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Matrix Models: Quick Overview
• A Random Matrix Model(UMM) is characterised by a matrix ensemble E, and a probability

measure dµ(M).

Z =
∫

E

dµ(M)

• We are interested in the form
Z =

∫
E

dMe−TrV (M)

with dM =
N∏

i=1

dMi,i

∏
1≤i<j≤N

dReMi,j dImMi,j and V is called the potential.

• If M is a Hermitian N × N matrix then the partition function can be re-written as

Z =
∫ N∏

i=1

dλi

N∏
i<j

(λi − λj)2e
− 1

gs

∑N

i=1
W (λi)

• Or equivalently Z =
∫ N∏

i=1

dλi e
− 1

gs
Weff (λ), with Weff (λi) = W (λi) − Ngs

N

N∑
j ̸=i

ln |λi − λj |
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Unitary Matrix Models: Overview

• A Unitary Matrix Model(UMM) is a statistical ensemble of unitary matrices (U) defined by the
partition function

Z =
∫

[DU ] exp[−V (U)] ; with V (U) → potential function; DU → Haar measure.

• Going to a diagonal basis U = {eiθi }, for i ∈ [1, N ]. In this basis the Haar measure takes the form∫
[DU ] =

N∏
i=1

∫ π

−π

dθi

∏
i<j

sin2
(

θi − θj

2

)

• Therefore Veff ({θi}) = V ({θi}) −
N∑

i<j

ln sin2
(

θi − θj

2

)
• The thermal partition function of a YM theory on Sp is given by the Euclidean path integral on

Sp × S1. Integrating out all the massive modes this path integral reduces to an integral

ZY M =
∫

[DU ] exp [−VY M (U)] =
N∏

i=1

∫ π

−π

dθi

∏
i<j

sin2
(

θi − θj

2

)
e−VY M (U)

where U = eiβα and α = 1
Vp

∫
Sp

A0.
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Unitary Matrix Models: A Phase Space Formulation

• Solution of UMMs in large N limit renders a distribution of eigenvalues ρ({θi}) of Unitary matrices
for different phases.

• Different phases of the solution is characterised by number of cuts on the unit circle.

• Phases can also be equivalently captured by Young diagrams corresponding to different
representations of U(N). Therefore one can associate one additional information of box number
distribution → u({hi}).

• UMM also has an interpretation in the language of free fermions where eigenvalues behaves like
position of the free fermions and the number of boxes in Young diagram behaving like momentum.

ρ({θi}) → Position distribution
u({hi}) → Momentum distribution

• Thus a relation between them defines a Fermi surface (phase space distribution/ droplet) in two
dimensions for different phases of the UMM under consideration.

• Different phases are distinguished by different shapes of fermi surfaces/droplets.
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Why phase space description?

Goal of our programme

• Phase space/Young diagrams provide a useful labelling of different operators in the gauge theory.

• According to AdS/CFT correspondence, these operators have a description in a dual bulk geometry.

• Goal is to understand how dual string geometry emerges from phase droplets in spirit of LLM.
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A Phase Space Description for Chern-Simons Matter Theory on S2 × S1

Goal of this talk

• To provide a phase space description for different phases of CS-matter theory on S2 × S1.

• To show how phase space construction imposes constraints on large N representations.

• Level-rank duality in phase space.
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Outline

Chern-Simons matter systems

Young Distribution for Unitary Matrix Models

Young Distribution for GW potential

Relation Between the Eigenvalue and Young Tableaux side

Young Distribution for Chern-Simons matter theory

Representation for upper cap phase

level-rank duality

Phase space droplets for Chern-Simons matter theory

Summary
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Chern-Simons matter systems: The Matrix Model

• Consider CS theory on S2 × S1 interacting with matter in fundamental representations. Partition
function of this theory is

Z =
∫

[DA][Dµ]ei k
4π

Tr
∫

(AdA+ 2
3 A3)−Smatter Dµ → the matter field measure

• Result of Integrating out the matter fields [S. Jain et al, JHEP09(2013)009]

Z =
∫

[DA]ei k
4π

Tr
∫

(AdA+ 2
3 A3)−Seff (U(x))

where U(x) → 2 dimensional holonomy fields around the thermal circle S1.

• The thermal partition function for Chern-Simons matter system on S2 × S1 can be written as a
discretized sum over the holonomy matrix U as

ZCS =
N∏

m=1

∞∑
nm=−∞

[∏
l ̸=m

2 sin
(

θl(n⃗) − θm(n⃗)
2

)
e−V (U)

]
V (U) = T 2V2 v(U); θm(n⃗) = 2πnm

k
, nm ∈ Z

• Discretization interval between two allowed eigenvalues is 2π

k
.
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Chern-Simons matter systems: Eigenvalue distribution

• Discretization interval of 2π

k
implies that the number of eigenvalues between θ and θ + △θ is

△x ≤ △θ

2π/k

.

• Eigenvalue density in large N limit

ρ(θ) = lim
△x→0

1
N

△x

△θ

has a maximum value

0 ≤ ρ(θ) ≤ 1
2πλ

; λ = N

k
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Chern-Simons matter systems: Gross-Witten model

• We study CS matter theory on S2 × S1 with
V (U) = −Nβ1(TrU + TrU†) ↣ (Gross-Witten potential)

• GWW model exhibits two phases when there is no restriction on its spectral density.

• For β1 < 1/2 The eigenvalues are distributed between (−π, π] (no gaps in the solution).

ρ(θ)ng = 1
2π

(1 + 2β1 cos θ).

• As the repulsion coming from the Haar measure is constant, the system undergoes a third order
phase transition at β1 = 1/2. For β1 = 1/2 the eigenvalue density

ρ(θ)lg = 2β1

π

√
1

2β1
− sin2 θ

2 cos θ

2 ; for sin2 θ

2 <
1

2β1

= 0. for sin2 θ

2 >
1

2β1

ρ=0 ρ
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Chern-Simons matter systems: Gross-Witten model

• Spectral density have an upper bound 0 ≤ ρ(θ) ≤ 1
2πλ

• No gap phase is allowed if

◦ β1 <
1

2λ
−

1
2

for λ >
1
2

.

◦ β1 <
1
2

for λ <
1
2

.

• Similarly the lower gap phase exists in the parameter range

◦ β1 <
1

8λ2 and λ ≤
1
2

◦ For λ >
1
2

the solution does not exists.

• Capping the allowed value of ρ(θ) introduces two new phases in the system.
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Chern-Simons matter systems: Gross-Witten model

New Phase 1: Upper cap

ρ(θ) = 1
2πλ

− 2β1
| sin θ

2 |
π

√
1
λ

− 1
2β1

− cos2 θ

2

= 1
2πλ

, for cos2 θ

2 >
1
λ

− 1
2β1

.
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Chern-Simons matter systems: Gross-Witten model
New Phase 1: Upper cap

ρ(θ) = 1
2πλ

− 2β1
| sin θ

2 |
π

√
1
λ

− 1
2β1

− cos2 θ

2

= 1
2πλ

, for cos2 θ

2 >
1
λ

− 1
2β1

.

New Phase 2: Upper cap with Lower Gap

ρ(θ) = | sin θ|
4π2λ

√
(sin2 θ

2 − sin2 a

2 )(sin2 b

2 − sin2 θ

2) I(θ, a, b)
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Chern-Simons matter system: Level Rank Duality

• The level-rank duality in terms of renormalised level k and rank N is given by N → k − N and
k → k.

• Level rank duality maps Wilson loop in the representation labelled by the Young tableaux Y to the
Wilson loop in the representation labelled by the Young tableaux Ỹ , where Y and Ỹ are related by
transposition.

• Under level-rank duality ’t Hooft coupling constant transforms as

λD = k − N

k
= 1 − λ,

• Demanding partition function is invariant under level-rank duality, the second constant in the
system β1 also transforms under level-rank duality as

βD
1 = λ

1 − λ
β1

• Under this duality the eigenvalues of lower-gap and upper-cap phase are related by

ρuc(λD, βD
1 , θ) = λ

1 − λ

[ 1
2πλ

− ρlg(λ, β1, θ + π)
]
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From Partition function to Young Diagram
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From Partition function to Young Diagram

• Partition function

Z =
∫

[DU ] exp

[
N

∞∑
n=1

βn

n
(TrUn + TrU†n)

]

• Expanding the exponential

Z =
∫

[DU ]
∑

k⃗

ϵ(β⃗, k⃗)
zk⃗

Υk⃗(U)
∑

l⃗

ϵ(β⃗, l⃗)
zl⃗

Υl⃗(U)

where

ϵ(β⃗, k⃗) =
∞∏

n=1

Nkn βkn
n , zk⃗ =

∞∏
n=1

kn!nkn , and Υk⃗ =
∏

n

(TrUn)kn .

• Here, n runs from over positive integers and k⃗ = (k1, k2, · · · ). kn can be 0 or any positive integer.
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From Partition function to Young Diagram

• Υk⃗(U) can be rewritten in terms of characters of the conjugacy class of the permutation group Sk

using the Unitary and Symmetric group duality

Υk⃗(U) =
∑

R

χR(C(k⃗))TrR[U ]

• Using the orthogonality relation between characters of representation of U(N)

Z =
∑

R

∑
k⃗

ε(β⃗, k⃗)
zk⃗

∑
l⃗

ε(β⃗, l⃗)
zl⃗

χR(C(k⃗))χR(C (⃗l)).

• Sum over R can be decomposed as∑
R

−→
∞∑

K=1

∑
{λi}

δ

(
N∑

i=1

λi − K

)
with K =

∑
α

αkα; λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

• Hence the partition function

Z =
∑

λ⃗

∑
k⃗,⃗l

ε(β⃗, k⃗)ε(β⃗, l⃗)
zk⃗zl⃗

χλ⃗(C(k⃗))χλ⃗(C (⃗l)) δ

(∑
n

nkn −
∑

i

λi

)
δ

(∑
n

nln −
∑

i

λi

)
.
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From Partition function to Young Diagram

• In the large N limit one can in principle extremize the partition function w.r.t λi’s and find
dominant representations.

• Characters are difficult to find.

• For simpler model (Gross-Witten model) where β1 ̸= 0 and βn>1 = 0, we are only left with the
trivial conjugacy class, for which character is just the dimension of the representation

χh⃗(Ck1 ) = k1!∏N

i=1 hi!

∏
i<j

(hi − hj) where hi = λi + N − i

• Defining the young tableaux density in the Large N limit

u(h) = −∂x

∂h
,

hi

N
= h(x), x = i

N
with x ∈ [0, 1].

• In the large N limit the saddle point equation is given by

−
∫ hU

hL

dh′ u(h′)
h − h′ = ln

[
h

β1

]
.

Now the task is to find u(h) for the most dominant representation.
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Young Distribution for GW potential
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Young Distribution for GW potential : Uncapped case
[S. Dutta, R.Gopakumar, JHEP0803:011,2008]

• for β1 < 1/2, u(h) saturates the maximum value in a finite range of h

u(h) = 1, 0 ≤ h ≤ 1 − 2β1.

= 1
π

cos−1
[

h − 1
2β1

]
, 1 − 2β1 ≤ h ≤ 1 + 2β1

• for β1 > 1/2, u(h) never saturates the upper bound

u(h) = 2
π

cos−1
[

h + β1 − 1/2
2
√

β1h

]
β1 + 1

2 −
√

2β1 ≤ h ≤ β1 + 1
2 +

√
2β1

• There exists a Douglas-Kazakov type phase transition between these saddle points as one varies the
parameter β1.
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Relation Between the Eigenvalue and Young Tableaux side
[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]
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Relation Between the Eigenvalue and Young Tableaux side
[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]

• Inverting the no-gap
distribution

h = 1 + 2β1 cos(πu(h))

• Eigenvalue distribution of this
phase

2πρ(θ) = 1 + 2β1 cos(θ)

• Thus we have the identification

u(h) = θ

π
, ρ(θ) = h

2π

• For one gap phase we have

h2 − (1 + 2β1 cos πu(h))h + (β1 − 1
2)2 = 0

• We have the following Identity

πu(h) = θ, h+ −h− = 2πρ(θ)

h+ and h− are the solutions of the above equation.
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Relation Between the Eigenvalue and Young Tableaux side
[(S. Dutta, R.Gopakumar, 2008 ),(S. Dutta, P. Dutta 2016), (AC, S. Dutta and P. Dutta,2017)]

• This allows one to write both the eigenvalue and the young tableaux distribution in terms of a
single constant phase space distribution function ω(h, θ) such that

ρ(θ) =
∫ ∞

0
ω(h, θ)dh, u(h) =

∫ π

−π

ω(h, θ)dθ

ω(h, θ) is a distribution in two dimensions,

ω(h, θ) = 1
2π

Θ(h − h−(θ))Θ(h+(θ) − h).

(a) Phase space distribution for no-gap phase. (b) Phase space distribution for one-gap phase.
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Constraint on Young diagrams for Chern-Simons matter theory
[(AC, S. Dutta and P. Dutta,2018)]
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Constraint on Young diagrams for Chern-Simons matter theory
[(AC, S. Dutta and P. Dutta,2018)]

ρ(θ) = h+ − h−

2π
≤ 1

2πλ
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Constraint on Young diagrams for Chern-Simons matter theory
[(AC, S. Dutta and P. Dutta,2018)]

ρ(θ) = h+ − h−

2π
≤ 1

2πλ

• We see that the eigenvalue density is related to spread (support) of u(h) or the width of the Young
distribution

Claim: For CS-matter theory, dominant reps have a distribution function with max spread 1
λ

.
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Constraint on Young diagrams for Chern-Simons matter theory
[(AC, S. Dutta and P. Dutta,2018)]

What does it mean??

• Using the relation between number of boxes ni and hi : hi = ni + N − 1, we see that upper cap
phase corresponds to those diagrams for which

h1 < k which implies h(0) <
1
λ

(h(0) = h1/N)

• Integrable representation:An integrable representation of SU(N)k is characterised by an Young
diagram which has maximum k − N number of boxes in the first row.

• Thus from phase space identification we see that our claim implies that putting a cap on eigenvalue
distribution constraints the corresponding representation to be integrable.
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Level Rank duality and our claim

• We use the level rank duality to find the dominant representation for the upper cap, and verify our
claim.

• Level rank duality maps Wilson loop in the representation Y to the Wilson loop in the
representation Ỹ , where Y and Ỹ are related by transposition.

• Lower gap is mapped to upper cap via level rank duality. [S. Jain et al, JHEP09(2013)009]

• The dominant representations for upper cap can be obtained by transposing the dominant
representations for the lower gap.

u(h) = 1 0 < h < p

= 0 p < h < q

= ũ(h) q < h < r
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Representation dual to lower gap
[(AC, S. Dutta and P. Dutta,2018)]

• Solving the saddle point equation with this ansatz we have

ũ(h) = 1 − 1
π

cos−1
[

1 − (h − q)(r − h)
2β1(h − p)

]
where,

p = 2 − 1
λ

q = β1 − 1
2λ

+ 3
2 −

√
2 β1

λ
(1 − λ),

r = β1 − 1
2λ

+ 3
2 +

√
2 β1

λ
(1 − λ).

• According to our claim p <
1
λ

and r − q <
1
λ

. Imposing p < q, our claim is satisfied if

λ < 1, β1 <
1

8λ(1 − λ) , β1 >
1

2λ
− 1

2
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Level-Rank duality

• Level rank duality implies → λD = k − N

k
= 1 − λ, βD

1 = β1
λ

1 − λ

• As under the transposition total number of boxes is unchanged, thus

hD = λ

1 − λ

(
h − 2 + 1

λ

)

• Under this duality one can check that

ulower gap
(
λD, βD

1 , hD
)

= uupper cap (λ, β1, h)

• As before, identifying πu(h) = θ and h+ − h− = 2πρ̄(θ)

ρ̄(θ) = 1
2π

(
2 − 1

λ

)
+ β1

2π

√
1
λ

− 1
2β1

− sin2 θ

2 cos θ

2 .

• This eigenvalue distribution is related to the upper cap eigenvalue distribution obtained before by,

ρ(θ) = 1
π

( 1
λ

− 1
)

+ ρ̄(θ + π).
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Droplet picture for the upper cap phase
[(S. Dutta, R.Gopakumar),(AC, S. Dutta and P. Dutta,2018)]

• Define the phase space density

ω(h, θ) = 1
2π

Θ(h − h−(θ))Θ(h+(θ) − h).

such that
ρ(θ) =

∫ ∞

0
ω(h, θ)dh, u(h) =

∫ π

−π

ω(h, θ)dθ.

(a) Phase space distribution for
no-gap phase.

(b) Phase space distribution for
one-gap phase. (c) Phase space distribution for upper-cap

phase.
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Summary

• We discussed large N phases of Chern-Simons matter theories on S2 × S1.

• Lower gap phase and upper cap phase are related to each other by level-rank duality.

• We also write down the partition function for CS-m theory in Young diagram basis and showed that
large N phases can be equivalently classified in terms of young tableaux density.

• In large N limit, different phases are dominated by different representations of SU(N).

• We see that putting a cap on eigenvalue density restricts the dominant representations to be
integrable representations.

• Representations of lower and upper-cap are related to each other by level-rank duality.
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*Image Source:https://www.youtube.com/user/minutephysics .
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