Open intersection numbers, matrix model, and W-constraints

Alexander Alexandrov

IBS CGP, Pohang, Korea \& ITEP, Moscow, Russia

September 25, 2018

O 1410.1820 [math-ph]
O 1412.3772 [hep-th]
O 1606.06712 [math-ph]
O 1702.02319 [math-ph] (with A. Buryak and R. Tessler)

Table of Contents

InTRODUCTION

Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion
OpFN INTERSECTION NUMBERS
Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion

Conclusion

Table of Contents

INTRODUCTION
Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraintsTopological recursion
OPEN INTERSECTION NUMBERS
Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion

Table of Contents

Introduction

Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion
Open intersection numbers
Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion

Table of Contents

INTRODUCTION
Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion
OpEN INTERSECTION NUMBERS
Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion
Conclusion

Table of Contents

Introduction

Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion

OpEN INTERSECTION NUMBERS

Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion
Conclusion

Intersection numbers on moduli spaces of Riemann surfaces

$$
h=1, n=2
$$

The compactifications of the moduli spaces of genus h Riemann surfaces with n marked points $\mathcal{M}_{h, n}$ are orbifolds of dimension

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{h, n}=3 h-3+n
$$

Intersection numbers of the first Chern classes $\psi_{i} \in H^{2}\left(\overline{\mathcal{M}}_{n, n}, \mathbb{Q}\right)$ of the cotangent line bundles:

$$
\int_{\overline{\mathcal{M}}_{h, n}} \psi_{1}^{\alpha_{1}} \psi_{2}^{\alpha_{2}} \ldots \psi_{n}^{\alpha_{n}} \in \mathbb{Q}
$$

2D (TOPOLIGICAL) GRAVITY

Witten: Intersection theory on the moduli spaces describes 2d quantum (topological) gravity. It should be equivalent to the continuous (double scaling) limit of the Hermitian matrix model.

Conjecture [Witten, '91]: The generating function of the intersection numbers is a tau-function of the KdV integrable hierarchy.
or, equivalently
The generating function of the intersection numbers is annihilated by infinitely many differential operators, satisfying Virasoro commutation relations.

Proof [Kontsevich, '92]: matrix model!

- KdV tau-function
- Kontsevich matrix model
- Virasoro constraints

Intersection numbers on moduli spaces of open Riemann SURFACES

$$
h=1, b=3, k=2, l=1
$$

Open intersection numbers " $\int_{\overline{\mathcal{M}}_{h, b, k, l}} \psi_{1}^{\alpha_{1}} \ldots \psi_{l}^{\alpha_{1}} \phi_{I+1}^{\beta_{1}} \ldots \phi_{l+k}^{\beta_{k}}$ "
Recently [R. Pandharipande, J. Solomon and R. Tessler; A. Buryak, '14] described (conjectured) intersection theory on $\mathcal{M}_{2 h+b-1, k, l}$, that is on the combination of the moduli space of Riemann surfaces with h handles, b boundaries, k marked points on the boundary and / interior marked points

- Tau-function? Matrix model? Virasoro (W)-constraints?

Kontsevich-Penner model and intersection numbers

The Kontsevich-Penner matrix integral

$$
\tau_{n}=\operatorname{det}(\Lambda)^{n} \mathcal{C}^{-1} \int_{M \times M}[d \Phi] \exp \left(-\operatorname{Tr}\left(\frac{\Phi^{3}}{3!}-\frac{\Lambda^{2} \Phi}{2}+n \log \Phi\right)\right)
$$

Tau-function of the MKP hierarchy, describes both closed and open intersection numbers.
[A.A. '14]
Parameter n counts the number of boundaries
[B. Safnuk '16]
[A.A., A. Buryak, R. Tessler '17]

n	0	arbitrary
Intersection numbers	Closed	Open
Integrable hierarchy	KdV	$(\mathrm{M}) \mathrm{KP}$
Algebra of constraints	Heisenberg+Virasoro	Virasoro+ $W^{(3)}$
Cut-and-join operator	$e^{W_{K W}} \cdot 1$	$" e^{W_{1}+W_{2} / 2 "} \cdot 1$

TAU-FUNCTIONS AND MODIFIED KP HIERARCHY

The bilinear identity satisfied by a tau-function $\tau_{n}(\mathbf{t})$ of the modified Kadomtsev-Petviashvili (MKP) integrable hierarchy for $m \geq n$

$$
\oint_{\infty} z^{m-n} e^{\sum_{k>0}\left(t_{k}-t_{k}^{\prime}\right) z^{k}} \tau_{m}\left(\mathbf{t}-\left[z^{-1}\right]\right) \tau_{n}\left(\mathbf{t}^{\prime}+\left[z^{-1}\right]\right) d z=0
$$

encodes all nonlinear equations of the hierarchy.
In particular, for $m=n$ we have the KP hierarchy. The first non-trivial Hirota equation contained in the KP bilinear identity is

$$
\left(D_{1}^{4}+3 D_{2}^{2}-4 D_{1} D_{3}\right) \tau_{m} \cdot \tau_{m}=0
$$

The second derivative of this equation with respect to t_{1} gives the KP equation in its standard form

$$
3 u_{22}=\left(4 u_{3}-12 u u_{1}-u_{111}\right)_{1}
$$

where $u=\frac{\partial^{2}}{\partial t_{1}{ }^{2}} \log \left(\tau_{m}\right)$.

MiwA PARAMETRIZATION

The Miwa parametrization is very convenient for matrix models

$$
t_{k}=\frac{1}{k} \sum_{j=1}^{M} z_{j}^{-k}
$$

for some finite M. From the boson-fermion correspondence and Wick theorem it follows that a tau-function in this parametrization is

$$
\tau([Z]):=\tau\left(t_{k}=\frac{1}{k} \operatorname{Tr} Z^{-k}\right)=\frac{\operatorname{det}_{i, j=1}^{M} \Phi_{i}\left(z_{j}\right)}{\Delta(z)}
$$

where

$$
\Phi_{i}(z)=z^{i-1}+\sum_{j=-\infty}^{i-2} \Phi_{i, j} z^{j}
$$

are the basis vectors and $\Delta(z)$ is the Vandermonde determinant. For a tau-function they describe a point of the infinite-dimensional Sato Grassmannian

$$
\mathcal{W}=\operatorname{span}_{\mathbb{C}}\left\{\Phi_{1}(z), \Phi_{2}(z), \Phi_{3}(z), \ldots\right\} \in \operatorname{Gr}(0)
$$

KAC-SCHWARZ OPERATORS

Let $a \in \mathbb{C}\left[\left[z, z^{-1}, \frac{\partial}{\partial z}\right]\right]$ be a formal differential operator operator such that

$$
a \mathcal{W} \subset \mathcal{W}
$$

for some \mathcal{W}. Then, for the corresponding tau-function it holds that

$$
\widehat{W}_{a} \tau=C \tau
$$

for some constant C, where the operator $\widehat{W}_{a} \in \mathbb{C}\left[\left[\mathbf{t}, \frac{\partial}{\partial \mathbf{t}}\right]\right]$ can be obtaned from a by a boson-fermion correspondence.

Such operators a we call the Kac-Schwarz operators. These operators form an algebra. However, general properties of such an algebra for the KP tau-functions are unknown.

Sometimes it is more convenient to work with the Sato Grassmannian and KS operators!

Table of Contents

InTRODUCTION

Closed Intersection numbers

Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion

OpEN INTERSECTION NUMBERS
Kontsovich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion

CONCLUSION

Kontsevich-Witten TAU-FUnction

Let $\overline{\mathcal{M}}_{h, /}$ be the Deligne-Mumford compactification of the moduli space of genus h complex curves Σ with / marked points x_{1}, \ldots, x_{l}. The generating function of the intersection numbers of ψ-classes

$$
\int_{\overline{\mathcal{M}}_{h, l}} \psi_{1}^{\alpha_{1}} \psi_{2}^{\alpha_{2}} \ldots \psi_{l}^{\alpha_{l}}=:\left\langle\tau_{\alpha_{1}} \tau_{\alpha_{2}} \ldots \tau_{\alpha_{l}}\right\rangle_{h}
$$

is

$$
\mathcal{F}_{K W}(\mathbf{T}, \hbar):=\sum_{h=0}^{\infty} \hbar^{2 h-2}\left\langle\exp \left(\hbar \sum_{m=0}^{\infty} T_{m} \tau_{m}\right)\right\rangle_{h}
$$

It's exponentiated version is the Kontsevich-Witten tau-function of the KdV hierarchy

$$
\tau_{K W}(\mathbf{T}, \hbar)=\exp \left(\mathcal{F}_{K W}(\mathbf{T}, \hbar)\right)
$$

[E . Witten '91; M. Kontsevich '92]
Below we use the variables $t_{2 k+1}=T_{k} /(2 k+1)!!$, times of the KP hierarchy.

Kontsevich matrix integral

The Kontsevich-Witten tau-function is a formal series in odd times $t_{2 k+1}$ with rational coefficients. In the Miwa parametrization

$$
t_{k}=\frac{1}{k} \operatorname{Tr} \Lambda^{-k}
$$

it is equal to the asymptotic expansion of the Kontsevich matrix integral over the $M \times M$ Hermitian matrix Φ :

$$
\tau_{K W}([\Lambda])=\mathcal{C}^{-1} \int[d \Phi] \exp \left(-\frac{1}{\hbar} \operatorname{Tr}\left(\frac{\phi^{3}}{3!}+\frac{\Lambda \phi^{2}}{2}\right)\right)
$$

All t_{k} can be considered as independent variables as the size of the matrices M tends to infinity and in this limit the integral yields the Kontsevich-Witten tau-function.

It is easy to show that this matrix integral defines a tau-function of the KdV integrable hierarchy.

MATRIX INTEGRALS AND INTEGRABILITY

The standard volume form on the space of hermitian matrices

$$
[d \Phi]=\prod_{1 \leq i<j \leq M} d \Im \Phi_{i j} d \Re \Phi_{i j} \prod_{k=1}^{M} d \Phi_{k k}
$$

The Harish-Chandra-Itzykson-Zuber formula allows us to reduce the matrix integral to the ratio of determinants

$$
\tau_{K W}([\Lambda])=\frac{\operatorname{det}_{i, j=1}^{M} \Phi_{i}^{K W}\left(\lambda_{j}\right)}{\Delta(\lambda)}
$$

Here λ_{j} are the eigenvalues of the matrix Λ and

$$
\Phi_{i}^{K W}(\lambda)=\lambda^{i-1}\left(1+O\left(\lambda^{-1}\right)\right)
$$

define a point of the Sato Grassmannian.
KP integrability!

BASIS VECTORS FOR THE KW TAU-FUNCTION

The basis vectors $\Phi_{i}^{K W}$ are given by the integrals

$$
\Phi_{K}^{K W}(z)=\sqrt{\frac{z}{2 \pi}} e^{-\frac{z^{3}}{3}} \int_{C} d y y^{k-1} \exp \left(-\frac{y^{3}}{3!}+\frac{y z^{2}}{2}\right)
$$

This representation allows us to find the Kac-Schwarz operators of the KW tau-function:

$$
a_{K W}=\frac{1}{z} \frac{\partial}{\partial z}+z-\frac{1}{2 z^{2}}, \quad b_{K W}=\frac{z^{2}}{2}
$$

The Kac-Schwarz operators $a_{K W}$ and $b_{K W}$ satisfy the canonical commutation relation and generate an algebra of the Kac-Schwarz operators for the KW tau-function. They allow us to construct two infinite sets of operators, which annihilate (and completely specify) the generating function

$$
\frac{\partial}{\partial t_{2 k}} \tau_{K W}=0, \quad k \geq 1 \quad \text { Reduction to } \mathrm{KdV}
$$

VIRASORO CONSTRAINTS FOR $\tau_{K W}$

Consider a bosonic current on the curve $y^{2}=z$ with odd boundary conditions

$$
\widehat{J}_{o}(z)=\frac{1}{\sqrt{2}} \sum_{k=0}^{\infty}\left((2 k+1) \tilde{t}_{2 k+1} z^{k-\frac{1}{2}}+\frac{1}{z^{k+\frac{3}{2}}} \frac{\partial}{\partial t_{2 k+1}}\right)
$$

where the time variables are subject to the dilaton shift

$$
\tilde{t}_{k}=t_{k}-\frac{\delta_{k, 3}}{3 \hbar}
$$

Then, we can construct

$$
\widehat{\mathcal{L}}(z)=\sum_{k=-\infty}^{\infty} \frac{\widehat{\mathcal{L}}_{k}}{z^{k+2}}=\frac{1}{2} * \widehat{\jmath}_{o}^{2}(z)_{*}^{*}+\frac{1}{16 z^{2}}
$$

where we use usual bosonic normal order.

VIRASORO CONSTRAINTS FOR $\tau_{K W}$

These operators satisfy the Virasoro commutation relations

$$
\left[\widehat{\mathcal{L}}_{k}, \widehat{\mathcal{L}}_{m}\right]=(k-m) \widehat{\mathcal{L}}_{k+m}+\frac{1}{12} k\left(k^{2}-1\right) \delta_{k,-m}
$$

with central charge $c=1$.
The Virasoro constraints follow from the boson-ferion correspondence of the KS operators $b_{K W}^{m+1} a_{K w}$

$$
\hat{\mathcal{L}}_{m} \tau_{K W}(\mathbf{t} ; \hbar)=0, \quad m \geq-1
$$

completely specify the Kontsevich-Witten tau-function.

$$
\widehat{\mathcal{L}}_{m}=\frac{1}{2} \sum_{k=1}^{\infty}(2 k+1) \tilde{t}_{2 k+1} \frac{\partial}{\partial t_{2 k+2 m+1}}+\frac{1}{4} \sum_{k=0}^{m-1} \frac{\partial^{2}}{\partial t_{2 k+1} \partial t_{2 m-2 k-1}}+\frac{t_{1}^{2}}{4} \delta_{m,-1}+\frac{1}{16} \delta_{m, 0}
$$

CUT-AND-JOIN OPERATOR

From the Virasoro constraints it follows that the Kontsevich-Witten tau-function can be described by a cut-and-join operator

$$
\tau_{K W}(\mathbf{t} ; \hbar)=e^{\hbar \widehat{W}_{K W}} \cdot 1
$$

where

$$
\begin{aligned}
& \widehat{W}_{K W}=\frac{1}{3} \sum_{k, m \geq 0}(2 k+1)(2 m+1) t_{2 k+1} t_{2 m+1} \frac{\partial}{\partial t_{2 k+2 m-1}} \\
& +\frac{1}{3!} \sum_{k, m \geq 0}(2 k+2 m+5) t_{2 k+2 m+5} \frac{\partial^{2}}{\partial t_{2 k+1} \partial t_{2 m+1}}+\frac{t_{1}^{3}}{3!}+\frac{t_{3}}{8}
\end{aligned}
$$

Operator $\widehat{W}_{K W}$ describes a topological recursion on the level of tau-function,

$$
\hbar^{2 h-2+n}
$$

Table of Contents

InTRODUCTION

Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion

OpEN INTERSECTION NUMBERS
Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W-constraints
Topological recursion

CONCLUSION

OPEN INTERSECTION NUMBERS

The moduli spaces of open Riemann surfaces (Riemann surfaces with boundaries) were described for the disc case in [R. Pandharipande, J. Solomon and R. Tessler '14] and for the higher genera case in [R. Tessler '15].

$$
\operatorname{dim}_{\mathbb{R}} \mathcal{M}_{h, b, k, l}=6 h-6+3 b+k+2 l
$$

We can consider the intersection numbers

$$
\cdots \int_{\overline{\mathcal{M}}_{h, b, k, l}} \psi_{1}^{\alpha_{1}} \ldots \psi_{l}^{\alpha_{1}} \phi_{l+1}^{\beta_{1}} \ldots \phi_{I+k}^{\beta_{k}} "=\left\langle\tau_{\alpha_{1}} \ldots \tau_{\alpha_{l}} \sigma_{\beta_{1}} \ldots \sigma_{\beta_{k}}\right\rangle_{h, b}
$$

where ψ_{j} are the the first Chern classes of the bundles \mathcal{L}_{i} corresponding to the interior points and ϕ_{j} are their analogs for the boundary points. In [R. Pandharipande, J. Solomon and R. Tessler '14] all intersection numbers of the form

$$
\int_{\overline{\mathcal{M}}_{0,1, k, l}} \psi_{1}^{\alpha_{1}} \ldots \psi_{l}^{\alpha_{l}} \phi_{l+1}^{0} \ldots \phi_{l+k}^{0}
$$

were constructed.

OPEN INTERSECTION NUMBERS

We can consider the generating function of all these intersection numbers

$$
\mathcal{F}_{n}(\mathbf{T} ; \mathbf{S}, \hbar)=\sum_{h=0}^{\infty} \sum_{b=0}^{\infty} \hbar^{2 h-2+b} n^{b}\left\langle\exp \left(\hbar \sum_{k \geq 0}\left(T_{k} \tau_{k}+S_{k} \sigma_{k}\right)\right)\right\rangle_{h, b}
$$

and

$$
\tau_{n}(\mathbf{T} ; \mathbf{S}, \hbar)=e^{\mathcal{F}_{n}(\mathbf{T} ; \mathbf{S}, \hbar)}
$$

In [R. Tessler '15] all coefficients of the generating function for $n=1$ (that is the function, to which the components of the moduli spaces with different number of boundaries contributes with the same weight) and $\mathbf{S}_{\mathbf{0}}=\left\{S_{0}, 0,0, \ldots\right\}$ (that is without descendants on the boundary),

$$
\tau_{1}\left(\mathbf{T} ; \mathbf{S}_{\mathbf{0}}, \hbar\right)
$$

were calculated. Obtained all-genera generating function is uniquely specified by the so called open KdV equations and the Virasoro constraints.

OPEN INTERSECTION NUMBERS

In [A. Buryak, '14] the generating function was generalized to describe the descendants on the boundary, and the Virasoro constrains for this conjectural generalized (or extended) generating function were established.

$$
\tau_{1}(\mathbf{T} ; \mathbf{S}, \hbar)
$$

From the definition it follows that for $n=0$ only the components without boundaries contribute, so that the generating function does not depend on S_{k} 's and coincides with the Kontsevich-Witten tau-function

$$
\tau_{0}(\mathbf{T} ; \mathbf{S}, \hbar)=\tau_{K W}(\mathbf{T}, \hbar)
$$

\hbar is not an independent variable, we can omit it

$$
\tau_{Q}(\mathbf{T} ; \mathbf{S}, \hbar)=\left.\tau_{Q}(\mathbf{T} ; \mathbf{S}, 1)\right|_{T_{k} \mapsto \hbar^{\frac{2 k+1}{3}}} T_{k}, s_{k} \mapsto \hbar^{\frac{2 k+2}{3}} s_{k}
$$

MATRIX INTEGRAL FOR OPEN INTERSECTION NUMBERS

We unify two infinite sets of variables T_{k} and S_{k}, corresponding to the descendants in the interior and on the boundary:

$$
T_{k}=(2 k+1)!!t_{2 k+1}, \quad S_{k}=2^{k+1}(k+1)!t_{2 k+2}
$$

Proposition: the extended generating function of open intersection numbers $\tau_{n}(\mathbf{t})$ is given by the matrix integral

$$
\tau_{n}=\mathcal{C}^{-1} \operatorname{det}(\Lambda)^{n} \int[d \Phi] \exp \left(-\operatorname{Tr}\left(\frac{\Phi^{3}}{3!}-\frac{\Lambda^{2} \Phi}{2}+n \log \Phi\right)\right)
$$

where

$$
t_{k}=\frac{1}{k} \operatorname{Tr} \Lambda^{-k}
$$

InTEGRABLE HIERARCHY

The Kontsevich-Penner model

$$
\tau_{n}=\frac{\int[d \Phi] \operatorname{det}\left(1+\frac{\Phi}{\Lambda}\right)^{-n} \exp \left(-\operatorname{Tr}\left(\frac{\Phi^{3}}{3!}+\frac{\Lambda \Phi^{2}}{2}\right)\right)}{\int[d \Phi] \exp \left(-\operatorname{Tr} \frac{\Lambda \Phi^{2}}{2}\right)}
$$

This matrix integral belongs to the family of the generalized Kontsevich models.

$$
\tau_{n}=\frac{\operatorname{det}_{i, j=1}^{M} \Phi_{i}^{(n)}\left(\lambda_{j}\right)}{\Delta(\lambda)}
$$

where

$$
\begin{gathered}
\Phi_{k}^{(n)}(\lambda)=\lambda^{n} \Phi_{k-n}^{K W}(\lambda) \\
=\frac{\lambda^{n+1 / 2}}{\sqrt{2 \pi}} e^{-\frac{\lambda^{3}}{3}} \int_{C} d y y^{k-n-1} \exp \left(-\frac{y^{3}}{3!}+\frac{y \lambda^{2}}{2}\right)
\end{gathered}
$$

MKP tau-function!

QUANTUM SPECTRAL CURVE

The principal specialization of the tau-function coincides with the first basis vector of the Sato Grassmannian. It is annihilated by the Kac-Schwarz operator, which defines the quantum spectral curve

$$
\begin{aligned}
& \left(a_{n}^{3}-z^{2} a_{n}+2(n-1)\right) \Phi_{1}^{n}=0 \\
& a_{n}=\frac{1}{z} \frac{\partial}{\partial z}-\left(n+\frac{1}{2}\right) \frac{1}{z^{2}}+z
\end{aligned}
$$

After conjugation with a quasi-classical prefactor we obtain

$$
\hat{A}=\hat{y}^{3}-2 \hat{x} \hat{y}+2(n-1)
$$

where

$$
\hat{x}=\frac{z^{2}}{2}, \quad \hat{y}=\frac{1}{z} \frac{\partial}{\partial z}, \quad[\hat{y}, \hat{x}]=1
$$

- $n=0$. Closed intersection, $\tau_{K W}$:

$$
\hat{A}=\hat{y}\left(\hat{y}^{2}-2 \hat{x}\right)
$$

- $n=1$. Open intersections, τ_{1} :

$$
\hat{A}=\left(\hat{y}^{2}-2 \hat{x}\right) \hat{y}
$$

Kac-Schwarz operators for open intersection numbers

Origianal Pandharipande-Solomon-Tesser model

$$
\tau_{0}:=\tau_{1}
$$

The Kac-Schwarz operator is

$$
a_{o}=z a_{K W} z^{-1}=\frac{1}{z} \frac{\partial}{\partial z}-\frac{3}{2 z^{2}}+z
$$

This tau-function depends both on odd and even times, and z^{2} is not a Kac-Schwarz operator anymore:

$$
z^{2} \Phi_{1}^{o}(z) \notin\left\{\Phi^{\circ}(z)\right\}
$$

Nevertheless,

$$
I_{k}^{o}=-z^{2 k+2} a_{o}=-z^{2 k+2}\left(\frac{1}{z} \frac{\partial}{\partial z}-\frac{3}{2 z^{2}}+z\right)
$$

for $k \geq-1$ belong to the Kac-Schwarz algebra. The Virasoro commutation relations:

$$
\left[I_{k}^{\circ}, I_{m}^{\circ}\right]=2(k-m) I_{k+m}^{0}
$$

$W_{1+\infty}$ ALGEBRA OF SYMMETRIES

The $W_{1+\infty}$ algebra of infinitesimal symmetries of the KP hierarchy can be described in terms of the bosonic current $\widehat{J}(z)=\sum \widehat{J}_{k} z^{-k-1}$, where

$$
\widehat{J}_{k}= \begin{cases}\frac{\partial}{\partial t_{k}} & \text { for } \quad k>0 \\ 0 & \text { for } k=0 \\ -k t_{-k} & \text { for } \quad k<0\end{cases}
$$

$\widehat{J}(z)$ generates the Heisenberg algebra. ${ }_{*}^{*} \widehat{J}(z)^{2}{ }_{*}^{*}$ generates the Virasoro algebra:

$$
\widehat{L}_{m}=\frac{1}{2} \sum_{k+l=-m} k / t_{k} t_{l}+\sum_{k=1}^{\infty} k t_{k} \frac{\partial}{\partial t_{k+m}}+\frac{1}{2} \sum_{k+l=m} \frac{\partial^{2}}{\partial t_{k} \partial t_{l}}
$$

${ }_{*}^{*} \widehat{J}(z)^{3}{ }_{*}^{*}$ generates the $W^{(3)}$ algebra:

$$
\begin{aligned}
\widehat{M}_{k}=\frac{1}{3} \sum_{a+b+c=-k} a b c t_{a} t_{b} t_{c}+ & \sum_{c-a-b=k} a b t_{a} t_{b} \frac{\partial}{\partial t_{c}} \\
& +\sum_{b+c-a=k} a t_{a} \frac{\partial^{2}}{\partial t_{b} \partial t_{c}}+\frac{1}{3} \sum_{a+b+c=k} \frac{\partial^{3}}{\partial t_{a} \partial t_{b} \partial t_{c}}
\end{aligned}
$$

VIrASORO CONSTRAINTS FOR OPEN INTERSECTION NUMBERS

Using the Kac-Schwarz operators we can show that the tau-function τ_{1} is an eigenfunction of the Virasoro operators:

$$
\widehat{L}_{k}^{(1)}=\widehat{L}_{2 k}+(k+2) \widehat{J}_{2 k}-\widehat{J}_{2 k+3}+\left(\frac{1}{8}+\frac{3}{2}\right) \delta_{k, 0}, \quad k \geq-1
$$

$$
\begin{aligned}
& \widehat{M}_{k}^{(1)}=\widehat{M}_{2 k}+2(k+3) \widehat{L}_{2 k}-2 \widehat{L}_{2 k+3}-2(k+3) \widehat{J}_{2 k+3} \\
& +\left(\frac{95}{12}+6 k+\frac{4}{3} k^{2}\right) \widehat{J}_{2 k}+\widehat{J}_{2 k+6}+\frac{23 \delta_{k, 0}}{3}, \quad k \geq-2
\end{aligned}
$$

These operators belong to $W_{1+\infty}$ algebra of symmetries of KP and annihilate the tau-function

$$
\begin{array}{ll}
\widehat{L}_{k}^{(1)} \tau_{1}=0, & k \geq-1 \\
\widehat{M}_{k}^{(1)} \tau_{1}=0, & k \geq-2
\end{array}
$$

In addition to the Virasoro constraints we have infinitely many higher W-constraints. Let us consider the KS operators

$$
w_{k}^{o}=z^{2 k+4} a_{o}^{2}, \quad k \geq-2
$$

They satisfy the following commutation relations

$$
\left[w_{k}^{o}, I_{m}^{0}\right]=2(k-2 m) w_{k+m}^{o}+4 m(m+1) l_{m+k}^{o}
$$

and correspond to the following operators from $W_{1+\infty}$:

$$
\begin{aligned}
\widehat{M}_{k}^{o} & =\widehat{M}_{2 k}+2(k+3) \widehat{L}_{2 k}-2 \widehat{L}_{2 k+3}-2(k+3) \widehat{J}_{2 k+3} \\
& +\left(\frac{95}{12}+6 k+\frac{4}{3} k^{2}\right) \widehat{J}_{2 k}+\widehat{J}_{2 k+6}+\frac{23 \delta_{k, 0}}{3}
\end{aligned}
$$

$$
\widehat{M}_{k}^{o} \tau_{o}=0, \quad k \geq-2
$$

$s l(2)$ algebra of Kac-Schwarz operators

The basis vectors have an expansion

$$
\begin{gathered}
\Phi_{k}^{n}=z^{k-1}+\frac{12(2-p)^{2}-7}{24} z^{k-4} \\
+\left(\frac{1}{8} p^{4}-\frac{5}{3} p^{3}+\frac{365}{48} p^{2}-\frac{55}{4} p+\frac{9241}{1152}\right) z^{k-7}+O\left(z^{k-10}\right)
\end{gathered}
$$

where $p=k-n$. Using the integral representation it is easy to see that

$$
z^{2} \Phi_{k}^{n}=\Phi_{k+2}^{n}-2(k-n-1) \Phi_{k-1}^{n} .
$$

z^{2} operator is not the KS operator for $n \neq 0$, because

$$
z^{2} \Phi_{1}^{n}=\Phi_{3}^{n}+2 n \Phi_{0}^{n} \notin\left\{\Phi^{n}\right\}, \quad \text { for } n \neq 0
$$

However, the following operators are the KS operators

$$
\begin{gathered}
\mathrm{I}_{-1}=-a_{n}, \\
\mathrm{I}_{0}=-z^{2} a_{n}+n-1, \\
\mathrm{I}_{1}=-z^{4} a_{n}+2(n-1) z^{2}
\end{gathered}
$$

Subalgebra of Virasoro algebra

Using the Kac-Schwarz description of the corresponding point of the Sato Grassmannian it is easy to show that the operators from the $W_{1+\infty}$ algebra

$$
\begin{gathered}
\widehat{\mathrm{L}}_{-1}^{(n)}=\widehat{L}_{-2}-\frac{\partial}{\partial t_{1}}+2 n t_{2}, \\
\widehat{\mathrm{~L}}_{0}^{(n)}=\widehat{L}_{0}-\frac{\partial}{\partial t_{3}}+\frac{1}{8}+\frac{3 n^{2}}{2}, \\
\widehat{\mathrm{~L}}_{1}^{(n)}=\widehat{L}_{2}-\frac{\partial}{\partial t_{5}}+3 n \frac{\partial}{\partial t_{2}}
\end{gathered}
$$

satisfy the commutation relation of the subalgebra of the Virasoro algebra

$$
\begin{gathered}
{\left[\widehat{\mathrm{L}}_{i}^{(n)}, \widehat{\mathrm{L}}_{j}^{(n)}\right]=2(i-j) \widehat{\mathrm{L}}_{i+j}^{(n)}, \quad i, j=-1,0,1} \\
\widehat{\mathrm{~L}}_{k}^{(n)} \tau_{n}=0, \quad k=-1,0,1
\end{gathered}
$$

$k=-1$ is the string equation, $k=0$ is the dilaton equation

VIRASORO CONSTRAINTS

Lemma: Operators

$$
\widehat{\mathrm{L}}_{k}^{(n)}=\widehat{L}_{2 k}-\frac{\partial}{\partial t_{2 k+3}}+3 n \frac{\partial}{\partial t_{2 k}}+\sum_{j=1}^{k-1} \frac{\partial^{2}}{\partial t_{2 j} \partial t_{2 k-2 j}}+\left(\frac{1}{8}+\frac{3 n^{2}}{2}\right) \delta_{k, 0}+2 n t_{2} \delta_{k,-1}, k \geq-1
$$

satisfy the Virasoro algebra commutation relations

$$
\left[\widehat{\mathrm{L}}_{k}^{(n)}, \widehat{\mathrm{L}}_{m}^{(n)}\right]=2(k-m) \widehat{\mathrm{L}}_{k+m}^{(n)}
$$

annihilate the tau-function

$$
\widehat{\mathrm{L}}_{k}^{(n)} \tau_{n}=0, \quad k \geq-1
$$

Remark: This is similar to the case of the Gaussian Hermitian matrix model. For this model we also have an infinite algebra of the Virasoro constraints, but only an $s /(2)$ subalgebra of it belongs to the $W_{1+\infty}$ algebra of KP symmetries.
[M. Mulase, '94]

Higher KS operators

For arbitrary n the operators

$$
\begin{gathered}
\mathrm{m}_{-2}=a_{n}^{2}, \\
\mathrm{~m}_{-1}=z^{2} a_{n}^{2}-(n-2) a_{n}, \\
\mathrm{~m}_{0}=z^{4} a_{n}^{2}-2(n-2) z^{2} a_{n}+\frac{2}{3}(n-1)(n-2), \\
\mathrm{m}_{1}=z^{6} a_{n}^{2}-3(n-2) z^{4} a_{n}+2(n-1)(n-2) z^{2}, \\
\mathrm{~m}_{2}=z^{8} a_{n}^{2}-4(n-2) z^{6} a_{n}+4(n-1)(n-2) z^{4},
\end{gathered}
$$

are the KS operators. Of course, these operators are not unique KS operators with the leading terms $z^{2 k-4} a_{n}^{2}$. Namely, one can add to them a combination of the above considered operators and a constant. Our choice corresponds to the commutation relations

$$
\left[\iota_{j}, \mathrm{~m}_{k}\right]=2(2 j-k) \mathrm{m}_{j+k}
$$

Higher W-constraints

$$
\begin{gathered}
\widehat{\mathrm{M}}_{k}^{(n)}=\widehat{M}_{2 k}-2 \widehat{L}_{2 k+3}+\widehat{J}_{2 k+6}+\left(3(k+1) n^{2}+\frac{1}{4}\right) \widehat{J}_{2 k} \\
+(k+4) n\left(\hat{L}_{2 k}-\widehat{J}_{2 k+3}\right)+2\left(n^{2}+\frac{1}{4}\right) n \delta_{k, 0}+4 n^{2} t_{2} \delta_{k,-1}+16 n^{2} t_{4} \delta_{k,-2} \\
+(k-2) n \sum_{j=1}^{k-1} \frac{\partial^{2}}{\partial t_{2 j} \partial t_{2 k-2 j}}-\frac{4}{3} \sum_{i+j+1=k} \frac{\partial^{3}}{\partial t_{2 i} \partial t_{2 j} \partial t_{2 l}}
\end{gathered}
$$

for $k \geq-2$.

$$
\widehat{\mathrm{M}}_{k}^{(n)} \tau_{n}=0, \quad k \geq-2
$$

Commutation relations between the Virasoro and W-operators

$$
\left[\widehat{\mathrm{L}}_{k}^{(n)}, \widehat{\mathrm{M}}_{l}^{(n)}\right]=2(2 k-l) \widehat{\mathrm{M}}_{k+1}^{(n)}-4\left(k(k-1)-2 \delta_{k,-1}\right) n \widehat{\mathrm{~L}}_{k+1}^{(n)}+8 \sum_{j=1}^{k-1} j \frac{\partial}{\partial t_{2 k-2 j}} \widehat{\mathrm{~L}}_{l+j}^{(n)}
$$

for $k \geq-1$ and $I \geq-2$.
$W^{(n)}$ algebra can be naturally described in terms of free bosonic fields
[A. B. Zamolodchikov '85]
[V. A. Fateev and A. B. Zamolodchikov '87] [V. A. Fateev and S. L. Lukyanov '88]
For the case of $s l(n)$ it in can be represented in terms of the vector of $n-1$ independent bosonic currents $\vec{J}=\left(J_{(1)}, J_{(2)}, \ldots, J_{(n-1)}\right)$

$$
J_{(k)}(x)=\partial_{x} \phi_{(k)}(x)=\sum_{m=-\infty}^{\infty} J_{m}^{(k)} x^{-m-1}, \quad\left[J_{m}^{(k)}, J_{n}^{(l)}\right]=m \delta_{k, I} \delta_{m,-n}
$$

and is generated by

$$
R_{n}(u)=-{ }_{*}^{*} \prod_{m=1}^{n}\left(u-\vec{h}_{m} \cdot \vec{\jmath}\right)_{*}^{*}
$$

Here the \vec{h}_{m} 's are the weight vectors of the fundamental representation of $s /(n)$.

In particular, for $n=3$, the $W^{(3)}$ algebra is generated by

$$
\begin{gathered}
R_{3}(u)=-{ }_{*}^{*} \prod_{m=1}^{3}\left(u-\vec{h}_{m} \vec{\jmath}\right)_{*}^{*}=-u^{3}-u_{*}^{*} \prod_{i<j}\left(\vec{h}_{i} \cdot \vec{\jmath}\right)\left(\vec{h}_{j} \cdot \vec{\jmath}\right)_{*}^{*}+{ }_{*}^{*} \prod_{i} \vec{h}_{i} \cdot \vec{\jmath}_{*}^{*} \\
=-u^{3}+u \mathcal{L}(x)+\mathcal{M}(x)
\end{gathered}
$$

Then

$$
\begin{gathered}
\mathcal{L}(x)=\sum_{k=\infty}^{\infty} \frac{\mathcal{L}_{k}}{x^{k+2}}=\frac{1}{2}\left({ }_{*}^{*} J_{(1)}(x)^{2}+J_{(2)}(x)^{2}{ }_{*}^{*}\right), \\
\mathcal{M}(x)=\sum_{k=-\infty}^{\infty} \frac{\mathcal{M}_{k}}{x^{k+3}}:=\frac{1}{\sqrt{6}}\left({ }_{*}^{*} J_{(1)}(x)^{2} J_{(2)}(x)-\frac{1}{3} J_{(2)}(x)_{*}^{3 *}\right)
\end{gathered}
$$

generate $W^{(3)}$ algebra with $c=2$.

TWISTED FIELD

Let us introduce two bosonic currents

$$
\begin{aligned}
& \widehat{J}_{e}(x)=\sum_{k=0}^{\infty}\left(\sqrt{\frac{2}{3}} k \tilde{t}_{2 k} x^{k-1}+\sqrt{\frac{3}{2}} \frac{1}{x^{k+1}} \frac{\partial}{\partial t_{2 k}}\right)+\sqrt{\frac{3}{2}} \frac{n}{x}, \\
& \widehat{J}_{O}(x)=\frac{1}{\sqrt{2}} \sum_{k=0}^{\infty}\left((2 k+1) \tilde{t}_{2 k+1} x^{k-\frac{1}{2}}+\frac{1}{x^{k+\frac{3}{2}}} \frac{\partial}{\partial t_{2 k+1}}\right)
\end{aligned}
$$

with the dilaton shift

$$
\tilde{t}_{k}=t_{k}-\frac{\delta_{k, 3}}{3}
$$

We see that the odd current $\widehat{J}_{0}(z)$ is the same as the current from the description of the Kontsevich-Witten tau-function and $\widehat{J}_{e}(z)$ (up to trivial rescailing of the times) is the untwisted current.

Constraints for Kontsevich-Penner model

Theorem:

$$
\begin{gathered}
\widehat{\mathcal{L}}^{(n)}(x)=\sum_{k=-\infty}^{\infty} \frac{\widehat{\mathcal{L}}_{k}^{(n)}}{x^{k+2}}=\frac{1}{2}\left({ }_{*}^{*} \widehat{J}_{0}(x)^{2}+\frac{1}{8 x^{2}}+\widehat{J}_{e}(x)^{2}{ }_{*}^{*}\right) \\
\widehat{\mathcal{M}}^{(n)}(x)=\sum_{k=-\infty}^{\infty} \frac{\widehat{\mathcal{M}}_{k}^{(n)}}{x^{k+3}}:=\frac{1}{\sqrt{6}}\left({ }_{*}^{*} \widehat{J}_{e}(x)\left(\widehat{J}_{O}(x)^{2}+\frac{1}{8 x^{2}}\right)-\frac{1}{3} \widehat{J}_{e}(x)_{*}^{3}{ }_{*}^{*}\right)
\end{gathered}
$$

generate a representation of the $W^{(3)}$ algebra with central charge $c=2$

$$
\begin{gathered}
{\left[\widehat{\mathcal{L}}_{k}^{(n)}, \widehat{\mathcal{L}}_{m}^{(n)}\right]=(k-m) \widehat{\mathcal{L}}_{k+m}^{(n)}+\frac{1}{6} k\left(k^{2}-1\right) \delta_{k,-m}} \\
{\left[\widehat{\mathcal{L}}_{k}^{(n)}, \widehat{\mathcal{M}}_{m}^{(n)}\right]=(2 k+m) \widehat{\mathcal{M}}_{k+m}^{(n)}}
\end{gathered}
$$

and

$$
\begin{aligned}
& \left(\widehat{\mathcal{L}}^{(n)}(x)\right)_{-} \tau_{n}=0 \\
& \left(\widehat{\mathcal{M}}^{(n)}(x)\right)_{-} \tau_{n}=0
\end{aligned}
$$

TOPOLOGICAL RECURSION

Topological expansion:

$$
\tau_{n}(\mathbf{t} ; \hbar)=\exp \left(\sum_{\chi<0} \hbar^{-\chi} F_{n}^{(\chi)}(\mathbf{t})\right)=1+\sum_{k=1}^{\infty} \hbar^{k} \tau_{n}^{(k)}(\mathbf{t})
$$

where

$$
\chi=2-2 \# \text { handles }-\# \text { boundaries }-\# \text { points }
$$

$\tau_{n}(\mathbf{t} ; \hbar)$ satisfies the cut-and-join type equation

$$
\hbar \frac{\partial}{\partial \hbar} \tau_{n}(\mathbf{t}, \hbar)=\left(\hbar \widehat{W}_{1}+\hbar^{2} \widehat{W}_{2}\right) \tau_{n}(\mathbf{t}, \hbar)
$$

so that $\tau_{n}^{(k)}$ are uniquely defined by a recursion

$$
\tau_{n}^{(k)}=\frac{1}{k}\left(\widehat{W}_{1} \tau_{n}^{(k-1)}+\widehat{\mathrm{W}}_{2} \tau_{n}^{(k-2)}\right)
$$

with the initial conditions $\tau_{n}^{(0)}=1, \tau_{n}^{(-1)}=0$.

CuT-AND-JOIN OPERATORS

Operators \widehat{W}_{1} and \widehat{W}_{2} are not unique.

$$
\begin{gathered}
v_{0}(x)=\frac{1}{\sqrt{2}} \sum_{k=0}^{\infty}(2 k+1) x^{k-\frac{1}{2}} t_{2 k+1} \\
v_{e}(x)=\sqrt{\frac{2}{3}} \sum_{k=1}^{\infty} k x^{k-1} t_{2 k}
\end{gathered}
$$

$$
\begin{gathered}
\widehat{W}_{1}=\frac{1}{\sqrt{2}} \frac{1}{2 \pi i} \oint_{*}^{*} \frac{v_{0}(x)}{2}\left(\widehat{J}_{0}^{\prime}(x)^{2}+\frac{1}{8 x^{2}}+\widehat{J}_{e}(x)^{2}\right)+\frac{2 v_{e}(x)}{\sqrt{3}} \widehat{J}_{0}^{\prime}(x) \widehat{J}_{e}(x)_{*}^{*} \frac{d x}{\sqrt{x}} \\
\widehat{W}_{2}=-\frac{1}{3} \frac{1}{2 \pi i} \oint v_{e}(x)\left({ }_{*}^{*} \widehat{J}_{e}(x)\left(\widehat{J}_{0}^{\prime}(x)^{2}+\frac{1}{8 x^{2}}\right)-\frac{1}{3} \widehat{J}_{e}(x)_{*}^{3}\right) \frac{d x}{x^{2}}
\end{gathered}
$$

Not from $W_{1+\infty}$!

$$
\begin{gathered}
\mathcal{F}_{n}(\mathbf{t})=\left(\frac{1}{8}+\frac{3}{2} n^{2}\right) t_{3}+\frac{1}{6} t_{1}{ }^{3}+2 n t_{1} t_{2}+6 n t_{1} t_{2} t_{3}+4 n\left(1+n^{2}\right) t_{6} \\
+\frac{4}{3} n t_{2}{ }^{3}+\left(\frac{9}{4} n^{2}+\frac{3}{16}\right) t_{3}{ }^{2}+\frac{1}{2} t_{3} t_{1}{ }^{3}+8 n^{2} t_{2} t_{4}+4 t_{1}{ }^{2} n t_{4}+\left(\frac{15}{2} n^{2}+\frac{5}{8}\right) t_{1} t_{5} \\
+8 n t_{2}{ }^{3} t_{3}+15\left(3 n^{2}+\frac{1}{4}\right) t_{1} t_{3} t_{5}+24 n t_{1}{ }^{2} t_{3} t_{4}+30 n^{2} t_{2}{ }^{2} t_{5}+\frac{105}{8}\left(\frac{1}{16}+\frac{7}{2} n^{2}+n^{4}\right) t_{9} \\
+35\left(n^{3}+\frac{3}{4} n\right) t_{7} t_{2}+35\left(\frac{1}{16}+\frac{3}{4} n^{2}\right) t_{7} t_{1}{ }^{2}+32 n\left(n^{2}+1\right) t_{8} t_{1}+32 n^{2} t_{1} t_{4}{ }^{2} \\
+48 n^{2} t_{2} t_{3} t_{4}+18 n t_{1} t_{2} t_{3}{ }^{2}+20 n\left(1+2 n^{2}\right) t_{5} t_{4}+24 n\left(n^{2}+1\right) t_{6} t_{3}+8 n t_{1}{ }^{3} t_{6} \\
+\frac{3}{2} t_{1}{ }^{3} t_{3}{ }^{2}+48 n^{2} t_{1} t_{2} t_{6}+16 n t_{1} t_{2}{ }^{2} t_{4}+\frac{5}{8} t_{1}{ }^{4} t_{5}+\left(\frac{9}{2} n^{2}+\frac{3}{8}\right) t_{3}{ }^{3}+15 n t_{1}{ }^{2} t_{2} t_{5}+\ldots
\end{gathered}
$$

Table of Contents

InTRODUCTION
Closed Intersection numbers
Kontsevich matrix model
KdV tau-fucntion
Virasoro constraints
Topological recursion
Open intersection numbers
Kontsevich-Penner matrix model
MKP tau-function
Virasoro and W -constraints
Topological recursion
Conclusion

Conclusion

A complete analog of the Kontsevich-Witten description for open case.
Open and closed models are of the similar complexity: simple!

n	0	1	arbitrary
Intersection numbers	Closed	Open	Refined Open
Integrable hierarchy	KdV	KP	MKP
Algebra of constraints	Heisenberg+Virasoro	Virasoro $+W^{(3)}$	Virasoro $+W^{(3)}$
Specified by	String	String+Dilaton	String+Dilaton
Cut-and-join operator	$e^{W_{K W}} \cdot 1$	$" e^{W_{1}+W_{2} / 2 "} \cdot 1$	$" e^{W_{1}+W_{2} / 2 "} \cdot 1$

Open questions

- Geometrical construction of the descendants on the boundary and general n cases.
- Open Hodge integrals, κ-classes
- Open topological string models for more complicated target spaces $\left(C P^{1}\right)$.
- Open version of Topological recursion/Givental theory. Frobenius structure?
- Relation to CFT?

