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Introduction
Introduction

m NV extended conformal supergravity in four dimensions is a theory of
gravity which is a representation of the AV/-fold extended
superconformal algebra su(2,2|N).

m Due to the conformal symmetry, it contains off-shell representations
with smaller number of components than the Poincare supergravity
theory.

m On gauge fixing some of the conformal symmetries using compensator
fields, one can obtain the corresponding Poincare supergravity theory.

2/42



Introduction Conformal gravity and gauge equivalence

Conformal gravity as a gauge theory

m SU(2,2) conformal algebra contains the generators P,, My, D, K,,.

u [Da Pa] - Pa7 [Da Ka] - _Kav [Paa Kb] = nabD - 2Maby
[Paa Mbc] = 2P[b7’c}av [Kaa Mbc] = 2K[b770]a-
[Maba Mcd] = 277[(1[0]\4’1)]cl]
ab

wy’, by,

m Introduce a gauge field corresponding to each generator: e, wy

fi
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Introduction Conformal gravity and gauge equivalence

m Transformation rule for the above fields is obtained by using the
structure constants of the conformal algebra.

Shiy = O™ +eChy, foc”

For eg, fap® = 2Map (5] Therefore el = 1/\bce§fd[bc}a. Thus,
5M6V = —)\abeyb.
m Conformal curvatures:
Ry = 20,1y + hShf foc?

V]

For eg: Ry, = 28[ue‘j} + 2b[uel‘ﬁ] + Qwﬁfey}b
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m Demand translations to act as general coordinate transformations.

6peZ = 5cov€Z + &R, (P)°

m Conventional constraints: R, (P)* =0, R(M),,%e} = 0.

[ wgb and f;;: Dependent gauge fields.

ab 2e[aeb}uby

w(e,b)zb = w(e)# i

a 1 a 1 a
fu = §R(e7b)u - ER(evb)ep

m Number of independent field components : ¢};(16),b,(4)
Number of gauge transformation parameters for su(2,2) : 15.
Therefore off-shell d.o.f = 20 — 15 = 5. But for Poincare gravity, we
need 6 off-shell d.o.f!
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Introduction Conformal gravity and gauge equivalence

m Consider

L =—e¢D"D,¢

¢ has Weyl weight +1.

Dy = 0, — buo,
DD = (9, — 2b,) D — w® Dy + fi¢p

Gauge fixing: b, =0, ¢ = V6/(v/2k)

L= —6271%2R
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Introduction Conformal gravity and gauge equivalence
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Construction of the real scalar multiplet
m dilaton Weyl multiplet in five dimensions
m Supercurrent multiplet for the tensor multiplet and linearized
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Introduction Conformal gravity and gauge equivalence

N extended superconformal algebra in four dimensions

m Contains @) and S supercharges.
[Km Q' ] - '7(1 [Paa SZ] = %'YaQi.
{Q,Q;} = ~(I- 75)7° Pad’;

m It contains an R symmetry algebra SU(N)gr x U(1)rg.

| | {Ql, S']} = %(I — ’}/5)(20'abMab + D — ZA — 2Vij)

m Fermionic charges are Majorana Fermions. Hence, the R symmetry
algebra is chiral.

= [D,Q=1Q, [D,5] = L5....
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Introduction N extended conformal supergravity

Superconformal gauge theory

m Begin with a superconformal gauge theory: Associate a gauge field to
each charge from the superconformal algebra: e,%, w,, b, f.%
VME-, Ay Yyt o4t with P9, M® D, K% V;, A, Q", S* respectively.

m Transformation rule for the above fields is obtained by using the
structure constants of the superconformal algebra.

Shit = 0ue™ +ehf fre?
: A_ A CpBy. A

m Conformal curvatures: R, = 28[uhy} + hy hu fBC

m In this theory, the superconformal transformations act as internal
symmetries.
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Introduction N extended conformal supergravity

m To realize this gauge theory as a theory of supergravity, impose
constraints on conformal curvatures. Add matter fields (D, Ty, x*)
such that the bosonic and fermionic degrees of freedom match.

m Conventional constraints:

R, (P)* =0,
> i 1 i
'Y“(RW(Q) + §'YWX ) =0,
€Y Ry (M) — iRy (A) + Lrtrt _3pe,, =0
bLtur a pna 4 abtp 2 pa —

m These constraints make some of the gauge fields to be dependent
fields.
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Introduction N extended conformal supergravity

Weyl Multiplet

m Multiplet of fields obtained in this manner is known as the Weyl
multiplet. This is the minimal multiplet containing the gauge fields of
the superconformal algebra.

m Independent Bosonic fields:
62(16),bu(4),AM(4),VM;~(12) (6), (1). Number of bosonic gauge
parameters: M, (6), P*(4), K“(4),D( ), V(3), A(1).

Off-shell bosonic d.o.f=24.

= Independent Fermionic fields: 17,(32), x'(8) .
Number of fermionic gauge parameters: Q*(8), S%(8)
Off-shell fermionic degrees of freedom = 24.
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m Algebra on the fields:

6o (€1), 6g(€e2)] = 6(€) + dar(e) + drc(Ax) + 35(n) + Sgauge
[05(n),00(€)] = Sar (27 0%e; + h.c) + 0p (7€l + h.c)
+ 3 (i€’ + h.c) + 0y (—277'¢; — (h.citraceless))
[65(m). 5 (n2)] = 0k (72071 + h.c)
where §(°)(€) = 04t (€) + X O (—EMhyu(T)).
m The field dependent transformation parameters are given by
¢ = 26" Mer; + hec

g% = eleJTab +h.c

3 .
K = 6162Db — 56127(1611'1) + h.c

i

n' = GEfle%] Xj
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Introduction Matter multiplets and multiplet calculus

Matter multiplets

m There is also an 8+8 tensor multiplet, on which the above algebra is
realized, with field content G(A complex scalar), ¢'(SU(2) doublet of
chiral fermions), E,,(A two form gauge field) and L;;(SU(2) triplet
of scalars with 'reality’ condition L;; = e;re;i L¥, (LY)* = L;;).

m There are other 8+8 multiplets in A = 2 conformal supergravity,
such as the vector multiplet, non-linear multiplet etc.

m The above matter multiplets can be used as compensator multiplets
to obtain the physical Poincare supergravity.
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Introduction Matter multiplets and multiplet calculus

Story of the chiral multiplet: multiplet calculus

m There is a 164+16 components chiral multiplet which reduces to the
8+8 restricted chiral multiplet when a consistent set of 8+8
constraints are imposed.

m There is a chiral weight 0 complex triplet of scalars B;;, which is
constrained to satisfy a 'reality’ condition. B;; = EikaﬂBkl. Other
contraints can be obtained by supersymmetric variation of this
constraint.

m The restricted chiral multiplet is equivalent to tensor (vector)
multiplet. i.e. gauge invariant quantities of these multiplets can be
embedded in the restricted chiral multiplet.
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Introduction Matter multiplets and multiplet calculus

m This was used to write a superconformal action for the (improved)
tensor multiplet, vector multiplet and the Weyl multiplet.

m Obtaining an action for one multiplet through an action for another
multiplet is known as multiplet calculus.

m This allowed for constructions of minimal Poincare supergravity
theories as well as construction of supersymmetric higher derivative
actions.

m The study of all the off-shell representations of the superconformal
algebra and the corresponding actions is interesting, in this context.
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Real Scalar multiplet
Table of Contents

Real Scalar multiplet
m 24-+24 matter multiplet
m Restricted real scalar multiplet = tensor multiplet
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Real Scalar multiplet 24424 matter multiplet

24424 matter multiplet: Real scalar multiplet

m Field content of the multiplet is given by

Table: Field content of the 24424 multiplet

Field | SU(2) Irreps | Weyl | Chiral | Chirality
weight | weight
W) | (©

& 1 1 0 -

Sa'; |3 1 0 -

E; |3 1 1 -

Cijii | 5 2 0 -

A; 2 12 | +1/2 | 41

Er | 4 32 |12 | +1

m It is the generalization of the flat space 24424 multiplet constructed
by Howe et al! to include coupling to conformal supergravity.

1P S Howe, K S Stelle, P K Townsend, Nucl. Phys. B 1983
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Real Scalar multiplet 24424 matter multiplet

Field redefinitions to simplify the transformation rule

m The @-transformation of the above multiplet is highly non-linear in
the fields, although the field components are S-invariant except A’
which transforms as dgA; = —27;.

m () transformations are simplified by redefinition of the fields.

m Field content of the redefined multiplet is as follows.

Table: Field content of the redefined 24424 multiplet

Field | SU(2) Irreps | Weyl | Chiral | Chirality
weight | weight
(W) | ()

v 1 -2 0 -

Aty |3 -1 0 -

K; |3 1 1 =

Cijkl 5 0 0 -

Vi 2 -3/2 | 4+1/2 | +1

Con | 4 32 [-1/2 | +1
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Real Scalar multiplet = 24424 matter multiplet

8V = g + hee.
= DPVe — Az e —2KYe i — 2Vt |
SK = 2Veliyd) — -Wﬁwﬂ kg,mka“sjm + %
— 2l |

5Aaij = ng’)/axi +

el Tyt

2 . S
geﬂaw — 26, Dyt — ge“e"’“ma@jk

1 )
24€ﬂa7 T ype™ — NjYa" — (h.c; traceless) ,
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Real Scalar multiplet = 24424 matter multiplet

3
6&ijk = §DaAal(i5j|m|5k)l€m — 3Da Ay (i jmiEryy €™
3
- §V7 ROV (i jimierne™ + 6K ™ eiejuekym — Cijri€
_3 T K _§R(Q)l¢.abm :
47 (i5€k)n 2 abPGEY € EjllIk)Ym
3_ 3 _
- §Xl¢(¢6m€j|z\€k)m + ixlvabw(ﬂabem%m%)m
3_ _
+5X V€ ERm  3X Ve Y e 1 Eym
— 6K 13 jniErym — 64" (i€ jmIEkyn »
0Cijt = €L jrty + EimEjnErpeige "I — 4iji&jry
where,

Liji = —2D&1, + 12x K" ejp€m
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Real Scalar multiplet Restricted real scalar multiplet = tensor multiplet

8-+8 restricted real scalar multiplet

m The multiplet is a 24424 multiplet rather than the more common
8+8. Can we restrict this multiplet to obtain an 848 multiplet?

m In the 244-24 real scalar multiplet, E;;, has chiral weight —1.
Therefore, we can not impose the 'reality’ condition on Ej;.

m However, we can impose the constraint E;; = e~%/2L;; where L;;
are 'real’.

m '[his can be rephrased in the form R;; = Eij — e‘i"Eij = 0 where
Eij = EiijlEkl.
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Real Scalar multiplet Restricted real scalar multiplet = tensor multiplet

m Supersymmetric variation of the above constraint gives us the full set
of 16416 constraints.

m We are left with a restricted real scalar multiplet with 84-8 degrees of
freedom (Lij, Habe, ¢, 0, A*)

m This multiplet is equivalent to the 848 tensor multiplet. i.e. it
contains the gauge invariant objects of the tensor multiplet.
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Real Scalar multiplet Restricted real scalar multiplet = tensor multiplet

The 848 tensor multiplet

m Contains a complex scalar G, a triplet of 'real’ scalars L;; (reality
condition L;; = e;1e;,L*! where (L;;)* = L"), a two form gauge field
E,, and a doublet of Majorana fermions ¢'.

m The transformation rules are
5Lij = 2€(Z-g0j) + 2€ik6jl€(k(pl) ,
5<pi = ]Z)Lijej + He’jej — Geé' + 2Lij77j ,
. 1 .
0G = 26" — 6ex; LY + 1eV& - T + 20i6"

S B = i€y’ ey + 2iLz‘j<€jk€i’7[u¢u]k +h.c.
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Real Scalar multiplet Restricted real scalar multiplet = tensor multiplet

Restricted real scalar multiplet=tensor multiplet

m Consider the following combinations of tensor multiplet fields,
ot = 12
N =202,
Eij = L' Li;L® Grpy — LG Ly
Sa'y = 2L HoL™epj + 4L ™ L™ Ljm@™ Yok — L@ vap;
1 . . 4
— 5 L7256 Yatpm + L (L“fDaij - ijDaL”“>
Sijk = —24L7° len@mSDnL(iij)l + 6L_490l95[90(i k)
— 6L L P Ly Lygypn + 6L~ L™ Hopp Lijehym

+ 120 *GL(i; Ly’ + 6L 2P Ljgy + 18L 2L ;5 Lyy X'
3 _

- ZL 2y - T Lijeny

Cijkl = 6L_4GGL(Z-J-LM) + ...
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Real Scalar multiplet Restricted real scalar multiplet = tensor multiplet

m These fields transform exactly like the real scalar multiplet fields, but
with 848 off-shell degrees of freedom.

m From the above identification, one can read off the relation between
the tensor multiplet fields and the restricted real scalar multiplet
fields.

ot =12,
N =-2L72L"p;

1/2

eficr/2 — Z /
Z )

Lij = 2| Lij ,

Ho ~ H,, Up to fermion bilinears .

Z=L"*IMgo — L7%G .
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Construction of the action for the real scalar multiplet
Table of Contents

Construction of the action for the real scalar multiplet
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Construction of the action for the real scalar multiplet

Action for the 24424 multiplet and multiplet calculus:

Work in progress

m As the 24424 multiplet admits a tensor multiplet embedding, this
enables us to do multiplet calculus.

m Can we construct combinations of the real scalar multiplet fields to
obtain a chiral multiplet?

m A= EijEkleikajl is a chiral field. Further variation gives the other
chiral multiplet components.

m This gives us a higher derivative action for the tensor multiplet.

m This is the same action one would obtain for the tensor multiplet
from the chiral density formula.

m Can we develop a density formula for the real scalar multiplet,
independent of the chiral multiplet.

m The answer appears to be yes. (Work in progress).
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Construction of the real scalar multiplet
Table of Contents

Construction of the real scalar multiplet
m dilaton Weyl multiplet in five dimensions
m Supercurrent multiplet for the tensor multiplet and linearized
tranformation rules
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Construction of the real scalar multiplet dilaton Weyl multiplet in five dimensions

Motivation: Dilaton Weyl multiplet in five dimensions

m In d =6 and 5, it was found that there is not one, but two possible
Weyl multiplets.

m The new Weyl multiplet constructed had a dilaton field with Weyl
weight +1, and hence was called dilaton Weyl multiplet.

m Two routes to construction of dilaton Weyl multiplet in five
dimensions?:
a) Multiplet of supercurrents of a non conformal rigid supersymmetry
multiplet - vector multiplet in five dimensions.
b) Coupling the improved vector multiplet to conformal supergravity.

m In four dimensions, the second route gives a 24424 dilaton Weyl
multiplet3.

2E Bergshoeff, S Cucu, M Derix, T de Wit, R Halbersma, A van Proyen,
JHEP 2001

3D Butter, SH, | Lodato, B Sahoo, JHEP, 2018
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Construction of the real scalar multiplet dilaton Weyl multiplet in five dimensions

Current multiplet method

m Compute the multiplet of supercurrents for a rigid supersymmetry
multiplet.

m Couple the supercurrents to fields to obtain the linearized
supersymmetry transformations.

m Complete the non-linear supersymmetry transformations using the
superconformal algebra.

m A non-conformal multiplet has an energy momentum tensor with a
non zero trace. This can be coupled to a scalar field which can be
interpreted as the dilaton.

m But the action for rigid vector multiplet in four dimensions is
conformal. However the rigid tensor multiplet action is non-conformal
in four dimensions.
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Construction of the real scalar multiplet ~ dilaton Weyl multiplet in five dimensions

m Transformation rules for the rigid tensor multiplet on substitution of
the equation of motion for the auxiliary field G.

0B, = iEi’y“VWeij + h.c.,
8¢t = @Lijq + GinEj ,
5[/” = 2€(Z(}5J) + 2€ik€j8€(k¢g) .

m Action for the tensor multiplet

S = /d4x [H H* — q3i7¢~ _ Lo piiguri
Iz NG

where H* is the Hodge dual of the three form field strength.

m The above action is not conformal.
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Construction of the real scalar multiplet tranformation rules

m 48448 component multiplet of supercurrents for the above action:
e,ul/a g, ’U,uijy t,uijv Ay b;yv a,LLa €ij, d7 Cijkl, J,uia )\ia 51’ E’L]k [D Butter, S
Kuzenko, 2010]

m Couple the currents to fields via a first order action.
S = / d'z { 0" hy 4 o + dD + ﬁcwklam + 4bWT_“”
—QUM jV‘ujz‘ + eleij + 4QMA + ( Wi Uuij) SHJZ. + QJW'IWM' + S\Z‘Ai

_ . 1
+£i<l+7zuk*—'] +a A“—l—hc

3

m Demand the invariance of the action to obtain linearized
transformation of the fields.

m Conservation of a current = gauge symmetry of a field.
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Construction of the real scalar multiplet tranformation rules

m We obtain the linearized transformation rules for 48448 component
multiplet of fields which contains a real scalar of Weyl weight +1.

m Is this multiplet reducible? i.e. can we decouple this into two or more
multiplets by use of field redefinitions.

m Assumption: Such a redefiniton should be apparent even at the
linearised level.
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Construction of the real scalar multiplet tranformation rules

m A 24+24 standard Weyl multiplet decouples and we are left with a
24424 matter multiplet coupled to the standard Weyl multiplet.

m The matter multiplet contains the real scalar field with Weyl weight
+1.

m Use the superconformal algebra to complete the supersymmetric
variations of the 24+24 matter multiplet.
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Dilaton Weyl multiplet in four dimensions
Table of Contents

Dilaton Weyl multiplet in four dimensions
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Dilaton Weyl multiplet in four dimensions

Dilaton Weyl multiplet in four dimensions

m A 24+24 Weyl multiplet which contains a dilaton, hence named
Dilaton Weyl multiplet. Independent fields are e,%, v,,", by, Ay, V',
X, Wy, Wy, Q.

m The transformation rule is given by

de,” = €i7a¢m’ + h.c

6, = 2D, — éeijxfl’y. (F~414G7) Yuej —
iX_léfy# DQ; — %ﬁi%i +h.c+ Akeua
JA, = %E’W + %X THE PO+ %ﬁw)ui the

SV'j = 2€j¢z — X717, DY + Qﬁjlbz — (h.c; traceless)

1 .
5le == §EZ¢#1‘ -
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u
06X = _iQi
7 .
Zeijfy.g_ej +2Xn;
(SWM = Eijgi’YMQj + 2€inEi¢i +h.c
6WM = i&ijgi’)/'qu — 2’L'6in€i1/}fL + h.c

1 .
60 =2DXe; + Zeijfy.}'ej -

m Fields should satisfy the constraint
_ 1= 1 1
XD*X + QQ’“DQ;H— Z]—'-]—'Jr—l— Zg.g+ —hc=0 (1)

We can solve this constraint for a three-form gauge field where the
constraint appears as the Bianchi identity.
m i.e. define

_ X 1. 1
XXD,log ¥ 59’%% = isabcdeCd .
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Dilaton Weyl multiplet in four dimensions

m The constraint now becomes a Bianchi identity and reads,

3
2 G[achd}

3
7F[achd} + 3

D[aHbcd] = S

m We get
de " = Ei'yazpm- +h.c.—Ape,” + A?\Zeub
. S | .
0, = 2Dy — —65”)(_17 . (]-"_ + z'g_) Yu€i — Yull' — iADw,LLZ
- *AAwu +Alﬂb;ﬂ + A ’Yabwu
b, = 5%‘“ — 1X* ey, P — iﬁiwm +h.c.+ A%euq + duAp
5Vuij = 2€j¢i‘ — X'_lgjyu DO+ 2@1&2 — (h.c.; traceless) — 28uAij

+ AikVukj - Akjvuik
0X = EiQi + (AD — ZAA)X
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Dilaton Weyl multiplet in four dimensions

1 g A
00, =2DXe; + ZEU’V - Fel — iﬁij’)/ -G 42X,
3 ) . 1
+ <2AD - ;AA) Q; — A + ZA(]I\Z’YabQi

5WM = €ij€i’yMQj + 2€in€iwi +h.c. + 8M)\

5V~V# = iEijEi’y#Qj — 2’L'€Z'jX€i¢fL + h.c. + 8#5\

53“1, = %W[M(SQWV] + %VV[M(;QWV] + Xgi’yuyﬁi + XEZ"}/W,Qi
A A

+2 XXEi'V[quM +2 XXgi’V[uwzix] + 20,0, — ZFMV - ZG“”
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Conclusions and future work
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Conclusions and future work
Conclusions

m We have obtained a 24+24 matter multiplet in A/ = 2 conformal
supergravity in four dimensions by following the current multiplet
procedure for the rigid on-shell tensor multiplet.

m This is the generalization of Howe, Stelle, Townsend's flat space
multiplet to include coupling to conformal supergravity.

m We can impose 16416 constraints on the real scalar multiplet to
obtain a 8+8 restricted multiplet.

m This restricted multiplet is equivalent to the tensor multiplet.

m Thus the real scalar multiplet is similar to the chiral multiplet, which
allowed for a formulation of superconformal tensor calculus.

m We have obtained the 24424 dilaton Weyl multiplet in four
dimensional N/ = 2 conformal supegravity.
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Conclusions and future work
Future directions

m Compute the action for the 24424 real scalar multiplet.

m This would allow us to write new superconformal invariant action for
the tensor multiplet.

m This could potentially lead to new higher derivative invariants in
Poincare supergravity.

m Can vector multiplet and Weyl multiplet be embedded in the real
scalar multiplet?

m Off-shell dimensional reduction of the dilaton Weyl multiplet from five
to four dimensions

m This will allow to write all curvature squared invariants in four
dimensions in terms of the dilaton Weyl multiplet.
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