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Matrix Models: Quick Overview
¢ A Random Matrix Model(UMM) is characterised by a matrix ensemble E, and a probability

measure du(M).
Z:/du(M)
B

o We are interested in the form
z = / dMe™ VD
E

N
with dM = Hd]\/[i’i H dReM; ; dlmM; ; and V is called the potential.

i=1 1<i<j<N
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measure du(M).
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with dM = dM; ; dReM; j dlmM; ; and V' is called the potential.
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i=1 1<i<j<N

o We are interested in the form

o If M is a Hermitian N x N matrix then the partition function can be re-written as

2= [Tl nres v

1<J

N
e Or equivalently Z = /Hd/\ ™95 Wers X s with Weypp(Xi) = W(A) — N]\?S Zln|)\¢ -
JFi
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Unitary Matrix Models: Overview

¢ A Unitary Matrix Model(UMM) is a statistical ensemble of unitary matrices (U) defined by the
partition function

zZ= /[DU] exp[—V(U)]; with V(U) — potential function; DU — Haar measure.

e Going to a diagonal basis U = {e"%}, for i € [1, N]. In this basis the Haar measure takes the form

/DU] H/ do; | [ sin® 7)

i<j

e Therefore Vors({0:}) = V({0:}) — Zlnsm (17)

1<J



Unitary Matrix Models: Overview
¢ A Unitary Matrix Model(UMM) is a statistical ensemble of unitary matrices (U) defined by the

partition function

zZ= /[DU] exp[—V(U)]; with V(U) — potential function; DU — Haar measure.

e Going to a diagonal basis U = {e"%}, for i € [1, N]. In this basis the Haar measure takes the form

/DU] H/ do; | [ sin® (7)

i<j

e Therefore Vers({0:}) = V({0:}) — Zlnsm (J)
1<J

e The thermal partition function of a YM theory on S” is given by the Euclidean path integral on
SP x S'. Integrating out all the massive modes this path integral reduces to an integral

Zym = /[DU] exp [-Vym (U H/ do; Hsm (Li) e~ Vym(U)

i<J

where U = €% and a = 1 Ap.
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Unitary Matrix Models: A Phase Space Formulation

e Solution of UMMs in large N limit renders a distribution of eigenvalues p({6;}) of Unitary matrices
for different phases.

e Different phases of the solution is characterised by number of cuts on the unit circle.



Unitary Matrix Models: A Phase Space Formulation

e Solution of UMMs in large N limit renders a distribution of eigenvalues p({6;}) of Unitary matrices
for different phases.

e Different phases of the solution is characterised by number of cuts on the unit circle.

e Phases can also be equivalently captured by Young diagrams corresponding to different
representations of U(N). Therefore one can associate one additional information of box number
distribution — w({h;}).

e UMM also has an interpretation in the language of free fermions where eigenvalues behaves like
position of the free fermions and the number of boxes in Young diagram behaving like momentum.

p({6:}) — Position distribution
u({h:}) — Momentum distribution

e Thus a relation between them defines a Fermi surface (phase space distribution/ droplet) in two
dimensions for different phases of the UMM under consideration.

e Different phases are distinguished by different shapes of fermi surfaces/droplets.



Why phase space description?

Goal of our programme

e Phase space/Young diagrams provide a useful labelling of different operators in the gauge theory.
e According to AdS/CFT correspondence, these operators have a description in a dual bulk geometry.

e Goal is to understand how dual string geometry emerges from phase droplets in spirit of LLM.



A Phase Space Description for Chern-Simons Matter Theory on S% x S*

Goal of this talk

e To provide a phase space description for different phases of CS-matter theory on S2 x S*.
e To show how phase space construction imposes constraints on large [N representations.

e |evel-rank duality in phase space.



Outline
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@ Young Distribution for GW potential
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@ Phase space droplets for Chern-Simons matter theory

@ Summary
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Chern-Simons matter systems: The Matrix Model

e Consider CS theory on S x S* interacting with matter in fundamental representations. Partition
function of this theory is

. i kT 2 A3y_ g ) .
Z= /[DA] [Dp,]e”"T J(4da+34%) =S maries Dy — the matter field measure
e Result of Integrating out the matter fields [S. Jain et al, JHEP09(2013)009]

zZ= /[DA]J%“.I’(AdA+%A"‘>*Seff<U<I)>

where U(z) — 2 dimensional holonomy fields around the thermal circle st

e The thermal partition function for Chern-Simons matter system on S? x S* can be written as a
discretized sum over the holonomy matrix U as

za=]] 3 |[[2on (205 D) v

m=1n,=—occ Ll#m
2 m
V(U) = T*Vav(U); Om (i) = ”: , m €Z

. T . . 27
e Discretization interval between two allowed eigenvalues is R

8
2
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Chern-Simons matter systems: Eigenvalue distribution

2
e Discretization interval of % implies that the number of eigenvalues between 6 and 6 + Af is

Yo
Ar < ——
I_Qﬂ/k‘

9
/27‘

Kavii, PMU Chern-Simons matter systems



Chern-Simons matter systems: Eigenvalue distribution

2
e Discretization interval of % implies that the number of eigenvalues between 6 and 6 + Af is

e Eigenvalue density in large N limit

has a maximum value

1 N
0<p(f — A= —
p(0) < 5 z
9
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Chern-Simons matter systems: Gross-Witten model

e We study CS matter theory on S? x S* with
V(U) =—-Npi(TrU + TrUT) — (Gross-Witten potential)

10
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Chern-Simons matter systems: Gross-Witten model

o GWW model exhibits two phases when there is no restriction on its spectral density.

e For 81 < 1/2 The eigenvalues are distributed between (—, 7] (no gaps in the solution).

! (1+ 281 cos0).

T o

P(0)ng

k%aﬂ
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Chern-Simons matter systems: Gross-Witten model

o GWW model exhibits two phases when there is no restriction on its spectral density.

e For 81 < 1/2 The eigenvalues are distributed between (—, 7] (no gaps in the solution).

Kavii, PMU

P(0)ng
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! (1+ 281 cos0).

No Gap solution

Chern-Simons matter systems

AL

V%aﬁ

10
/ 27,



Chern-Simons matter systems: Gross-Witten model

o GWW model exhibits two phases when there is no restriction on its spectral density.

e For 81 < 1/2 The eigenvalues are distributed between (—, 7] (no gaps in the solution).

P(0)ng

T o

! (1+ 281 cos0).

No Gap solution

‘*\

-
AL

%aﬁ

e As the repulsion coming from the Haar measure is constant, the system undergoes a third order

Kavii, PMU

phase transition at 81 = 1/2. For 81 = 1/2 the eigenvalue density

p(0)ig

_25 /1 sin? J cos 2
=7\ 28 5 ‘3
=0. for sinzg > i

27 28

0 1
for sin® = < —
or sin 5 < 26,
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Chern-Simons matter systems: Gross-Witten model
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Chern-Simons matter systems: Gross-Witten model

e Spectral density have an upper bound 0 < p(0) < Tmn
™

e No gap phase is allowed if
1

1 1
0Bl < — —~ forA>—.
<oz for 2

1 1
o < = for A< —.
B1 5 for 5
e Similarly the lower gap phase exists in the parameter range

1
051<8?and)\§

N | =

1
o For A\ > D the solution does not exists.

o Capping the allowed value of p(0) introduces two new phases in the system.

11
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Chern-Simons matter systems: Gross-Witten model

New Phase 1: Upper cap
. P P=m
1 \smg % —1 , 0
s el 7
1 2 9 i_
i f —
N or cos 5 > 251
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Chern-Simons matter systems: Gross-Witten model

New Phase 1: Upper cap
1 \sing % -1 , 0
PO = Gy ~ 20\ e T g
_ 1 20 _ 3~
PSR for cos §> oY
New Phase 2: Upper cap with Lower Gap
_ |sind)| 297 . 9@ ‘~2§_‘-27
p(0) = Py (sin 5 ~ sin 2)(5111 sin® =) 1(0,a,b)

p=0 P=

Kavii, PMU

Chern-Simons matter systems
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Chern-Simons matter systems: Gross-Witten model

New Phase 1: Upper cap

. p P=m
1 \smg| §71 , 0
p(0) = 2N 26 s 251 Teos 2
1 5 0 1
=—-, f — A .
N or cos 5 > 251

New Phase 2: Upper cap with Lower Gap

B
sinf| [, ,0 . ,a.,..b . .0 A
p(0) = | 5 | (sin? = —sin? =) (sin? = —sin? =) 1(6,a,b) One Upper Cap
471' )\ 2 2 2 2 1 With -
B1= gz By
One Lower Gap
P
One Upper Cap
p=0 ik p=k-4
0.5 1 >\
P
12/
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Chern-Simons matter system: Level Rank Duality

e The level-rank duality in terms of renormalised level k and rank N is given by N — k — N and
k— k.

e Level rank duality maps Wilson loop in the representation labelled by the Young tableaux Y to the
Wilson loop in the representation labelled by the Young tableaux Y, where Y and Y are related by
transposition.

e Under level-rank duality 't Hooft coupling constant transforms as
k—N

Tk

e Demanding partition function is invariant under level-rank duality, the second constant in the
system (31 also transforms under level-rank duality as

AP =1-2),

13
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Chern-Simons matter system: Level Rank Duality

e The level-rank duality in terms of renormalised level k and rank N is given by N — k — N and
k— k.

e Level rank duality maps Wilson loop in the representation labelled by the Young tableaux Y to the
Wilson loop in the representation labelled by the Young tableaux Y, where Y and Y are related by
transposition.

e Under level-rank duality 't Hooft coupling constant transforms as

k—N
AP =2 1,
k
e Demanding partition function is invariant under level-rank duality, the second constant in the
system (31 also transforms under level-rank duality as

A
D —
P =15
e Under this duality the eigenvalues of lower-gap and upper-cap phase are related by
D gD gy _A_ [L }
pri()‘ >/6)l 79)7 1_)\ 27_‘_)\ plg(/\,ﬁl,9+7r)
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Kavii, PMU Chern-Simons matter systems /27‘



From Partition function to Young Diagram

Kavii, PMU Young Distribution for Unitary Matrix Models



From Partition function to Young Diagram

e Partition function

Z = / [DU] exp [N Z %(TrU" +TrUt™)

n=1

e Expanding the exponential

E
where
(B, k) = H NFngkn 2z = H kn!n*r, and T = H(TrU")k”.
n=1 n=1 n
e Here, n runs from over positive integers and k= (k1,k2,-++). kn can be 0 or any positive integer.

Kavii, PMU Young Distribution for Unitary Matrix Models



From Partition function to Young Diagram

e YTz(U) can be rewritten in terms of characters of the conjugacy class of the permutation group Sk
using the Unitary and Symmetric group duality

ZXR k))Tra[U]

e Using the orthogonality relation between characters of representation of U(N)

2= > 2B 5 0D ()

e Sum over R can be decomposed as

N
Z ZZ (Z)\i—[() with K:Zaka; M > A2 > > Ay > 0.
=1

K=1 {)\;} [eY

15
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From Partition function to Young Diagram

Y(U) can be rewritten in terms of characters of the conjugacy class of the permutation group Sk
using the Unitary and Symmetric group duality

ZXR k))Tra[U]

Using the orthogonality relation between characters of representation of U(N)

2= ZZ Z 5” Xr(CENxR(C(D).

Sum over R can be decomposed as

N
Z ZZ (Z)\i—[() with K:Zaka; M > A2 > > Ay > 0.
=1

K=1 {)\;} [eY

Hence the partition function

-

=20, WXX(C(E))XX(C@) 6 (Z nkn =y M) 5 (Z nly =Y )\i) |

k0

15
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From Partition function to Young Diagram

e In the large IV limit one can in principle extremize the partition function w.r.t A;'s and find
dominant representations.

o Characters are difficult to find.

e For simpler model (Gross-Witten model) where 81 # 0 and 3,1 = 0, we are only left with the
trivial conjugacy class, for which character is just the dimension of the representation

|
XH(CM) = 571' H(hl — hj) where hi = )\i + N —1

Hi:l hi! i<j

e Defining the young tableaux density in the Large N limit

_ Oz hi _ h(z), T = % with z € [0,1].

e In the large N limit the saddle point equation is given by

o b)) h
7{ dh' == = In {ﬁl} .

L

Now the task is to find u(h) for the most dominant representation.

16
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Young Distribution for GW potential

17
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Young Distribution for GW potential : Uncapped case

[S. Dutta, R.Gopakumar, JHEP0803:011,2008]

e for 81 < 1/2, u(h) saturates the maximum value in a finite range of h

u(h) =1, 0<h<1-28.

Lot P2 1 Cas <h<1 425 N
T 261

18
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Young Distribution for GW potential : Uncapped case
[S. Dutta, R.Gopakumar, JHEP0803:011,2008]

e for 81 < 1/2, u(h) saturates the maximum value in a finite range of h

u(h) =1, 0<h<1-28.

Lot P2 1 Cas <h<1 425 N
T 261

e for 1 > 1/2, u(h) never saturates the upper bound

2 i [htpi-1)2
u(h) = — co8 [%/W } L]

51+%—\/2ﬁ1§ h §ﬁ1+%+\/2ﬂ1

e There exists a Douglas-Kazakov type phase transition between these saddle points as one varies the
parameter [3;.

18
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Relation Between the Eigenvalue and Young Tableaux side

[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]

19
/27‘

Kavii, PMU Relation Between the Eigenvalue and Young Tableaux side



Relation Between the Eigenvalue and Young Tableaux side
[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]

e Inverting the no-gap e For one gap phase we have
distribution

o - e
h =1+ 281 cos(mu(h)) h™ — (1 + 251 cosmu(h))h + (61 2) 0

e We have the following ldentity
e Eigenvalue distribution of this

phase mu(h) =6, hy—h_ =2mp(0)

2mp(0) = 14 251 cos(6) hy and h_ are the solutions of the above equation.

e Thus we have the identification

wy =2, po)= 2

™ T o

19
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Relation Between the Eigenvalue and Young Tableaux side
[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]

e This allows one to write both the eigenvalue and the young tableaux distribution in terms of a
single constant phase space distribution function w(h, 0) such that

p(0) = /°° w(h, @)dh, u(h) = /7r w(h,0)do

0

-

20
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Relation Between the Eigenvalue and Young Tableaux side
[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]

e This allows one to write both the eigenvalue and the young tableaux distribution in terms of a
single constant phase space distribution function w(h, @) such that

p(0) :/ w(h,0)dh, u(h) = / w(h,0)do

0 ™

w(h, 0) is a distribution in two dimensions,

w(h,0) = %@(h — h_(6))O(hs (6) — h).

(a) Phase space distribution for no-gap phase. (b) Phase space distribution for one-gap phase.

20
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Constraint on Young diagrams for Chern-Simons matter theory

[(AC, S. Dutta and P. Dutta,2018)]

21
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Constraint on Young diagrams for Chern-Simons matter theory

[(AC, S. Dutta and P. Dutta,2018)]

o) = s
21 27
21/
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Constraint on Young diagrams for Chern-Simons matter theory

o We see that the eigenvalue density is related to spread (support) of u(h) or the width of the Young

Kavii, PMU

[(AC, S. Dutta and P. Dutta,2018)]

_he—ho _ 1

PO) == —<35x

distribution

Claim: For CS-matter theory, dominant reps have a distribution function with max spread

A

Young Distribution for Chern-Simons matter theory

21
/27‘



Constraint on Young diagrams for Chern-Simons matter theory
[(AC, S. Dutta and P. Dutta,2018)]

What does it mean??
e Using the relation between number of boxes n; and h; : h; = n; + N — 1, we see that upper cap

phase corresponds to those diagrams for which
(h(0) = h1/N)

> =

hi < k which implies h(0) <

e Integrable representation:An integrable representation of SU(N) is characterised by an Young
diagram which has maximum k& — N number of boxes in the first row.

22
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Constraint on Young diagrams for Chern-Simons matter theory
[(AC, S. Dutta and P. Dutta,2018)]

What does it mean??
e Using the relation between number of boxes n; and h; : h; = n; + N — 1, we see that upper cap

phase corresponds to those diagrams for which

(h(0) = h1/N)

> =

hi < k which implies h(0) <

e Integrable representation:An integrable representation of SU(N) is characterised by an Young
diagram which has maximum k& — N number of boxes in the first row.

e Thus from phase space identification we see that our claim implies that putting a cap on eigenvalue
distribution constraints the corresponding representation to be integrable.

22
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Level Rank duality and our claim
e We use the level rank duality to find the dominant representation for the upper cap, and verify our
claim.

® Level rank duality maps Wilson loop in the representation Y to the Wilson loop in the
representation Y, where Y and Y are related by transposition.

e |ower gap is mapped to upper cap via level rank duality. [S. Jain et al, JHEP09(2013)009]

e The dominant representations for upper cap can be obtained by transposing the dominant
representations for the lower gap.

Transpose

Rep. of SU(N) Rep. of SU(k — N)j,

23
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Representation dual to lower gap

[(AC, S. Dutta and P. Dutta,2018)]

e Solving the saddle point equation with this ansatz we have

a(h)=1- %COS_l |:1— (h—a)(r = h)

261(h —p)
where,
1 u(h)

= —_ — I ————=———]
P 2 \ :

B 1 3 253
q 51—2/\+2— /\(1—A), |

_ 1 3 261
" oot x =N |

X rh

1 1 .
e According to our claim p < Y andr —g < 3 Imposing p < g, our claim is satisfied if

1 1 1
A< S S > ==
P A1 =)’ A>a573
24
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Representation dual to lower gap

[(AC, S. Dutta and P. Dutta,2018)]

e Solving the saddle point equation with this ansatz we have

a(h) =1-— %cos_1 [1 — w

2B81(h —p)
where,
1 u(h)
= 2 — — 1l
p By |
B 1.3 |28 |
q B1 T s T(l ), |
1 3 281 1
T ﬁ1—§+§+ T(l—)\). |
Pq 7h

1 1 _
e According to our claim p < Y and r — g < 5 Imposing p < q, our claim is satisfied if

1 1

1
A<, 51<—8)\(1_)\); ﬂ1>ﬁ_§

24
Kavii, PMU Young Distribution for Chern-Simons matter theory /27‘



Level-Rank duality

A
1-—A
e As under the transposition total number of boxes is unchanged, thus

D_L( _ l)
W= o5 (h-2+ 5

e Level rank duality implies — AP = =—— =1 — ), BP =B

25
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Level-Rank duality

A
1-—A
e As under the transposition total number of boxes is unchanged, thus

D_L( _ l)
W= o5 (h-2+ 5

e Level rank duality implies — AP = =—— =1 — ), BP =B

e Under this duality one can check that

Ulower gap (ADv Ble hD) = Uupper cap ()‘7 /817 h)

25
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Level-Rank duality

A
1—A
As under the transposition total number of boxes is unchanged, thus

DfL( _ l)
W=t (b2 g

Level rank duality implies — AP = o A, 1D =

Under this duality one can check that

Ulower gap (ADv Ble hD) = Uupper cap ()‘7 /817 h)

As before, identifying 7u(h) = 0 and hq — h_ = 27p(0)

_ 1 N B [i-1 L6 @
——(2-2)+ 2 _ sin2 2 cos 2.
p(o) 27r< )\)+27r 28 23

This eigenvalue distribution is related to the upper cap eigenvalue distribution obtained before by,

p(6) = - (% - 1) + 50+ ).

™

25
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Droplet picture for the upper cap phase
[(S. Dutta, R.Gopakumar),(AC, S. Dutta and P. Dutta,2018)]
e Define the phase space density

L 0(h — h_(0)©(h4(0) — h).

™

w(h,0) =

such that

p(0) = /°° w(h,0)dh, u(h) = /Tr w(h, 6)do.
0 _

™

(a) Phase space distribution for (b) Phase space distribution for

(c) Phase space distribution for upper-cap
no-gap phase. one-gap phase.

phase.

26
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Summary

e We discussed large N phases of Chern-Simons matter theories on S* x S'.
e Lower gap phase and upper cap phase are related to each other by level-rank duality.

e We also write down the partition function for CS-m theory in Young diagram basis and showed that
large N phases can be equivalently classified in terms of young tableaux density.

e In large N limit, different phases are dominated by different representations of SU(N).

e We see that putting a cap on eigenvalue density restricts the dominant representations to be
integrable representations.

e Representations of lower and upper-cap are related to each other by level-rank duality.



Thanks!

*Image Source:https://www.youtube.com /user/minutephysics
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