Geometry of isomonodromy deformations

Yasuhiko Yamada (Kobe Univ.)

IPMU Sept. 202018

Introduction

The main target of this talk is the discrete Painleve equations and their generalizations. First, in this introduction, I will look at the differential case to explain some backgrounds and motivations.
^There are 6 Painlevé differential equations (or 8 equations in geometric classification)

$$
\left.\begin{array}{rl}
P_{\mathrm{VI}} \rightarrow P_{\mathrm{V}} & \rightarrow P_{\mathrm{III}} \rightarrow\left(P_{\mathrm{III}}{ }^{\prime}\right) \\
& \rightarrow \\
& \\
& P_{\mathrm{IV}} \\
& \rightarrow \\
& P_{\mathrm{II}} \\
& \rightarrow \\
\mathrm{III}^{\prime \prime}
\end{array}\right)
$$

- Each equation P_{\jmath} can be written in Hamiltonian form:

$$
\frac{d q}{d t}=\frac{\partial H_{\mathrm{J}}}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H_{\mathrm{J}}}{\partial q}
$$

where

$$
\begin{aligned}
& H_{\mathrm{I}}=\frac{1}{2} p^{2}-2 q^{3}-t q \\
& H_{\mathrm{II}}=\frac{1}{2} p^{2}-\left(q^{2}+\frac{t}{2}\right) p-\alpha q, \\
& \ldots \\
& H_{\mathrm{VI}}=\frac{q(q-1)(q-t)}{t(t-1)}\left\{p^{2}-\left(\frac{\alpha_{4}}{q}+\frac{\alpha_{3}}{q-1}+\frac{\alpha_{0}-1}{q-t}\right) p\right. \\
&\left.+\frac{\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)}{q(q-1)}\right\} . \quad\left(\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}=1\right)
\end{aligned}
$$

- H_{J} depends explicitly on t (non-autonomous system).
- $H_{\left.\mathrm{J}_{(\neq \mathrm{III}} / \mathrm{)}\right)}$ is a polynomial in (p, q).
- $H_{J\left(\neq \mathrm{I}, \mathrm{III}{ }^{\prime \prime}\right)}$ has some parameters α_{i}.
s The Painlevé differential equations have at least three origins:
(1) Painlevé property. [P.Painlevé, (1900)]
(2) Isomonodromic deformation (IMD). [R.Fuchs (1905)]
(3) Space of initial conditions. [K.Okamoto (1979)]
- We want to clarify the relations among these aspects for continous and discrete Painlevé equations.

First, we will review these aspects in differential case.

^Origin (1) Painlevé property

- A singularity of solutions of a differential equation is said "movable" if its location can move depending on the initial condition.
- For nonlinear equations, there may be a movable singularity

$$
\text { e.g. } \quad y=\sqrt{t-t_{0}} \quad \text { for } \quad 2 y \frac{d y}{d t}=1
$$

- For some special cases, nonlinear equations can have the following property (Painlevé property):
all the movable singularities are only poles.
Typical examples are the equations for the elliptic functions, The Painlevé equations are certain deformations of them.
- The Weierstrass \wp-function $y=\wp(t)$:

$$
\begin{gathered}
\left(y^{\prime}\right)^{2}=4 y^{3}-g_{2} y-g_{3} \quad \text { or } y^{\prime \prime}=6 y^{2}-\frac{g_{2}}{2}, \\
y=\frac{1}{u^{2}}+\frac{g_{2}}{20} u^{2}+\frac{g_{3}}{28} u^{4}+\frac{g_{2}^{2}}{1200} u^{6}+\cdots . \quad\left(u=t-t_{0}\right)
\end{gathered}
$$

- Non-autonomous deformation \rightarrow

The P_{I} equation: $q^{\prime \prime}=6 q^{2}+t$,

$$
q=\frac{1}{u^{2}}-\frac{t_{0}}{10} u^{2}-\frac{1}{6} u^{3}+C u^{4}+\frac{t_{0}^{2}}{300} u^{6}+\cdots . \quad\left(u=t-t_{0}\right)
$$

- Search for this kind of solution gives a useful test to detect integrability:

Painlevé-test [Kowalevski(1889)].
\triangle Origin (2) Isomonodromic deformation (IMD)

- 2nd order equation (with rational coefficients $a(x), b(x)$)

$$
L: \quad Y_{x x}+a(x) Y_{x}+b(x) Y=0
$$

Solutions $Y_{1}(x), Y_{2}(x)$ may have nontrivial monodromy :

$$
Y_{i}(x) \quad \text { analytic continuation } \quad C_{i 1} Y_{1}(x)+C_{i 2} Y_{2}(x) .
$$

- A deformation L is isomonodromic deformation (IMD)
\Leftrightarrow The monodromy $C_{i j}$ is independent of the deformation parameter t
\Leftrightarrow compatibility of L with a deformation equation

$$
B: \quad Y_{t}=r(x) Y_{x}+s(x) Y
$$

where $r(x), s(x)$ are rational functions in x.

- Example. Lax pair for P_{VI}.
$L: \quad Y_{x x}+a(x) Y_{x}+b(x) Y=0$.
(i) Local exponents:

x	0	1	t	∞	q
exp.	0	0	0	α_{2}	0
	α_{4}	α_{3}	α_{0}	$\alpha_{1}+\alpha_{2}$	2

$$
\Rightarrow\left\{\begin{aligned}
a(x) & =\frac{1-\alpha_{4}}{x}+\frac{1-\alpha_{3}}{x-1}+\frac{1-\alpha_{0}}{x-t}+\frac{-1}{x-q} \\
b(x) & =\frac{1}{x(x-1)}\left\{\frac{q(q-1) p}{x-q}-\frac{t(t-1) H}{x-t}+\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)\right\}
\end{aligned}\right.
$$

(ii) $x=q$ is apparent singularity: (solutions are regular) \Rightarrow determine the parameter $H=H_{\mathrm{VI}}(q, p)$.
$B: \quad \frac{t(t-1)}{q-t} Y_{t}+\frac{x(x-1)}{q-x} Y_{x}+\frac{p q(q-1)}{x-q} Y=0$.

- P_{VI} is a prototype of IMD. There are many other IMDs.

\triangle Origin (3) Space of initial conditions

- Okamoto constructed a surface X_{J} which parametrize the solutions of P_{J} [Okamoto(1979)].
© Example. P_{IV} case: $H_{\mathrm{IV}}=p q(p-q-t)-a_{1} p-a_{2} q$.
$\{$ Solutions $\} \sim\left\{\right.$ Initial values $(q, p) \in \mathbb{C}^{2}$ at $\left.t=t_{0}\right\}$.
- However there may be additional solutions s.t. $q \rightarrow \infty$ and/or $p \rightarrow \infty$ $\left(t \rightarrow t_{0}\right)$. To include them, define a surface

$$
X_{\mathrm{IV}}=\{(q, p)\} \cup\left\{\left(q_{1}, p_{1}\right)\right\} \cup\left\{\left(q_{2}, p_{2}\right)\right\} \cup\left\{\left(q_{2}, p_{2}\right)\right\}
$$

patched by

$$
\begin{align*}
(q, p) & =\left(a_{1} p_{1}+q_{1} p_{1}^{2}, \frac{1}{p_{1}}\right)=\left(\frac{1}{q_{2}},-a_{2} q_{2}+q_{2}^{2} p_{2}\right) \tag{*}\\
& =\left(\frac{1}{q_{3}}, \frac{1}{q_{3}}+t-a_{0} q_{3}-q_{3}^{2} p_{3}\right)
\end{align*}
$$

$\left(a_{0}+a_{1}+a_{2}=1\right)$.

- The P_{IV} equation extended to X_{IV} has the following properties:
(i) (*) are symplectic \rightarrow Hamiltonian system on each chart.
(ii) (*) are bi-rational \rightarrow transformed Hamiltonians may have poles. However, they are still polynomial! and moreover
(iii) This property determines the P_{IV} equation uniquely [Takano et. al (1997)].

Geometry knows Painlevé equations!

- Since the Lax pair has more information than equation, it is better to know not only the equation but also its Lax pair.

Question. Can we obtain the Lax pair also from the geometry?
Δ The geometry related to our main example: nine points blowup of \mathbb{P}^{2}

- The surface $\mathrm{Bl}_{9}\left(\mathbb{P}^{2}\right)\left(\cong \mathrm{Bl}_{8}\left(\mathbb{P}^{1} \times\right.\right.$ $\left.\mathbb{P}^{1}\right)$) has infinitely many (-1) curves [Na gata (1960)].
- It has affine Weyl group symmetry of type $E_{8}^{(1)}$, whose translation part \mathbb{Z}^{8} gives the elliptic difference Painlevé equation [Sakai (2001)].

0	\mathbb{P}^{2}	$\{1\}$	0
1	$\mathrm{BI}_{1}\left(\mathbb{P}^{2}\right)$	A_{1}	1
2	$\mathrm{BI}_{2}\left(\mathbb{P}^{2}\right)$	$A_{1} \times A_{1}$	3
3	$\mathrm{BI}_{3}\left(\mathbb{P}^{2}\right)$	$A_{2} \times A_{1}$	6
4	$\mathrm{BI}_{4}\left(\mathbb{P}^{2}\right)$	A_{4}	10
5	$\mathrm{BI}_{5}\left(\mathbb{P}^{2}\right)$	D_{5}	16
6	$\mathrm{BI}_{6}\left(\mathbb{P}^{2}\right)$	E_{6}	27
7	$\mathrm{BI}_{7}\left(\mathbb{P}^{2}\right)$	E_{7}	56
8	$\mathrm{BI}_{8}\left(\mathbb{P}^{2}\right)$	E_{8}	240
9	$\mathrm{BI}_{9}\left(\mathbb{P}^{2}\right)$	$E_{8}^{(1)}$	∞

Question. Can we obtain the Lax pair of IMD from such geometry?
\triangle Ans. Yes. we can construct IMDs from geometry. ("Geometric engineering" of IMD).

- Plan:
(1) From geometry to discrete Painlevé equations
(2) Lax formulation
(3) Generalizations
- Our conclusion will be

Geometry knows not only the Painlevé equations but also various generalizations of them together with the Lax form.
(various = continuous/discrete, higher order, ...)

1. From geometry to discrete Painlevé equations

- Example 1. Consider a discrete dynamical system (non-autonomous system on $\left.\mathbb{C}^{2}=\{x, y\}\right)$ generated by the mapping:

$$
T:(a, x, y) \mapsto\left(q a, a \frac{1+x y}{x}, \frac{1}{x y}\right)
$$

- Plot of orbit in (x, y) plane:

- Example 2. Consider two involutions:

$$
\begin{aligned}
& i_{x}:(x, y) \rightarrow(\tilde{x}, y), \quad \tilde{x}=\frac{a b}{x} \frac{(y+t)(y+u)}{(y+r)(y+s)} \\
& i_{y}:(x, y) \rightarrow(x, \tilde{y}), \quad \tilde{y}=\frac{r s}{y} \frac{(x+c)(x+d)}{(x+a)(x+b)}
\end{aligned}
$$

where $a b t u=c d r s$.

- Iteration of $T=i_{x} \circ i_{y}$ (or $T^{-1}=i_{y} \circ i_{x}$) gives a discrete integrable system.

- Conserved curves:

type	conserved curve
$A_{0}^{(1)}$	$H=\frac{y}{x}+x+\frac{1}{y}$
$A_{1}^{(1)}$	$H=\frac{x}{a}+\frac{1}{x y}+\frac{1}{x}+y$
$A_{1+1}^{(1)}$	$H=\frac{1}{a b x y}+\frac{1}{a b x}+\frac{1}{a b y}+\frac{x}{a}+y$
$A_{2+1}^{(1)}$	$H=\frac{y}{a b x}+\frac{1}{a b x}+\frac{y}{b}+\frac{c x}{y}+\frac{c}{y}+x$
$A_{4}^{(1)}$	$H=\frac{x}{b_{1} b_{3} b_{4} y}+\frac{y}{b_{4} x}+\frac{1}{b_{1} b_{4} x y}+\frac{b_{1}+1}{b_{1} b_{4} x}+\frac{b_{3}+1}{b_{1} b_{3} b_{4} y}+y+b_{2} x$,
$D_{5}^{(1)}$	$H=\frac{1}{x y}\left((x+a)(x+b) y^{2}+\left\{(r+s) x^{2}+a b(t+u)\right\} y\right.$
$E_{6}^{(1)}$	\ldots

$\leftrightarrow 5 d, \mathcal{N}=2, S U(2)$ Seiberg-Witten curve.

- A remarkable progress in spectral theory for corresponding quantum operators \widehat{H} [Hatsuda, Marino,...].

© 2nd order Painlevé equations [Sakai(2001)]

ell.	$E_{8}^{(1)}$		
	$E_{8}^{(1)} \rightarrow E_{7}^{(1)} \rightarrow E_{6}^{(1)} \rightarrow D_{5}^{(1)}$	$A_{4}^{(1)} \rightarrow A_{2+1}^{(1)} \rightarrow A_{1+1}^{(1)} \xrightarrow{\nearrow} A_{1}^{(1)}$	$\rightarrow A_{0}^{(1)}$
add.	$E_{8}^{(1)} \rightarrow E_{7}^{(1)} \rightarrow E_{6}^{(1)} \quad \rightarrow$	$\begin{aligned} D_{4}^{(1)} \rightarrow A_{3}^{(1)} \rightarrow A_{1+1}^{(1)} & \rightarrow A_{1}^{(1)} \\ \searrow & \searrow \\ & A_{2}^{(1)} \rightarrow A_{1}^{(1)} \end{aligned}$	$\begin{aligned} & \rightarrow A_{0}^{(1)} \\ & \xrightarrow{\longrightarrow} A_{0}^{(1)} \end{aligned}$

- Cases in blue/magenta admit discrete/continuous flows.
- The same diagram arises in gauge theory for $d=4,5,6$.
Δ Simple geometric construction of integrable mappings on \mathbb{P}^{2}
- bi-degree $(2,2)$ curve: $C: \varphi(x, y)=0$
\rightarrow involutions $i_{x}:(x, y) \mapsto(\tilde{x}, y)$ and $i_{y}:(x, y) \mapsto(x, \tilde{y})$
$\rightarrow T=i_{x} \circ i_{y}\left(\right.$ or $\left.T^{-1}=i_{y} \circ i_{x}\right)$: (an addition formula on C)
- Apply this construction to a pencil of $(2,2)$ curves:

$$
\varphi(x, y)=F(x, y)-h G(x, y)=0
$$

\rightarrow The QRT mapping $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$
\rightarrow conserved quantity $H(x, y)=\frac{F(x, y)}{G(x, y)}=h$.
[Quispel-Roberts-Tompson (1989)], [Tsuda(2004)]
© Example 1'. For $H(x, y)=\frac{x}{a}+\frac{1}{x y}+\frac{1}{x}+y$, we have

$$
i_{x}: x \mapsto \tilde{x}=\frac{a}{x}\left(1+\frac{1}{y}\right), \quad i_{y}: y \mapsto \tilde{y}=\frac{1}{x y}
$$

The composition $T=i_{y} \circ i_{x}$ gives Example $1(q=1)$.
Δ The pencil of the bi-degree $(2,2)$ curves $F(x, y)-H G(x, y)=0$ has 8 common points in a special position: $\mathrm{Bl}_{8}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\frac{1}{2} K 3$:

Config.	bi-degree $(2,2)$ curve	evolution equation
special	1-parameter family	QRT mapping
non-special	unique	Painlevé equation

- The discrete Painlevé equation is a deautonomization of the QRT.

It has no longer any integral but the degree grows gently, i.e.
(degree of mapping) \sim ($\#$ iteration 2.

\triangle Deautonomization of Example 2

$\rightarrow q-P_{\mathrm{VI}}$ equation [Jimbo-Sakai(1996)] ($D_{5}^{(1)}$ symmetry)

$$
\bar{f} f=v_{3} v_{4} \frac{\left(g-\frac{v_{5}}{\kappa_{2}}\right)\left(g-\frac{v_{6}}{\kappa_{2}}\right)}{\left(g-\frac{1}{v_{1}}\right)\left(g-\frac{1}{v_{2}}\right)}, \quad \underline{g} g=\frac{1}{v_{1} v_{2}} \frac{\left(f-\frac{\kappa_{1}}{v_{7}}\right)\left(f-\frac{\kappa_{1}}{v_{8}}\right)}{\left(f-v_{3}\right)\left(f-v_{4}\right)} .
$$

Δ Up/down shift notations for discrete (difference) equation:

- Evolution map: $T(*)=\bar{*}, T^{-1}(*)=\underline{*}$.
- Parameters: $\kappa_{1}, \kappa_{2}, v_{1}, \cdots, v_{8}: q=\kappa_{1}^{2} \kappa_{2}^{2} /\left(v_{1} \cdots v_{8}\right)$.

$$
\overline{\kappa_{1}}=q^{-1} \kappa_{1}, \quad \overline{\kappa_{2}}=q \kappa_{2}, \quad \overline{v_{i}}=v_{i} .
$$

- Dependent variables: f, g.
Δ The singular points of $q-P_{\mathrm{VI}}$:

$$
\begin{gathered}
(f, g)=\left(\infty, \frac{1}{v_{1}}\right), \quad\left(\infty, \frac{1}{v_{2}}\right), \quad\left(v_{3}, \infty\right), \quad\left(v_{4}, \infty\right), \\
\left(0, \frac{v_{5}}{\kappa_{2}}\right), \quad\left(0, \frac{v_{6}}{k_{2}}\right), \quad\left(\frac{\kappa_{1}}{v_{7}}, 0\right), \quad\left(\frac{\kappa_{1}}{v_{8}}, 0\right) . \\
g=\infty \\
g=0 \\
f=0 \quad
\end{gathered}
$$

』 Other cases

- More degenerate cases: multiple blowing-up points.
e.g. P_{IV} case:

$\left(P_{1}\right)_{\text {double }}: \quad(\infty, 0) \leftarrow(q, p)=\left(a_{1} p_{1}+q_{1} p_{1}^{2}, \frac{1}{p_{1}}\right)$,
$\left(P_{2}\right)_{\text {double }}: \quad(0, \infty) \leftarrow(q, p)=\left(\frac{1}{q_{2}},-a_{2} q_{2}+q_{2}^{2} p_{2}\right)$,
$\left(P_{3}\right)_{\text {quadruple }}:(\infty, \infty) \leftarrow(q, p)=\left(\frac{1}{q_{3}}, \frac{1}{q_{3}}+t-a_{0} q_{3}-q_{3}^{2} p_{3}\right)$.

2. Lax formulation

Δ The scalar Lax pair for $q-P_{\mathrm{VI}}(\Leftrightarrow$ matrix form [Jimbo-Sakai (1996)])

$$
\begin{aligned}
& L_{1}:\left\{\frac{\prod_{i=1}^{2}\left(g v_{i}-1\right)}{q g}-\frac{\prod_{i=1}^{4} v_{i} \prod_{i=5}^{6}\left(g-\frac{v_{i}}{\kappa_{2}}\right)}{f g}\right\} Y(z) \\
& +\frac{v_{1} v_{2} \prod_{i=3}^{4}\left(\frac{z}{q}-v_{i}\right)}{f-\frac{z}{q}}\left\{g Y(z)-Y\left(\frac{z}{q}\right)\right\}+\frac{\prod_{i=7}^{8}\left(\frac{\kappa_{1}}{v_{i}}-z\right)}{q(f-z)}\left\{Y(q z)-\frac{1}{g} Y(z)\right\}=0, \\
& L_{2}:\left\{1-\frac{f}{z}\right\} \bar{Y}(z)+Y(q z)-\frac{1}{g} Y(z)=0 .
\end{aligned}
$$

The compatibility of L_{1}, L_{2} gives the $q-P_{\mathrm{VI}}$.

- Basic property of L_{1} :

As an algebraic curve in \mathbf{f}, \mathbf{g}, the equation L_{1} for $q-P_{\mathrm{VI}}$ is uniquely characterized by the following conditions:
(1) polynomial of bi-degree $(3,2)$.
(2) passing through the following 12 points:

$$
\begin{array}{ll}
\left(\infty, \frac{1}{v_{i}}\right)_{i=1}^{2}, & \left(v_{i}, \infty\right)_{i=3}^{4} \\
\left(0, \frac{v_{i}}{\kappa_{2}}\right)_{i=5}^{6}, & \left(\frac{\kappa_{1}}{v_{i}}, 0\right)_{i=7}^{8} \\
(z, \infty), & \left(\frac{z}{q}, 0\right), \\
\left(z, \frac{Y(z)}{Y(q z)}\right), & \left(\frac{z}{q}, \frac{Y(z / q)}{Y(z)}\right) .
\end{array}
$$

Δ This property is universal for almost all the Painlevé equations.
The linear equation L_{1} can be determined by the conditions:
(1) polynomial in (f, g) of bi-degree $(3,2)$,
(2) vanishes at 12 points: $P_{1}, \ldots, P_{8}, P(x), P\left(x^{\prime}\right), Q_{1}, Q_{2}$.

- P_{1}, \cdots, P_{8} are given by specifying the type of equation.
- $P\left(x^{\prime}\right)$ is determined from $P_{1}, \cdots, P_{8}, P(x)$ (Abel's relation).
- How to choose the points Q_{1}, Q_{2} ?

They must determine the $Y(q x), Y(x), Y(x / q)$ dependence of L_{1}.
L_{1} should be linear in $Y(q x), Y(x), Y(x / q) \rightarrow$ determine Q_{1}, Q_{2}.

- Example 3. q - $E_{8}^{(1)}$ case.

Parameterization of a nodal curve:
$P(x)=(F(x), G(x))=\left(x+\frac{\kappa_{1}}{x}, x+\frac{\kappa_{2}}{x}\right)$.

The 12 points: $P\left(v_{1}\right), \ldots, P\left(v_{8}\right), P(x), P\left(\frac{\kappa_{1} q}{x}\right)$, and Q_{1}, Q_{2},

$$
\text { where } \quad Q_{1}: \quad f=F(x), \quad \frac{g-G(x)}{g-G\left(\frac{\kappa_{1}}{x}\right)}=\frac{Y(q x)}{Y(x)}
$$

and $Q_{2}=\left.Q_{1}\right|_{x \rightarrow \frac{x}{q}}$. Then L_{1} is linear in $Y(q x), Y(x), Y(x / q)$.

- A Lax pair is given by L_{1} and

$$
\begin{aligned}
L_{2}: & \{g-G(x)\} Y(x)-\left\{g-G\left(\frac{\kappa_{1}}{x}\right)\right\} Y(q x) \\
& +C\left(x-\frac{\kappa_{1}}{x}\right)\{f-F(x)\} \bar{Y}(x)=0,
\end{aligned}
$$

where C is a constant.

- Example 4. Elliptic $E_{8}^{(1)}$ case:

Parametrization of the generic $(2,2)$ curve:

$$
(f, g)=\left(\frac{F_{b}(x)}{F_{a}(x)}, \frac{G_{b}(x)}{G_{a}(x)}\right)
$$

where $F_{a}(x)=\left[\frac{a}{x}\right]\left[\frac{\kappa_{1}}{a x}\right], \quad G_{a}(x)=\left[\frac{a}{x}\right]\left[\frac{\kappa_{2}}{a x}\right]$,

$$
[x]=\sum_{n \in \mathbb{Z}}(-1)^{n} x^{n+\frac{1}{2}} p^{\frac{n(n+1)}{2}} \cdot[p x]=-\frac{p^{-\frac{1}{2}}}{x}[x], \quad\left[\frac{1}{x}\right]=-[x] .
$$

We put

$$
\mathcal{F}(f, x)=F_{a}(x) f-F_{b}(x), \quad \mathcal{G}(g, x)=G_{a}(x) g-G_{b}(x)
$$

- The Lax pair for elliptic $E_{8}^{(1)}$ equation:

$$
\begin{aligned}
L_{2} & : \mathcal{G}(g, x) Y(x)-\mathcal{G}\left(g, \frac{\kappa_{1}}{x}\right) Y(q x)+\mathcal{F}(f, x) \bar{Y}(x)=0, \\
L_{3}: & : \mathcal{G}(g, x) U\left(\frac{\kappa_{1}}{q x}\right) \bar{Y}(q x)-\mathcal{G}\left(g, \frac{\kappa_{1}}{q x}\right) U(x) \bar{Y}(x) \\
& +w \overline{\mathcal{F}}(\bar{f}, x)\left[\frac{x^{2}}{\kappa_{1}}, \frac{q x^{2}}{\kappa_{1}}\right] Y(q x)=0, \quad U(x)=\prod_{i=1}^{8}\left[\frac{v_{i}}{x}\right]
\end{aligned}
$$

Compatibility \Rightarrow

$$
\begin{aligned}
& \frac{\mathcal{F}\left(f, \frac{\kappa_{2}}{x}\right) \overline{\mathcal{F}}\left(\bar{f}, \frac{\kappa_{2}}{x}\right)}{\mathcal{F}(f, x) \overline{\mathcal{F}}(\bar{f}, x)}=\frac{U\left(\frac{\kappa_{2}}{x}\right)}{U(x)} \quad \text { for } \mathcal{G}(g, x)=0 \\
& \frac{\mathcal{G}\left(g, \frac{\kappa_{1}}{x}\right) \underline{\mathcal{G}}\left(\underline{g}, \frac{\kappa_{1}}{x}\right)}{\mathcal{G}(g, x) \underline{\mathcal{G}}(\underline{g}, x)}=\frac{U\left(\frac{\kappa_{1}}{x}\right)}{U(x)} \quad \text { for } \mathcal{F}(f, x)=0
\end{aligned}
$$

- Example 5. L_{1} for differential $P_{\mathrm{VI}}:(f=q, g=q p)$:
(1) bi-degree $(3,2)$.
(2) passing through the following 12 points:
$\left(1+\alpha_{3} \epsilon, \frac{1}{\epsilon}\right)_{\text {double' }},\left(t+\alpha_{0} \epsilon, \frac{t}{\epsilon}\right)_{\text {double' }}$,
$(0,0),\left(0, \alpha_{4}\right),\left(\infty,-\alpha_{2}\right),\left(\infty,-\alpha_{1}-\alpha_{2}\right)$,
$\left(x+\epsilon,-\frac{x}{\epsilon}\right)_{\text {double }},\left(x+\epsilon, \frac{y^{\prime}(x+\epsilon)}{y(x+\epsilon)}\right)_{\text {double }}$

- Degeneration from $q-P_{\mathrm{VI}}$ configuration : confluence of two lines at $g=0$ and $g=\infty$.
Δ Two characterizations of L_{1} for P_{VI}
(i) $\ln \left(x, \partial_{x}\right)$:
- the local exponents (Riemann scheme),
- apparent condition at $x=q$ where $Y^{\prime}(x)=p Y(x)$.
(ii) $\ln (q, p)$:
- vanishing conditions at the 8 points,
- extra 4 vanishing conditions at

$$
\left(x+\epsilon,-\frac{x}{\epsilon}\right)_{\text {double }} \text { and }\left(x+\epsilon, \frac{y^{\prime}(x+\epsilon)}{y(x+\epsilon)}\right)_{\text {double }} .
$$

- These two characterizations give the same L_{1} (due to the symmetry $\left.\left(x, \partial_{x}\right) \leftrightarrow(q, p)\right)$.

3. Genalralizations

\triangle Garnier system

- 2nd order Fuchsian differential equation on \mathbb{P}^{1} with $N+3$ regular singular points at $x=t_{1}, \ldots, t_{N+3}$.

$$
\begin{aligned}
& \psi_{x x}+u(x) \psi=0, \\
& u(x)=\sum_{a=1}^{N+3}\left\{\frac{\Delta_{a}}{\left(x-t_{a}\right)^{2}}-\frac{H_{a}}{x-t_{a}}\right\}+\sum_{i=1}^{N}\left\{\frac{-\frac{3}{4}}{\left(x-q_{i}\right)^{2}}+\frac{p_{i}}{x-q_{i}}\right\} .
\end{aligned}
$$

IMD \rightarrow Garnier system [Garnier (1912)]

$$
\frac{\partial q_{i}}{\partial t_{a}}=\frac{\partial H_{a}}{\partial p_{i}}, \quad \frac{\partial p_{i}}{\partial t_{a}}=-\frac{\partial H_{a}}{\partial q_{i}} .
$$

\rightarrow System of $2 N$ unknown variables: $N=1$ case is P_{VI}.

- A scalar Lax pair for q-Garnier system [Nagao-Y(2016)]

$$
\begin{aligned}
& L_{2}: F(x) \bar{y}(x)+G(x) y(x)-A(x) y(q x)=0, \\
& L_{3}: q x \bar{F}(x) y(q x)+G(x) \bar{y}(q x)-q t B(x) \bar{y}(x)=0 .
\end{aligned}
$$

$$
\begin{aligned}
& A(x)=\prod_{i=1}^{N+1}\left(x-a_{i}\right), \quad B(x)=\prod_{i=1}^{N+1}\left(x-b_{i}\right) \\
& F(x)=\sum_{i=0}^{N} f_{i} x^{i}, \quad G(x)=c t+\sum_{i=1}^{N} g_{i} x^{i}+x^{N+1}
\end{aligned}
$$

- Parameters: $\overline{\left(a_{i}, b_{i}, c, t\right)}=\left(a_{i}, b_{i}, c, q t\right)$.
- Dynamical variables: the coefficients f_{i}, g_{i}. ($\#=2 N+1$, but only the ratios $f_{0}: f_{1}: \cdots: f_{N}$ are important $\left.\rightarrow \sharp_{\text {eff }}=2 N\right)$.
- From L_{2} and L_{3}, we have

$$
L_{1}: \quad A(x) F\left(\frac{x}{q}\right) y(q x)-R(x) y(x)+t B\left(\frac{x}{q}\right) F(x) y\left(\frac{x}{q}\right)=0
$$

where $R(x)$ is a polynomial of degree $2 N+1$.

- Compatibility of L_{2}, L_{3} or $L_{1} \rightarrow q$-Garnier system:

$$
\begin{gathered}
x F(x) \bar{F}(x)=t A(x) B(x) \text { for } G(x)=0 \\
G(x) \underline{G}(x)=t A(x) B(x) \quad \text { for } F(x)=0 .
\end{gathered}
$$

- To ses the geometric meaning of this equation, we consider the autonomous limit.
- Autonomous limit of L_{1} equation:

$$
\left[A(x) F\left(\frac{x}{q}\right) T_{x}-R(x)+t B\left(\frac{x}{q}\right) F(x) T_{x}^{-1}\right] y(x)=0
$$

where $T_{x} x=q x T_{x}$. For $q \rightarrow 1$, we obtain an algebraic equation:

$$
C: A(x) T_{x}-U(x)+\frac{t B(x)}{T_{x}}=0
$$

$=$ spectral curve for autonomous q-Garnier system
$=$ hyperelliptic curve of bi-degree $(N+1,2)$ in $\left(x, T_{x}\right)$
$=S W$ curve for $5 d, \mathcal{N}=1, S U(N), N_{f}=2 N$

We will use the notation $y=T_{x}$ in the followings.
Δ Meaning of the polynomials $F(x), G(x)$

- Dynamical variables of q-Garnier system

$$
\begin{aligned}
& =\text { a pair of polynomials } F(x) / \mathbb{C}^{*}, G(x) \\
& =\text { set of } N \text {-points }\left\{Q_{i}=\left(x_{i}, y_{i}\right)\right\} \text { on spectral curve } C \\
& \qquad F\left(x_{i}\right)=0, \quad y_{i}=G\left(x_{i}\right)
\end{aligned}
$$

- The evolution = an addition formula on C.
- For $N>1$, the addition formula for $\left\{Q_{i}\right\}$ are not bi-rational.
\rightarrow In terms of the polynomials $F(x), G(x)$, it takes bi-rational form (Mumford representation).
Δ Example 6. $N=2$ case ($q=1$)
The orbit of the two points $Q_{1}=\left(x_{1}, y_{1}\right), Q_{2}=\left(x_{2}, y_{2}\right)$ is as follows (log-log plot)

- Amoeba of the corresponding spectral curve

- In the ultra discrete limit, the spectral curve becomes piecewise linear $=5$ brane web: (following figure is for $N=3$)

= Spectral curve for periodic BBS [Inoue-Kuniba-Takagi (2011)].
SU(2)-SU(2)-SU(2) $\leftrightarrow S U(4)$ (Base-Fiber duality [Mitev-Pomoni-Taki-Yagi (2014)]).
\triangle Base-Fiber duality as q-Laplace transformation
- (m, n)-reduced Lax operator for q-KP hierarchy.

$$
\Psi(q z)=\mathcal{A}(z) \Psi(z), \quad \mathcal{A}(z)=D X_{m}(z) \cdots X_{1}(z)
$$

$$
\begin{aligned}
& D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right), \\
& X_{i}(z)=\left[\begin{array}{ccccc}
x_{i, 1} & 1 & & & \\
& x_{i, 2} & 1 & & \\
& & \ddots & \ddots & \\
& & & x_{i, n-1} & 1 \\
r_{i} z & & & & x_{i, n}
\end{array}\right] .
\end{aligned}
$$

- $W\left(A_{m-1}^{(1)}\right) \times W\left(A_{n-1}^{(1)}\right)$ symmetry. [Kajiwara-Noumi-Y (2002)]
- A duality : \mathbf{n} (matrix size) $\leftrightarrow \mathbf{m}$ (number of factors)
(Proof.) We rewrite the (m, n)-reduced equation

$$
\Psi(q z)=\mathcal{A}(z) \Psi(z)=D X_{m} \cdots X_{2} X_{1} \Psi
$$

by putting $\Psi_{1}=\Psi, \Psi_{i+1}=X_{i} \Psi_{i}(1 \leq i \leq m)$. Then for the components $\psi_{i, j}=\left(\Psi_{i}\right)_{j}$, we have

$$
\begin{gathered}
\psi_{i+1, j}=x_{i, j} \psi_{i, j}+\psi_{i, j+1} \\
\psi_{m+1, j}=d_{j}^{-1} T_{z} \psi_{1, j}, \quad \psi_{i, n+1}=r_{i} z \psi_{i, 1}
\end{gathered}
$$

These relations are symmetric under the exchange:

$$
m \leftrightarrow n, \psi_{i, j} \leftrightarrow \psi_{j, i}, x_{i, j} \leftrightarrow-x_{j, i}, r_{k} \leftrightarrow d_{k}^{-1}, z \leftrightarrow T_{z} .
$$

- Two equivalent Lax forms for q-Garnier system.
(i) $(m, n)=(2,2 N+2)$ case:

$$
\mathcal{A}(z)=\left[\begin{array}{lllll}
* & * & * & & \\
& * & * & * & \\
& & & \vdots & \\
& & & * & \\
& & & & *
\end{array}\right]+\left[\begin{array}{lll}
& \\
& & \\
& & \\
& & *
\end{array}\right]
$$

(ii) $(m, n)=(2 N+2,2)$ case:

$$
\mathcal{A}(z)=\left[\begin{array}{cc}
* & * \\
& *
\end{array}\right]+\left[\begin{array}{ll}
* & * \\
* & *
\end{array}\right] z+\cdots+\left[\begin{array}{cc}
* & * \\
* & *
\end{array}\right] z^{N}+\left[\begin{array}{ll}
* & \\
* & *
\end{array}\right] z^{N+1} .
$$

』 Various configurations

- We have considered:

$\rightarrow q$-Garnier
- The most generic case \rightarrow elliptic Garnier
- A degeneration

\triangle Summary

(1) Various IMD are formulated by geometric method.
(2) It will be useful for further generalization of IMD and to study their connection to gauge/string theory.

Thank you.

Tau functions

Δ In terms of τ functions, discrete/continuous Painlevé equations can be written as bilinear form.

- Example. Elliptic $E_{8}^{(1)}$ case [Ohta-Ramani-Grammaticos (2001)]

For each octahedron (with $(\text { edge })^{2}=2$) on E_{8} lattice, we have

$$
* \tau_{A} \tau_{\tilde{A}}+* \tau_{B} \tau_{\tilde{B}}+* \tau_{C} \tau_{\tilde{C}}=0
$$

- The system is highly over determined, but consistent!
Δ Geometric meaning of the τ-functions [KMNOY (2003)].
- The surface $X=B l_{9}\left(\mathbb{P}^{2}\right) \cong B I_{8}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ has infinitely many (-1) Curves: [Nagata (1960)]

$$
\begin{aligned}
\lambda & =e_{i}, \quad \ell-e_{i}-e_{j}, \quad 2 \ell-e_{i_{1}}-\cdots-e_{i_{5}}, \quad \cdots \\
& \in \operatorname{Pic}(X)=\mathbb{Z} \ell \oplus \mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{9}
\end{aligned}
$$

Their defining equations $\tau(\lambda)=0 \rightarrow \tau$-functions.

- Bilinear relations: For $\operatorname{dim}\left|\ell-e_{9}\right|=1$
$\rightarrow\left[e_{2}-e_{3}\right]\left[\ell-e_{2}-e_{3}-e_{9}\right] \tau\left(\ell-e_{1}-e_{9}\right) \tau\left(e_{1}\right)+(123 \mathrm{cyc})=0$,
For $\operatorname{dim}\left|2 \ell-e_{1}-e_{2}-e_{3}-e_{4}\right|=1$
$\rightarrow\left[e_{1}-e_{2}\right]\left[e_{3}-e_{4}\right] \tau\left(\ell-e_{1}-e_{2}\right) \tau\left(\ell-e_{3}-e_{4}\right)+(123$ сус $)=0$.

Quantization

We will consider only the differential cases here.
Δ Since (q, p) are canonical variables, there is a natural quantization.
\rightarrow The duality $\left(x, \partial_{x}\right) \leftrightarrow\left(q, \partial_{q}\right)$ becomes manifest.
Δ Quantum Lax pair for $P_{\mathrm{VI}_{\mathrm{I}}}: \widehat{L} \psi=\widehat{B} \psi=0$.

$$
\begin{aligned}
\widehat{L} & =x(x-1)(x-t)\left\{\frac{\alpha_{0}^{(2)}}{x}+\frac{\alpha_{1}^{(2)}}{x-1}+\frac{\alpha_{t}^{(2)}}{x-t}-\frac{\epsilon_{1}-\epsilon_{2}}{x-q}\right\} \epsilon_{1} \partial_{x} \\
& -q(q-1)(q-t)\left\{\frac{\alpha_{0}^{(1)}}{q}+\frac{\alpha_{1}^{(1)}}{q-1}+\frac{\alpha_{t}^{(1)}}{q-t}-\frac{\epsilon_{2}-\epsilon_{1}}{q-x}\right\} \epsilon_{2} \partial_{q} \\
& +x(x-1)(x-t) \epsilon_{1}^{2} \partial_{x}^{2}-q(q-1)(q-t) \epsilon_{2}{ }^{2} \partial_{q}^{2}+C(x-q) \\
\widehat{B} & =q(q-1)\left\{\frac{\alpha_{0}^{(1)}}{q}+\frac{\alpha_{1}^{(1)}}{q-1}+\frac{\alpha_{t}}{q-t}-\frac{\epsilon_{2}}{q-x}\right\} \epsilon_{2} \partial_{q} \\
& +\frac{t(t-1)}{q-t} \epsilon_{1} \epsilon_{2} \partial_{t}+\frac{x(x-1)}{q-x} \epsilon_{1} \epsilon_{2} \partial_{x}+q(q-1) \epsilon_{2}^{2} \partial_{q}^{2}+C
\end{aligned}
$$

where $\alpha_{i}^{(j)}=\alpha_{i}-\epsilon_{j}$. The parameters $\epsilon_{1}, \epsilon_{2}$ play the role of the Planck constants for quantization: $\left(x, \epsilon_{1} \partial_{x}\right)$ and $\left(q, \epsilon_{2} \partial_{q}\right)$.
$\Delta \widehat{L} \psi=\widehat{B} \psi=0$ are the BPZ equations for 6 -points block ψ on \mathbb{P}^{1}

$$
\psi(x, q, t)=\left\langle V_{-\epsilon_{2}}(x) V_{-\epsilon_{1}}(q) V_{\alpha_{0}}(0) V_{\alpha_{1}}(1) V_{\alpha_{t}}(t) V_{\alpha_{\infty}}(\infty)\right\rangle
$$

Where $V_{\alpha}(z)$ is the Virasoro primary operator (AGT):

$$
c=1+6 \frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{\epsilon_{1} \epsilon_{2}}, \quad \Delta(\alpha)=\frac{\alpha}{2 \epsilon_{1} \epsilon_{2}}\left(\epsilon_{1}+\epsilon_{2}-\frac{\alpha}{2}\right) .
$$

\rightarrow can be extended to quantum Garnier system:

$$
\psi\left(x,\left\{q_{i}\right\}, t\right)=\left\langle V_{-\epsilon_{2}}(x) \prod_{i=1}^{N} V_{-\epsilon_{1}}\left(q_{i}\right) \prod_{a=1}^{N+3} V_{\alpha_{a}}\left(t_{a}\right)\right\rangle .
$$

- Problem. Classical (q-)Painlevé/Garnier systems appear at $c=1$ ($\epsilon_{2}=$ $\left.-\epsilon_{1}\right)$ and $c=\infty\left(\epsilon_{2}=0\right)$. How do they related? $(\operatorname{PSL}(2, \mathbb{Z})$ duality of $W_{L, M, N}\left[-\frac{\epsilon_{2}}{\epsilon_{1}}\right]$ [Gaiotto-Rapčák (2017)], DIM algebra [Awata-Feigin-Shiraishi (2011)])

Special solutions by Padé method

』 Padé problems (Approximation by a rational function):
(1) Padé approximation (differential):

$$
\psi(x)=\frac{P_{m}(x)}{Q_{n}(x)}+O\left(x^{m+n+1}\right)
$$

(2) Padé interpolation:

$$
\psi(x)=\frac{P_{m}(x)}{Q_{n}(x)} . \quad\left(x=x_{0}, x_{1}, \ldots, x_{m+n}\right)
$$

Δ Main idea. The functions $P_{m}(x)$ and $\psi(x) Q_{n}(x)$ solve the Lax equations for IMD.

』 Example. Padé approximation problem

$$
\psi(x):=(1-x)^{a}\left(1-\frac{x}{t}\right)^{b}=\frac{P_{m}(x)}{Q_{n}(x)}+O\left(x^{m+n+1}\right)
$$

\rightarrow Special solution for $P_{\text {VI }}$

$$
\begin{aligned}
& q=\frac{t(m+n+1)}{(m-n-a-b)} \frac{\tau_{m, n} \tau_{m+1, n+1}}{\tau_{m+1, n} \tau_{m, n+1}} \\
& \tau_{m, n}=\operatorname{det}\left(p_{m-i+j}\right)_{i, j=1}^{n}, \quad \psi(x)=\sum_{k=0}^{\infty} p_{k} x^{k}
\end{aligned}
$$

associated with the Riemann data:

x	0	1	t	∞	q
\exp.	0	0	0	$-m$	0
	$m+n+1$	a	b	$-n-a-b$	2

«Some generalizations.

- $\psi(x)=\prod_{i=1}^{N}\left(1-x / t_{i}\right)^{a_{i}}$
(Padé approx.) \rightarrow Garnier system.
- $\psi(x)=\prod_{i=1}^{N} \frac{\left(x a_{i} ; q\right)_{\infty}}{\left(x b_{i} ; q\right)_{\infty}}, \quad(z ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-q^{i} z\right)$
(q-grid interpolation) $\rightarrow q$-Garnier system.
- $\psi(x)=\prod_{i=1}^{N} \frac{\Gamma_{p, q}\left(x a_{i}\right)}{\Gamma_{p, q}\left(x k / a_{i}\right)}, \quad \Gamma_{p, q}(z)=\prod_{i, j=0}^{\infty} \frac{1-z^{-1} p^{i+1} q^{j+1}}{1-z p^{i} q^{j}}$
(elliptic grid interpolation) \rightarrow elliptic Garnier system.

