0 = r_b$ for Bolt.

Renormalized on-shell action Counterterms Bolt branches free energy

Renormalized on-shell action

Evaluating bulk terms we obtain

$$I_{grav}^{bulk} = \frac{1}{8\pi G_4} \frac{16\pi^2}{\rho} [2sr_{inf}^3 - 6s^3r_{inf} - 2sr_0 + 6s^3r_0]$$

and

$$I_{F,NUT} = \frac{2\pi}{G_4} \frac{(\kappa - 4s^2)^2}{4}$$

$$I_{F,Bolt}^{bulk} = \frac{\pi s r_b \left(r_b^2 \left(\left(\kappa - 4s^2 \right)^2 + 4Q^2 \right) + 8 \left(4s^2 - \kappa \right) sQr_+ \right) \right)}{2G_4 \left(s^2 - r_b^2 \right)^2 p} + \frac{\pi s r_b \left(s^2 \left(\left(\kappa - 4s^2 \right)^2 + 4Q^2 \right) \right)}{2G_4 \left(s^2 - r_b^2 \right)^2 p}$$

・ロト ・回ト ・ヨト ・ヨト

Renormalized on-shell action Counterterms Bolt branches free energy

Renormalized on-shell action

Boundary counterterms give

$$I_{ct} = \frac{1}{8\pi G_4} \frac{16\pi^2}{p} [4Qs^2 - 2sr_{inf}^3 + 6s^3r_{inf} + O(r_{inf}^{-1})]$$

Putting all together, the renormalized on-shell action has a simple form, independent of the squashing parameter *s*:

$$I_{ren,NUT}=rac{\pi(1-g)}{2G_4}\,,$$

$$I_{ren,Bolt_{\pm}} = I_{bulk} + I_{ct} = \frac{\pi (4(1-g) \mp p)}{8G_4}$$

(g=0 case already found in [Martelli, Passias, Sparks, '12])

Renormalized on-shell action Counterterms Bolt branches free energy

Renormalized on shell action

Also consider AdS-TN/ \mathbb{Z}_p with $\pm \frac{p}{2} - 1$ units of magnetic flux, with same boundary data. On shell action is higher

$$I_{NUT+flux} = rac{\pi}{2G_4} \left(rac{(g-1)}{p} + rac{1}{p} (\pm rac{p}{2} - \kappa)^2
ight)$$

Compare vales of I_{NUT} and $I_{Bolt\pm}$ and range of existence:

Chiara Toldo, KITP Santa Barbara

Susy Bolt solutions and their free energy via localization

Renormalized on-shell action Counterterms Bolt branches free energy

Renormalized on shell action

More on moduli space ..

Chiara Toldo, KITP Santa Barbara

Susy Bolt solutions and their free energy via localization

Renormalized on-shell action Counterterms Bolt branches free energy

Recap

Free energy of SUSY configurations which uplift to 11d on S^7 .

 \bullet Bolt solutions with boundary $\mathcal{M}_{g,p}$

$$I_{Bolt_{\pm}} = rac{\pi \left(4(1-g) \mp p
ight)}{8G_4} = rac{\pi N^{3/2}}{6\sqrt{2}} \left(4(1-g) \mp p
ight)$$

which exist for $\pm p + 2(g - 1) = 0 \mod 4$.

• For p = 1, g = 0 boundary is squashed S^3 we have the NUT

$$I_{NUT} = \frac{\sqrt{2}\pi N^{3/2}}{3}$$

We used $1/G_4 = 2\sqrt{2}N^{3/2}/3$.

ABJM on S^3 ABJM free energy on \mathcal{M}_{gp} Matching for Bolt solutions

Free energy result for S^3

 $\mathcal{N} = 2$ CS theories on the squashed S^3 studied in [Hama, Hosomichi, Lee '11], and found to be independent of the squashing parameter. Computation of the ABJM partition function on S^3 gives [Jafferis, Klebanov, Pufu, Safdi, '11]

$$\log Z_{S^3} = -\frac{4\pi N^{3/2}}{3} \sqrt{2[m_1][m_2][m_3][m_4]}$$

At the conformal point, we have

$$F_{S^3} = -Log(Z_{S^3}) = rac{\sqrt{2}\pi N^{3/2}}{3} = I_{NUT}$$

Indeed the NUT free energy does not depend on the squashing, already noticed in [Martelli, Passias, Sparks '12].

ABJM on S^3 ABJM free energy on \mathcal{M}_{gp} Matching for Bolt solutions

ABJM free energy on $\mathcal{M}_{g,p}$

We want to reproduce the Bolt free energy.

Recently the partition function of superconformal $\mathcal{N}=2$ theories on $\mathcal{M}_{g,p}$ computed in [Closset, Kim, Willett '17]. It has the form of sum over vacua

$$Z_{\mathcal{M}_{g,p}} = \sum_{u_a \in S_{BE}} \mathcal{F}_I(u_a, m_i)^p \, \mathcal{H}_I^{g-1}(u_a, m_i) \, \Pi_I^i(u_a, m_i)^{s_i}$$

where

•
$$\mathcal{F}_{l}(u_{a}, m_{i}) = \exp\left(2\pi i\left(\mathcal{W}^{l} - \sum_{i} m_{i}\frac{\partial \mathcal{W}^{l}}{\partial m_{i}}\right)\right)$$
 "fibering operator"
• $\mathcal{H}_{l} = \exp\left(2i\pi\Omega^{l}\right)$ "handle gluing operator"
• $\Pi_{l}^{i} = \exp\left(2\pi i\frac{\partial \mathcal{W}}{\partial m_{i}}\right)$ "flux operator"

ABJM on S^3 ABJM free energy on M_{gp} Matching for Bolt solutions

Large N ABJM free energy on $\mathcal{M}_{g,p}$

Large N limit of the partition function is

$$\log Z_{\mathcal{M}_{g,p}}(m_i, n_i) = pW_{ext} - \sum_i (pm_i - s_i - (g-1)r_i)\partial_i W_{ext}$$

and inserting the superpotential W_{ext}

$$\log Z_{\mathcal{M}_{g,p}} = \frac{2\pi N^{3/2}}{3} \sqrt{2[m_1][m_2][m_3][m_4]} \left(2p - \sum_i \frac{-pn_i + s_i + (g-1)r_i}{[m_i]} \right)$$

with the following constraints

$$\sum_{j=0}^{3} m_{j} = \sum_{j} s_{j} = 0, \qquad \sum_{j} [m_{j}] = 1, \qquad \sum_{j} (r_{j} - 1) + 2 = 0$$

イロト イヨト イヨト

ABJM on S^3 ABJM free energy on \mathcal{M}_{gp} Matching for Bolt solutions

Matching for minimal solutions

Minimal sugra: condition of constant scalars and equal fluxes gives

$$[m_i]$$
 and $-pn_i+s_i+(g-1)r_i$ independent of i

hence $p + 2(g - 1) = 0 \mod 4$ and $[m_i] = [m] = 1/4$ which gives

$$-\log Z_{\mathcal{M}_{g,p}}^{ABJM} = \frac{\pi N^{3/2}}{6\sqrt{2}} \left(4(1-g)-p\right) = I_{Bolt+}$$

which matches the supergravity result!

For p = 0 reduces to [Azzurli, Bobev, Crichigno, Min, Zaffaroni '17] which gives the entropy of minimal sugra black holes with Σ_g horizons.

ABJM on S^3 ABJM free energy on \mathcal{M}_{gp} Matching for Bolt solutions

Recap

• For k = 1 ABJM theory Bolt free energy in sugra matches [CT, Willett '17] the large N localization result for M_{gp} with

$$p\pm 2(g-1)=0 \mod 4$$

- S^3 boundary treated separately, and was computed before [Jafferis, Klebanov, Pufu, Safdi, '11]: $I_{NUT} = I_{AdS4} = -Z_{ABJM}(S^3)$ (Also S^3/Z_p (no flux) in [Alday,Fluder,Sparks])
- notice that for p = 2 NUT and Bolt free energy coincide (solutions are continuously connected)
- ... How about the p = 1 Bolt?

ABJM on S^3 ABJM free energy on M_{gp} Matching for Bolt solutions

Curious case of g = 0, p = 1 Bolt

There might be cases in which the S^3 boundary (g = 0, p = 1) admits p = 1 Bolt fillings for certain parameter ranges $s \in [s_-, s_+]$:

Notice that

$$I_{Bolt_+} < \frac{\pi}{2G_4} = I_{NUT} < I_{Bolt_-}$$

ABJM on S^3 ABJM free energy on M_{gp} Matching for Bolt solutions

Curious case of g = 0, p = 1 Bolt

There might be cases in which the S^3 boundary (g = 0, p = 1) admits p = 1 Bolt fillings for certain parameter ranges $s \in [s_-, s_+]$:

Notice that

$$I_{Bolt_+} < \frac{\pi}{2G_4} = I_{H_4} < I_{Bolt_-}$$

ABJM on S^3 ABJM free energy on \mathcal{M}_{gp} Matching for Bolt solutions

$V^{5,2}$ and g=0, p=1 Bolt

Free energy for theory dual to $V^{5,2}$ on S^3 computed by [Martelli, Sparks '11] coincides with I_{NUT} .

Condition for uplift on M-theory on $Y^7 = V^{5,2}$ is $(I(V^{5,2}) = 3)$

$$p\pm 2(g-1)=0 \mod 3$$

hence p = 1 Bolt- uplifts! Its free energy is $I_{Bolt-} = \frac{5}{4}I_{NUT}$.

Its free energy is reproduced by the partition function on $\mathcal{M}_{g,p}$. For p = 1 our procedure yields a subleading saddle point: $I_{Bolt-} > I_{NUT}$.

Summary and Outlook

Free energy of Bolts with $\mathcal{M}_{g,p}$ boundary, when uplift is possible, is reproduced by ABJM partition function via susy localization.

Goals:

- subtleties when different p = 1 Bolt fillings are allowed, i.e. for the $V^{5,2}$ theory
 - $\, \bullet \,$ compare S^3 free energy computed with previous methods
- NUT/Bolt solutions in gauged supergravity with matter multiplets [Colleoni, Klemm '11; Erbin, Halmagyi '15]
 - subtleties with holographic renormalization due to scalars boundary conditions in progress

Summary and Outlook

Goals (continued):

We constructed rotating magnetically charged 1/4 BPS AdS₄ black holes with compact horizon [Hristov, Katmadas, Toldo, to appear] supported by a θ , r dependent complex scalar field.

- counting microstates in dual ABJM theory?
- NH geometry contains S¹ fibration of AdS₂: same universality class of fast spinning black holes in our universe

・ロン ・回 と ・ヨン ・ヨン

Thanks for attention!

イロト イポト イモト イモト 一日

Boundary metric is

$$ds^{2} = \frac{q^{2}\Delta_{\theta}}{\Xi} \left[-dt^{2} + \frac{\Xi d\theta^{2}}{\Delta_{\theta}^{2}} - \frac{\sin^{2}\theta}{\Delta_{\theta}} \left(d\phi + \frac{j}{l^{2}} dt \right)^{2} \right]$$

where $\Xi = 1 - \frac{j^{2}}{l^{2}}$, $\Delta_{\theta} = 1 - \frac{j^{2}}{l^{2}} \cos^{2}\theta$

•

イロト イポト イモト イモト 一日

The 11d uplift ansatz for the metric (k = 1) is

$$ds_{11}^2 = ds_4^2 + ds_{B_6}^2 + (d\chi + \frac{1}{2}A)^2$$

To have a well-defined S^1 bundle over $M_4 \times B_6$, the coordinate χ needs to have period $2\pi I/4$, where I is the Fano index of B_6 . The connection $\frac{1}{2}A$ should satisfy the requirement

$$\frac{4}{2\pi I}\int_{S^2}\frac{1}{2}F=m\in\mathbb{Z}$$

• For S^7 have $I(S^7) = 4$ and the connection $\frac{1}{2}A$ should satisfy the requirement

$$\frac{1}{2\pi}\int_{S^2}\frac{1}{2}\mathsf{F}=\mathsf{m}\in\mathbb{Z}\qquad\rightarrow\qquad\frac{1}{2\pi}\int_{S^2}\frac{1}{2}\mathsf{F}=\pm\frac{\mathsf{p}}{2}-1\not\in\mathbb{Z}$$

The p = 1 Bolt is not allowed.

• For $V^{5,2} = SO(5)/SO(3)$ instead $I(V^{5,2}) = 3$, so

$$\frac{1}{2\pi}\int_{\mathcal{S}^2}\frac{1}{2}\mathcal{F}=\frac{2}{3}\left(\pm\frac{p}{2}-1\right)\in\mathbb{Z}$$

Bolt-, p=1 is allowed by the quantization condition.

イロン スピン メロン・