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several problems appear  

κ = 8πG
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Motivation

In usual QFT, causality is ensured if  

Light cone 
around flat 
spacetime

Quantum 
fluctuations

t
x

[ϕ(x), ϕ(y)] = 0 , (x − y)2 < 0

Does a fundamental QFT exist for the gravitational 
interaction? 

Möller (1952) Rosenfeld (1957)

Causality?

Definition of time?
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Motivation

It could be that at high energies the metric is not the 
fundamental quantity in a quantum theory of gravity 

Even if we do not know anything about the non-perturbative 
part, we can do a perturbative analysis 

Background field method 

Metric perturbations around fixed background
’t Hooft and Veltman (1974)

B. De Witt (1967)

At low energies, effective description in 
terms of spacetime variables 
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Around a fixed background spacetime we can use the usual 
QFT formalism and study the theory in the perturbation limit  
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Perturbatively, GR  

[G] = − 2

R + R2 + R3 + . . .
One-loop Two-loop

Gravitational coupling is dimensionful  

Non renormalizable

Pure gravity non renormalizable at two loops   Goroff and Sagnotti (1985)
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Motivation

What about quadratic theories of gravity? 

Rμνρσ = ∂ρΓμ
νσ − ∂σΓμ

νρ + Γμ
λρΓλ

νσ − Γμ
λσΓλ

νρ

PROS

Dimensionless couplings Renormalizable 

Closest analogy to a YM theory of gravity 

Field strength

SQ ∼ ∫ d4x −g R2

K. Stelle (1977)
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dμ2ρ(μ2)

1
p2 − μ2 + iϵ
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Motivation

What about quadratic theories of gravity? 

CONS

Propagators falling as  

Källen-Lehmann spectral representation

∼
1
p4

1
p4 − m4

=
1

p2 − m2
−

1
p2 + m2 Unitarity is lost

SQ ∼ ∫ d4x −g R2
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What about quadratic theories treated in  
first order formalism?

Renormalizability

Still room for unitarity 

J. F. Donoghue and G. Menezes (2018)
M. B. Einhorn and T. Jones (2017)

Possible UV completion of  GR?
A. Salvio and A. Strumia (2014)



Motivation

Lee-Wick type of mechanisms T. D. Lee and G. C. Wick (1969)

Able to fix unitarity diagram by 
diagram

Nevertheless, this mechanism cannot be implemented into 
the path integral formalism 

D. G. Boulware and D. Gross (1969)
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Let us take the simple case of the EH action

SO Fixed relation

δSSO = ∫ d4x −g (−Rμν +
1
2

Rgμν) δgμν Einstein’s field equation
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Γμ
νρgμν

Let us take the simple case of the EH action

For the EH action SO and FO classically 
equivalent Palatini

The equivalence also holds at one loop order J. Anero and RS (2017)

First order vs Second order
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Let us focus on the features of FO quadratic theories

The Riemann tensor does not enjoy the usual symmetries

Two different traces of the Riemann tensor

R+[Γ]νσ = gμρR[Γ]μνρσ

R−[Γ]μσ = gνρR[Γ]μνρσ

ℛ[Γ]ρσ = gμνR[Γ]μνρσ

ℛμν = R+
μν − R−

νμ

R+ = gμνR+
μν = − gμνR−

μν = − R−

Rμνρσ , R+
μν , R−

μν , R
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First order quadratic gravity

The most general first order quadratic action reads

SFOQ = ∫ d4x −g
I=12

∑
I=1

gIOI

OI = Rμ
νρσ(DI)νρσν′�ρ′�σ′�

μμ′� Rμ′�
ν′�ρ′�σ′�

The theory is Weyl invariant

gμν ⟶ Ω2(x) gμν

Γλ
μν ⟶ Γλ

μν

OI ⟶ Ω−4OI

: Function of metrics and deltasDI

−g ⟶ Ω4 −g
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First order quadratic gravity

Ls = −g ( 1
2

gμν∂μϕ∂νϕ − V(ϕ))

Dominates in the IR

The theory is up to now in the conformal phase so the 
symmetry has to be spontaneously broken 

The spontaneous breaking of the 
symmetry generates an EH term 

< ϕ > = v
Renormalizing this sector we get ΔLs = CϵRϕ2

P. G. Ferreira , T. Hill and G. Ross (2018) 

LEH = M2 −g R
I. Shapiro and S. D. Odintsov (1986) 

S. L. Adler  (1988) 
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First order quadratic gravity

ΔHμν = HSO
μν − HFO

μν = −
1
2

∇λKλ
(μν) +

1
4

gλμ ∇ρKλ
(ρν) +

1
4

gλν ∇ρKλ
(ρμ)

Hμν =
1
−g

δS
δgμν

Kλ
μν =

1
−g

δS
δΓμν

λ

M. Borunda, B. Jansen and M. Bastero-Gil (2008)

Bigger solution space, where does gravitation live?  

More general connections are allowed
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Aμνλ

Our aim is to find a complete basis of spin projectors so that 
we can decompose the three index tensor    in its  
propagating spin pieces.

The connection being an independent field, can introduce 
new degrees of freedom.

Aμνλ
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S =
1
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μνρσ hρσ Interaction between 
two index tensors



Physical content of 

We take the EH action and expand the metric around flat 
space  

gμν = ημν + κhμν

Aμνλ

S =
1
2 ∫ d4x hμν KEH

μνρσ hρσ

We want to decompose a two index symmetric tensor in its 
spin components

Four index operators that 
project onto a certain spin Spin projectors

To quadratic order in the perturbation we get
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Aμνλ
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In the rest frame 
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Physical content of 

Barnes-Rivers Projectors

✓µ⌫ = ⌘µ⌫ � kµk⌫
k2

!µ⌫ =
kµk⌫
k2

Aμνλ

To project into the different components we have 

s = 2 : hT
ij ≡ hij −

1
3

hδij

s = 1 : h0i

s = 0 : h00

s = 0 : h ≡ δijhij

kμ = δμ
0

Projects onto spatial indices

Projects onto time indices

Different spin 
representations SO(3)

P. Van Niewuheinzen (1973)
Barnes (1963) Rivers (1964)



Physical content of 

Barnes-Rivers Projectors

✓µ⌫ = ⌘µ⌫ � kµk⌫
k2

!µ⌫ =
kµk⌫
k2

Aμνλ

To project into the different components we have 

s = 2 : hT
ij ≡ hij −

1
3

hδij → (P2)ρσ
μν

≡
1
2 (θρ

μθσ
ν + θσ

μθρ
ν ) −

1
3

θμνθρσ

s = 1 : h0i → (P1)ρσ
μν

≡
1
2 (θρ

μωσ
ν + θσ

μωρ
ν + θρ

ν ωσ
μ + θσ

ν ωρ
μ)

s = 0 : h00 → (Pw
0 )ρσ

μν
≡ ωμνωρσ

s = 0 : h ≡ δijhij → (Ps
0)ρσ

μν
≡

1
3

θμνθρσ

kμ = δμ
0

Projects onto spatial indices

Projects onto time indices
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These projectors add up to the identity  

(P2)ρσ
μν

+ (P1)ρσ
μν

+ (Pw
0 )ρσ

μν
+ (Ps

0)ρσ
μν

= Iρσ
μν

M1 ≡ kμkνkρkσ

M2 ≡ kμkνηρσ

M3 ≡ kμkσηνρ

M4 ≡ ημνηρσ

M5 ≡ ημρηνσ

We are interested in forming a basis of four index projectors

5 independent monomials with this symmetry

One extra operator 
in the basis

(P×
0 )ρσ

μν
=

1

3 (ωμνθρσ + θμνωρσ)
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Physical content of Aμνλ

These projectors add up to the identity  

(P2)ρσ
μν

+ (P1)ρσ
μν

+ (Pw
0 )ρσ

μν
+ (Ps

0)ρσ
μν

= Iρσ
μν

Strategy 

Take Kμνρσ = ∑
i

ci Piμνρσ

Divide the quadratic piece in the different spin 
components 

hμν (∑
i

ci Piμνρσ) hρσ = ∑
i

hμν
i □ hi

μν



Physical content of 

SEH+gf =
1
2 ∫ d4x −

1
4

hμν (P2 + P1 −
1
2

Ps
0 +

1
2

Pw
0 −

3
2

P×)
μνρσ

□ hρσ

Aμνλ

So now we can decompose any four index operator into the 
spin projectors 
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Inverting the operator we get the propagator and the free 
energy 

W [T(1), T(2)] = ∫ d4xTμν
(1)ΔμνρσT

ρσ
(2) = ∫ d4x (Tμν

(1) (P2 −
1
2

Ps
0)μνρσ Tρσ

(2))

Aμνλ

SEH+gf =
1
2 ∫ d4x −

1
4

hμν (P2 + P1 −
1
2

Ps
0 +

1
2

Pw
0 −

3
2

P×)
μνρσ

□ hρσ

So now we can decompose any four index operator into the 
spin projectors 

Interaction between 
external sources

D. Dicus and S. Willenbrock (1969)



Physical content of 

Positive definite

Aμνλ

Inverting the operator we get the propagator and the free 
energy 

W [T(1), T(2)] = ∫ d4xTμν
(1)ΔμνρσT

ρσ
(2) = ∫ d4x (Tμν

(1) (P2 −
1
2

Ps
0)μνρσ Tρσ

(2))

SEH+gf =
1
2 ∫ d4x −

1
4

hμν (P2 + P1 −
1
2

Ps
0 +

1
2

Pw
0 −

3
2

P×)
μνρσ

□ hρσ

So now we can decompose any four index operator into the 
spin projectors 

D. Dicus and S. Willenbrock (2004)



Physical content of 

On-shell 
asymptotic states 

hTT
µ⌫A single spin 2 

field propagates
Graviton

Aμνλ

Inverting the operator we get the propagator and the free 
energy 

W [T(1), T(2)] = ∫ d4xTμν
(1)ΔμνρσT

ρσ
(2) = ∫ d4x (Tμν

(1) (P2 −
1
2

Ps
0)μνρσ Tρσ

(2))

SEH+gf =
1
2 ∫ d4x −

1
4

hμν (P2 + P1 −
1
2

Ps
0 +

1
2

Pw
0 −

3
2

P×)
μνρσ

□ hρσ

So now we can decompose any four index operator into the 
spin projectors 



Physical content of Aμνλ

Summary

SEH+gf =
1
2 ∫ d4x −

1
4

hμν (P2 + P1 −
1
2

Ps
0 +

1
2

Pw
0 −

3
2

P×)
μνρσ

□ hρσ

So now we can decompose any four index operator into the 
spin projectors 

Spin-2 and Spin-0 components mediating the 
interaction between external sources (off-shell)

Spin-2 massless unique asymptotic state  
Graviton 
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Aμνλ ∈ 𝒜 ≡ Tx ⊗ Sym (Tx ⊗ Tx)

We are working with symmetric connections

Aμνλ



Physical content of Aμ(νλ)

⊗ = ⊕

Hook part
Totally 

Symmetric  
part

40 
independent 
components

{2,0} ⊗ {1} = {3,0} ⊕ {2,1}

We are working with symmetric connections

Aμνλ ∈ 𝒜 ≡ Tx ⊗ Sym (Tx ⊗ Tx)



Physical content of Aμ(νλ)
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Physical content of Aμ(νλ)

We have 22 independent monomials with this symmetry

22 projectors in the basis 

We need 10 extra spin operators with mixed symmetry  

⊗ = ⊕

One spin-3, four spin-2, eleven spin-1 and six spin-0 

(Pi)μνλ
αβγ

We are working with symmetric connections

Aμνλ ∈ 𝒜 ≡ Tx ⊗ Sym (Tx ⊗ Tx)



Physical content of Aμ(νλ)

In FOQG around flat space

Aαβγ Kαβγ
μνλ Aμνλ + hμνMμνρσhρσ + hμνN ρσ

μν λAλ
ρσ

gμν = ημν + κhμν

Γλ
μν = Γ̄λ

μν + Aλ
μν
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Spin-3 is present and comes from 
the Riemann squared terms
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Physical content of Aμ(νλ)

We have in principle three Spin-0 
and four Spin-1 components

Taking for instance the simpler action 

Hook Symmetric Mixed

SFOQ ≡ ∫ dnx −g (α R[Γ]2 + β R[Γ]μνR[Γ]μν + γ R[Γ]μνρσR[Γ]μνρσ)



Physical content of Aμ(νλ)

Which ones appear in the propagator? Which ones survive on-shell?
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SFOQ ≡ ∫ dnx −g (α R[Γ]2 + β R[Γ]μνR[Γ]μν + γ R[Γ]μνρσR[Γ]μνρσ)
Hook Symmetric Mixed
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1
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Physical content of Aμ(νλ)

Hook Symmetric Mixed

Important to note: no spin-2 or spin-3 in the gauge fixing!

We need a gauge fixing to invert the operator 

Sgf =
1
χ ∫ d4x ημν ηρσ ητλ Aτ

μν □ Aλ
ρσ
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Physical content of Aμ(νλ)

In fact, for         there are 13 zero modesR2

We would need to gauge fix them  

If we make β = γ = 0

No spin-2 
or spin-3

The projection onto spin-2 and spin-3 are zero modes
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For                            we can invert the operator in order to get the 
propagator. In doing so, all the projectors of the basis appear.            

α ≠ β ≠ γ ≠ 0



Physical content of Aμ(νλ)

The next step is to couple external sources for the connection 
and see the spin components that survive.            

For                            we can invert the operator in order to get the 
propagator. In doing so, all the projectors of the basis appear.            

α ≠ β ≠ γ ≠ 0



Physical content of Aμ(νλ)

To see the asymptotic states, we need to compute the equations 
of motion for the different spin pieces of the connection.            

The next step is to couple external sources for the connection 
and see the spin components that survive.            

For                            we can invert the operator in order to get the 
propagator. In doing so, all the projectors of the basis appear.            

α ≠ β ≠ γ ≠ 0



Physical content of Aμ(νλ)

We have not found any obvious problem with the spin-3 piece 
so far. A full analysis of this piece is needed in order to see if 
inconsistencies appear.          

To see the asymptotic states, we need to compute the equations 
of motion for the different spin pieces of the connection.            

The next step is to couple external sources for the connection 
and see the spin components that survive.            

For                            we can invert the operator in order to get the 
propagator. In doing so, all the projectors of the basis appear.            

α ≠ β ≠ γ ≠ 0
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The coupling to matter in FO 

We are interested in the coupling of fermions to gravity in first 
order formalism, as they turn out to be a source of torsion.           

This constitutes a difference between first order linear gravity 
and second order linear gravity, not present in the case of pure 
gravity.           

The coupling of bosons in first order formalism does not give 
any new feature as they do not couple to the connection.           
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We take the minimal coupling of fermions to gravity. To do 
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SDEH ≡ −
1
κ2 ∫ d4x e

1
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e μ
a e ν

b Rab
μν[ω] +

i
2 ∫ d4x e (ψ̄e μ

a γa ∇μψ − ∇μψ̄e μ
a γaψ)

ωab
μe μ

a Independent

Coupling of fermions in FO 



Ta
μ =

i
2

κ (ψ̄γa ∇μψ − ∇μψ̄γaψ) −
i
2

κea
μ (ψ̄γν ∇νψ − ∇νψ̄γνψ)
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We take the minimal coupling of fermions to gravity. To do 
that, we need to change to the vielbein formalism

SDEH ≡ −
1
κ2 ∫ d4x e

1
2

e μ
a e ν

b Rab
μν[ω] +

i
2 ∫ d4x e (ψ̄e μ

a γa ∇μψ − ∇μψ̄e μ
a γaψ)

ωab
μe μ

a Independent

Ga
μ + κTa

μ = 0Variations with respect to the vierbein
Not symmetric!

Fermions act like a source of torsion

Coupling of fermions in FO 



Tνλρ =
κ2

2
ϵνλρσ jσ

5

The antisymmetric part of the variations with respect to the 
spin connection

Totally antisymmetric torsion 
proportional to the axial current

Coupling of fermions in FO 

We take the minimal coupling of fermions to gravity. To do 
that, we need to change to the vielbein formalism

SDEH ≡ −
1
κ2 ∫ d4x e

1
2

e μ
a e ν

b Rab
μν[ω] +

i
2 ∫ d4x e (ψ̄e μ

a γa ∇μψ − ∇μψ̄e μ
a γaψ)
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We can reintroduce it in the action

S̃DEH = SDEH +
3κ2

16 ∫ d4x e ψ̄γσγ5ψ ψ̄γσγ5ψ

H. Weyl (1950)Dirac-EH action 
with torsion

Dirac-EH action 
with no torsion

Extra quartic contact 
interaction between fermions

This is precisely the difference between FO and SO formalisms

Nevertheless, suppressed by the Planck mass

Coupling of fermions in FO 



We can reintroduce it in the action

S̃DEH = SDEH +
3κ2

16 ∫ d4x e ψ̄γσγ5ψ ψ̄γσγ5ψ

H. Weyl (1950)Dirac-EH action 
with torsion

Dirac-EH action 
with no torsion

Extra quartic contact 
interaction between fermions

This is precisely the difference between FO and SO formalisms

What form does the torsion have when coupling fermions in 
FOQG?

Coupling of fermions in FO 
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We have carried out a study of first order quadratic theories 
of gravity and found

Summary and Outlook 

FOQG is a renormalizable gauge theory with room for 
unitarity 

In principle, this theory is richer in its field content: we 
have spin-3, spin-2, spin-1 and spin-0 components

The solution space its bigger than that of second order 
quadratic theories

The theory must undergo a spontaneous symmetry 
breaking so that EH dominates in the IR
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unitarity of the theory

What are the sources of the connection?

Is the free energy positive definite?
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Are there ghostly degrees of freedom?
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The coupling to external sources will shed light into the 
unitarity of the theory

The equations of motion of each component are needed to 
analyse the asymptotic states

The coupling of fermions and the resulting torsion needs 
more study 

Can we reintroduce it in the action?

What kind of new interactions do we get?
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Summary and Outlook 

The coupling to external sources will shed light into the 
unitarity of the theory

The equations of motion of each component are needed to 
analyse the asymptotic states

The coupling of fermions and the resulting torsion needs 
more study 

The spin-3 part is worth of deeper study
C. Aragone and S. Deser (1979)

M. A. Vasiliev (1988)



Future work is ongoing regarding some aspects of FOQG

Summary and Outlook 

The coupling to external sources will shed light into the 
unitarity of the theory

The equations of motion of each component are needed to 
analyse the asymptotic states

The coupling of fermions and the resulting torsion needs 
more study 

The spin-3 part is worth of deeper study

Are there any inconsistencies in the interactions?



Thank you for your attention 
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