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� �
Introduction� �

The main target of this talk is the discrete Painlevé equations and

their generalizations. First, in this introduction, I will look at the differ-

ential case to explain some backgrounds and motivations.

▲ There are 6 Painlevé differential equations (or 8 equations in geo-

metric classification)

PVI → PV → PIII → (PIII′) → (PIII′′)
↘ ↘ ↘

PIV → PII → PI

• Each equation PJ can be written in Hamiltonian form:

dq

dt
=
∂HJ

∂p
,

dp

dt
= −

∂HJ

∂q
,
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where

HI =
1

2
p2 − 2q3 − tq,

HII =
1

2
p2 − (q2 +

t

2
)p− αq,

· · ·

HVI =
q(q − 1)(q − t)

t(t− 1)

{
p2 −

(α4
q

+
α3
q − 1

+
α0 − 1

q − t

)
p

+
α2(α1 + α2)

q(q − 1)

}
. (α0 + α1 +2α2 + α3 + α4 = 1)

• HJ depends explicitly on t (non-autonomous system).

• HJ(̸=III′′) is a polynomial in (p, q).

• HJ(̸=I,III′′) has some parameters αi.
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▲ The Painlevé differential equations have at least three origins:

(1) Painlevé property. [P.Painlevé, (∼ 1900)]

(2) Isomonodromic deformation (IMD). [R.Fuchs (1905)]

(3) Space of initial conditions. [K.Okamoto (1979)]

• We want to clarify the relations among these aspects for continous

and discrete Painlevé equations.

First, we will review these aspects in differential case.
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▲ Origin (1) Painlevé property

• A singularity of solutions of a differential equation is said “movable” if

its location can move depending on the initial condition.

• For nonlinear equations, there may be a movable singularity

e.g. y =
√
t− t0 for 2y

dy

dt
= 1.

• For some special cases, nonlinear equations can have the following

property (Painlevé property):

all the movable singularities are only poles.

Typical examples are the equations for the elliptic functions, The Painlevé

equations are certain deformations of them.
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• The Weierstrass ℘-function y = ℘(t):

(y′)2 = 4y3 − g2y − g3 or y′′ = 6y2 − g2
2 ,

y =
1

u2
+
g2
20
u2 +

g3
28
u4 +

g22
1200

u6 + · · · . (u = t− t0)

• Non-autonomous deformation→� �
The PI equation: q′′ = 6q2 + t,

q =
1

u2
−
t0
10
u2 −

1

6
u3 + Cu4 +

t20
300

u6 + · · · . (u = t− t0)
� �
• Search for this kind of solution gives a useful test to detect integrability:

Painlevé-test [Kowalevski(1889)].
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▲ Origin (2) Isomonodromic deformation (IMD)

• 2nd order equation (with rational coefficients a(x), b(x))

L : Yxx+ a(x)Yx+ b(x)Y = 0.

Solutions Y1(x), Y2(x) may have nontrivial monodromy :

Yi(x) −→
analytic continuation

Ci1Y1(x) + Ci2Y2(x).

• A deformation L is isomonodromic deformation (IMD)

⇔ The monodromy Cij is independent of the deformation parameter t

⇔ compatibility of L with a deformation equation

B : Yt = r(x)Yx+ s(x)Y ,

where r(x), s(x) are rational functions in x.
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• Example. Lax pair for PVI.

L : Yxx+ a(x)Yx+ b(x)Y = 0.

(i) Local exponents:
x 0 1 t ∞ q

exp. 0 0 0 α2 0
α4 α3 α0 α1 + α2 2

⇒


a(x) =

1− α4
x

+
1− α3
x− 1

+
1− α0
x− t

+
−1
x− q

,

b(x) =
1

x(x− 1)

{
q(q − 1)p

x− q
−
t(t− 1)H

x− t
+ α2(α1 + α2)

}
.

(ii) x = q is apparent singularity: (solutions are regular)

⇒ determine the parameter H = HVI(q, p).

B : t(t−1)
q−t Yt+

x(x−1)
q−x Yx+

pq(q−1)
x−q Y = 0.

• PVI is a prototype of IMD. There are many other IMDs.
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▲ Origin (3) Space of initial conditions

• Okamoto constructed a surface XJ which parametrize the solutions of

PJ [Okamoto(1979)].

▲ Example. PIV case: HIV = pq(p− q − t)− a1p− a2q.

{Solutions} ∼ {Initial values (q, p) ∈ C2 at t = t0}.

• However there may be additional solutions s.t. q →∞ and/or p→∞
(t→ t0). To include them, define a surface

XIV = {(q, p)} ∪ {(q1, p1)} ∪ {(q2, p2)} ∪ {(q2, p2)},
patched by

(∗)
(q, p) = (a1p1 + q1p

2
1,

1
p1
) = ( 1

q2
,−a2q2 + q22p2)

= ( 1
q3
, 1q3

+ t− a0q3 − q23p3),

(a0 + a1 + a2 = 1).
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• The PIV equation extended to XIV has the following properties:

(i) (∗) are symplectic→ Hamiltonian system on each chart.

(ii) (∗) are bi-rational→ transformed Hamiltonians may have poles.

However, they are still polynomial! and moreover

(iii) This property determines the PIV equation uniquely [Takano et. al

(1997)].

Geometry knows Painlevé equations!

• Since the Lax pair has more information than equation, it is better to

know not only the equation but also its Lax pair.

Question. Can we obtain the Lax pair also from the geometry?
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▲ The geometry related to our main example: nine points blowup of P2

• The surface Bl9(P2) (∼= Bl8(P1 ×

P1)) has infinitely many (-1) curves [Na-

gata (1960)].

• It has affine Weyl group symmetry

of type E(1)
8 , whose translation part Z8

gives the elliptic difference Painlevé

equation [Sakai (2001)].

0 P2 {1} 0
1 Bl1(P2) A1 1
2 Bl2(P2) A1 ×A1 3
3 Bl3(P2) A2 ×A1 6
4 Bl4(P2) A4 10
5 Bl5(P2) D5 16
6 Bl6(P2) E6 27
7 Bl7(P2) E7 56
8 Bl8(P2) E8 240

9 Bl9(P2) E
(1)
8 ∞

Question. Can we obtain the Lax pair of IMD from such geometry?
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▲ Ans. Yes. we can construct IMDs from geometry. (“Geometric engi-

neering” of IMD).

• Plan:

(1) From geometry to discrete Painlevé equations

(2) Lax formulation

(3) Generalizations

• Our conclusion will be

Geometry knows not only the Painlevé equations but also

various generalizations of them together with the Lax form.

(various = continuous/discrete, higher order, ...)
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� �
1. From geometry to discrete Painlevé equations� �

• Example 1. Consider a discrete dynamical system (non-autonomous

system on C2 = {x, y}) generated by the mapping:

T : (a, x, y) 7→
(
qa, a

1+ xy

x
,

1

xy

)
.

• Plot of orbit in (x, y) plane:

q = 1.01 q = 1.001 q = 1
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• Example 2. Consider two involutions:

ix : (x, y)→ (x̃, y), x̃ =
ab

x

(y+ t)(y+ u)

(y+ r)(y+ s)
,

iy : (x, y)→ (x, ỹ), ỹ =
rs

y

(x+ c)(x+ d)

(x+ a)(x+ b)
,

where abtu = cdrs.

• Iteration of T = ix ◦ iy (or

T−1 = iy ◦ ix) gives a dis-

crete integrable system.
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• Conserved curves:
type conserved curve

A
(1)
0 H = y

x + x+ 1
y

A
(1)
1 H = x

a + 1
xy +

1
x + y

A
(1)
1+1 H = 1

abxy +
1
abx + 1

aby +
x
a + y

A
(1)
2+1 H = y

abx + 1
abx + y

b +
cx
y + c

y + x

A
(1)
4 H = x

b1b3b4y
+ y

b4x
+ 1

b1b4xy
+ b1+1

b1b4x
+ b3+1

b1b3b4y
+ y+ b2x,

D
(1)
5 H = 1

xy((x+a)(x+b)y2+{(r+s)x2+ab(t+u)}y
+rs(x+c)(x+d))

E
(1)
6 · · ·

↔ 5d, N = 2, SU(2) Seiberg-Witten curve.

• A remarkable progress in spectral theory for corresponding quantum

operators Ĥ [Hatsuda, Marino,...].
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▲ 2nd order Painlevé equations [Sakai(2001)]

ell. E
(1)
8

A
(1)
1↗

mul. E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
5 → A

(1)
4 → A

(1)
2+1 → A

(1)
1+1 → A

(1)
1 → A

(1)
0

add. E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
4 → A

(1)
3 → A

(1)
1+1 → A

(1)
1 → A

(1)
0

↘ ↘ ↘
A
(1)
2 → A

(1)
1 → A

(1)
0

• Cases in blue/magenta admit discrete/continuous flows.

• The same diagram arises in gauge theory for d = 4,5,6.

16



▲ Simple geometric construction of integrable mappings on P2

• bi-degree (2,2) curve: C : φ(x, y) = 0

→ involutions ix : (x, y) 7→ (x̃, y) and iy : (x, y) 7→ (x, ỹ)

→ T = ix ◦ iy (or T−1 = iy ◦ ix): (an addition formula on C)

• Apply this construction to a pencil of (2,2) curves:

φ(x, y) = F (x, y)− hG(x, y) = 0

→ The QRT mapping T : P2→ P2

→ conserved quantity H(x, y) = F (x,y)
G(x,y) = h.

[Quispel-Roberts-Tompson (1989)], [Tsuda(2004)]
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� �
▲ Example 1’. For H(x, y) = x

a + 1
xy +

1
x + y, we have

ix : x 7→ x̃ =
a

x
(1 +

1

y
), iy : y 7→ ỹ =

1

xy
.

The composition T = iy ◦ ix gives Example 1 (q = 1).� �
▲ The pencil of the bi-degree (2,2) curves F (x, y)−HG(x, y) = 0 has

8 common points in a special position: Bl8(P1 × P1) = 1
2K3:

Config. bi-degree (2,2) curve evolution equation
special 1-parameter family QRT mapping

non-special unique Painlevé equation

• The discrete Painlevé equation is a deautonomization of the QRT.

It has no longer any integral but the degree grows gently, i.e.

(degree of mapping) ∼ (♯ iteration)2.
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▲ Deautonomization of Example 2

→ q-PVI equation [Jimbo-Sakai(1996)] (D(1)
5 symmetry)

� �

ff = v3v4
(g − v5

κ2
)(g − v6

κ2
)

(g − 1
v1
)(g − 1

v2
)
, gg =

1

v1v2

(f − κ1
v7
)(f − κ1

v8
)

(f − v3)(f − v4)
.

� �

▲ Up/down shift notations for discrete (difference) equation:

• Evolution map: T (∗) = ∗, T−1(∗) = ∗.

• Parameters: κ1, κ2, v1, · · · , v8: q = κ21κ
2
2/(v1 · · · v8).

κ1 = q−1κ1, κ2 = qκ2, vi = vi.

• Dependent variables: f, g.
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▲ The singular points of q-PVI:� �
(f, g) = (∞, 1

v1
), (∞, 1

v2
), (v3,∞), (v4,∞),

(0, v5κ2
), (0, v6κ2

), (κ1v7
,0), (κ1v8

,0).

f = 0 f =∞

g = 0

g =∞

x
x

x

x

x x

x x

� �
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▲ Other cases

q-D(1)
5 q-E(1)

6 q-E(1)
7

q-E(1)
8 ell-E(1)

8
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• More degenerate cases: multiple blowing-up points.

e.g. PIV case:

uj uj�
����
��

uj
←

P1

P3P2

�
�
�

�
�
�
�� @

@
@

@
@
@

@@

�
�
�
�
�
�

@
@
@

@
@
@

�
�
�
�
�
�

u u

u

(P1)double : (∞,0)← (q, p) = (a1p1 + q1p
2
1,

1
p1
),

(P2)double : (0,∞)← (q, p) = ( 1
q2
,−a2q2 + q22p2),

(P3)quadruple : (∞,∞)← (q, p) = ( 1
q3
, 1q3

+ t− a0q3 − q23p3).
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� �
2. Lax formulation� �

▲ The scalar Lax pair for q-PVI (⇔ matrix form [Jimbo-Sakai (1996)])
� �

L1 :
{z 2∏

i=1
(gvi − 1)

qg
−

4∏
i=1

vi
6∏
i=5

(
g − vi

κ2

)
fg

}
Y (z)

+
v1v2

4∏
i=3

(
z
q − vi

)
f − z

q

{
gY (z)− Y (zq)

}
+

8∏
i=7

(
κ1
vi
− z

)
q(f − z)

{
Y (qz)−

1

g
Y (z)

}
= 0,

L2 :
{
1−

f

z

}
Y (z) + Y (qz)−

1

g
Y (z) = 0.

� �
The compatibility of L1, L2 gives the q-PVI.
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• Basic property of L1:
� �
As an algebraic curve in f,g, the equation L1 for q-PVI is uniquely

characterized by the following conditions:

(1) polynomial of bi-degree (3,2).

(2) passing through the following 12 points:(
∞, 1vi

)2
i=1

,
(
vi,∞

)4
i=3

,(
0, viκ2

)6
i=5

,
(
κ1
vi
,0

)8
i=7

,

(z,∞),
(
z
q ,0

)
,(

z,
Y (z)

Y (qz)

)
,

(z
q
,
Y (z/q)

Y (z)

)
.

6

w
w

w

w

-w w w
w

w ww
w

f

g

� �
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▲ This property is universal for almost all the Painlevé equations.
� �
The linear equation L1 can be determined by the conditions:

(1) polynomial in (f, g) of bi-degree (3,2),

(2) vanishes at 12 points: P1, . . . , P8, P (x), P (x′), Q1, Q2.� �
• P1, · · · , P8 are given by specifying the type of equation.

• P (x′) is determined from P1, · · · , P8, P (x) (Abel’s relation).

• How to choose the points Q1, Q2 ?

They must determine the Y (qx), Y (x), Y (x/q) dependence of L1.

L1 should be linear in Y (qx), Y (x), Y (x/q)→ determine Q1, Q2.
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• Example 3. q-E(1)
8 case.

Parameterization of a nodal curve:

P (x) =
(
F (x), G(x)

)
=

(
x+

κ1
x
, x+

κ2
x

)
.

The 12 points: P (v1), . . . , P (v8), P (x), P (κ1qx ), and Q1, Q2,

where Q1 : f = F (x),
g −G(x)

g −G(κ1x )
=
Y (qx)

Y (x)
,

and Q2 = Q1|x→x
q
. Then L1 is linear in Y (qx), Y (x), Y (x/q).

• A Lax pair is given by L1 and

L2 : {g −G(x)}Y (x)− {g −G(κ1x )}Y (qx)

+ C(x− κ1
x ){f − F (x)}Y (x) = 0,

where C is a constant.
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• Example 4. Elliptic E(1)
8 case:

Parametrization of the generic (2,2) curve:

(f, g) =

Fb(x)
Fa(x)

,
Gb(x)

Ga(x)

 ,
where Fa(x) = [

a

x
][
κ1
ax

], Ga(x) = [
a

x
][
κ2
ax

],

[x] =
∑
n∈Z

(−1)nxn+
1
2p

n(n+1)
2 . [px] = −p

−1
2

x [x], [1x] = −[x].

We put

F(f, x) = Fa(x)f − Fb(x), G(g, x) = Ga(x)g −Gb(x).
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• The Lax pair for elliptic E(1)
8 equation:

� �
L2 : G(g, x)Y (x)− G(g, κ1x )Y (qx) + F(f, x)Y (x) = 0,

L3 : G(g, x)U(κ1qx)Y (qx)− G(g, κ1qx)U(x)Y (x)

+wF(f, x)[x
2

κ1
, qx

2

κ1
]Y (qx) = 0, U(x) =

∏8
i=1[

vi
x ]� �

Compatibility⇒
� �

F(f, κ2x )F(f, κ2x )

F(f, x)F(f, x)
=
U(κ2x )

U(x)
for G(g, x) = 0,

G(g, κ1x )G(g, κ1x )

G(g, x)G(g, x)
=
U(κ1x )

U(x)
for F(f, x) = 0.

� �
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• Example 5. L1 for differential PVI: (f = q, g = qp):
� �
(1) bi-degree (3,2).

(2) passing through the following 12 points:

(
1+ α3ϵ,

1

ϵ

)
double

,
(
t+ α0ϵ,

t

ϵ

)
double

,

(0,0), (0, α4), (∞,−α2), (∞,−α1 − α2),

(
x+ ϵ,−

x

ϵ

)
double

,
(
x+ ϵ,

y′(x+ ϵ)

y(x+ ϵ)

)
double

w

w
w

w
w ww

w
�
��

�
��

�
��

�
�� g =∞

f = 0 f =∞

� �
• Degeneration from q-PVI configuration : confluence of two lines at

g = 0 and g =∞.
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▲ Two characterizations of L1 for PVI

(i) In (x, ∂x):
� �

• the local exponents (Riemann scheme),

• apparent condition at x = q where Y ′(x) = pY (x).� �
(ii) In (q, p):
� �

• vanishing conditions at the 8 points,

• extra 4 vanishing conditions at(
x+ ϵ,−

x

ϵ

)
double

and
(
x+ ϵ,

y′(x+ ϵ)

y(x+ ϵ)

)
double

.
� �
• These two characterizations give the same L1 (due to the symmetry

(x, ∂x)↔ (q, p)).
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� �
3. Genalralizations� �

▲ Garnier system

• 2nd order Fuchsian differential equation on P1 with N + 3 regular

singular points at x = t1, . . . , tN+3.

ψxx+ u(x)ψ = 0,

u(x) =
N+3∑
a=1

{ ∆a

(x− ta)2
−

Ha

x− ta

}
+

N∑
i=1

{ −3
4

(x− qi)2
+

pi
x− qi

}
.

IMD→ Garnier system [Garnier (1912)]

∂qi
∂ta

=
∂Ha

∂pi
,

∂pi
∂ta

= −
∂Ha

∂qi
.

→ System of 2N unknown variables: N = 1 case is PVI.
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• A scalar Lax pair for q-Garnier system [Nagao-Y(2016)]

L2 : F (x)y(x) +G(x)y(x)−A(x)y(qx) = 0,

L3 : qxF (x)y(qx) +G(x)y(qx)− qtB(x)y(x) = 0.

A(x) =
N+1∏
i=1

(x− ai), B(x) =
N+1∏
i=1

(x− bi),

F (x) =
N∑
i=0

fi x
i, G(x) = ct+

N∑
i=1

gi x
i+ xN+1.

• Parameters: (ai, bi, c, t) = (ai, bi, c, qt).

• Dynamical variables: the coefficients fi, gi. (♯ = 2N + 1, but only

the ratios f0 : f1 : · · · : fN are important→ ♯eff = 2N ).
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• From L2 and L3, we have

L1 : A(x)F (
x

q
)y(qx)−R(x)y(x) + tB(

x

q
)F (x)y(

x

q
) = 0,

where R(x) is a polynomial of degree 2N +1.

• Compatibility of L2, L3 or L1→ q-Garnier system:

xF (x)F (x) = tA(x)B(x) for G(x) = 0,

G(x)G(x) = tA(x)B(x) for F (x) = 0.

• To ses the geometric meaning of this equation, we consider the au-

tonomous limit.
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• Autonomous limit of L1 equation:A(x)F (
x

q
)Tx −R(x) + tB(

x

q
)F (x)T−1x

 y(x) = 0,

where Txx = qxTx. For q → 1, we obtain an algebraic equation:

C : A(x)Tx − U(x) +
tB(x)

Tx
= 0.

= spectral curve for autonomous q-Garnier system

= hyperelliptic curve of bi-degree (N +1,2) in (x, Tx)

= SW curve for 5d, N = 1, SU(N), Nf = 2N

We will use the notation y = Tx in the followings.
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▲ Meaning of the polynomials F (x), G(x)

• Dynamical variables of q-Garnier system

= a pair of polynomials F (x)/C∗, G(x)

= set of N -points {Qi = (xi, yi)} on spectral curve C

F (xi) = 0, yi = G(xi).

• The evolution = an addition formula on C.

• For N > 1, the addition formula for {Qi} are not bi-rational.

→ In terms of the polynomials F (x), G(x), it takes bi-rational form

(Mumford representation).
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▲ Example 6. N = 2 case (q = 1)

The orbit of the two points Q1 = (x1, y1), Q2 = (x2, y2) is as follows

(log-log plot)
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• Amoeba of the corresponding spectral curve
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• In the ultra discrete limit, the spectral curve becomes piecewise lin-

ear = 5 brane web: (following figure is forN = 3)

x = 0 x =∞

y = 0

y =∞

�
�
�
� @

@
@
@ �

�
�
� @

@
@
@

@
@
@
@

@
@
@
@ �

�
�
�

�
�
�
�

v

v

vv
v

v
v

v v v v

v v v v

= Spectral curve for periodic BBS [Inoue-Kuniba-Takagi (2011)].

SU(2)-SU(2)-SU(2)↔ SU(4) (Base-Fiber duality [Mitev-Pomoni-Taki-Yagi (2014)]).
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▲ Base-Fiber duality as q-Laplace transformation

• (m,n)-reduced Lax operator for q-KP hierarchy.

Ψ(qz) = AA(z)Ψ(z), AA(z) = DXm(z) · · ·X1(z),

D = diag(d1, · · · , dn),

Xi(z) =



xi,1 1
xi,2 1

. . . . . .
xi,n−1 1

riz xi,n


.

•W (A(1)
m−1)×W (A(1)

n−1) symmetry. [Kajiwara-Noumi-Y (2002)]
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• A duality : n (matrix size)↔ m (number of factors)

(Proof.) We rewrite the (m,n)-reduced equation

Ψ(qz) = AA(z)Ψ(z) = DXm · · ·X2X1Ψ

by putting Ψ1 = Ψ, Ψi+1 = XiΨi (1 ≤ i ≤ m). Then for the compo-

nents ψi,j = (Ψi)j, we have

ψi+1,j = xi,jψi,j + ψi,j+1,

ψm+1,j = d−1j Tzψ1,j, ψi,n+1 = rizψi,1.

These relations are symmetric under the exchange:

m↔ n, ψi,j ↔ ψj,i, xi,j ↔ −xj,i, rk ↔ d−1k , z ↔ Tz. □

40



• Two equivalent Lax forms for q-Garnier system.

(i) (m,n) = (2,2N +2) case:

AA(z) =



∗ ∗ ∗
∗ ∗ ∗

...
∗ ∗
∗


+

 ∗
∗ ∗


z.

(ii) (m,n) = (2N +2,2) case:

AA(z) =

 ∗ ∗
∗

 +

 ∗ ∗
∗ ∗

 z+ · · ·+
 ∗ ∗
∗ ∗

 zN +

 ∗
∗ ∗

 zN+1.
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▲ Various configurations

•We have considered: s
s

s
s

s s s s

s s s s

→ q-Garnier

• The most generic case→ elliptic Garnier

• A degeneration

s
s

s
s

s s s s

s s s s

�
�
�
�
�
�
���

s
s

s
s

s s s ss s s s

→ differential Garnier
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▲ Summary

(1) Various IMD are formulated by geometric method.

(2) It will be useful for further generalization of IMD and to study their

connection to gauge/string theory.

Thank you.
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Tau functions

▲ In terms of τ functions, discrete/continuous Painlevé equations can

be written as bilinear form.

• Example. Elliptic E(1)
8 case [Ohta-Ramani-Grammaticos (2001)]

For each octahedron (with (edge)2 = 2) on E8 lattice, we have

∗τAτÃ+ ∗τBτB̃ + ∗τCτC̃ = 0

A

Ã

B

B̃

C

C̃

• The system is highly over determined, but consistent!
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▲ Geometric meaning of the τ -functions [KMNOY (2003)].

• The surface X = Bl9(P2) ∼= Bl8(P1 × P1) has infinitely many (-1)

curves: [Nagata (1960)]

λ = ei, ℓ− ei − ej, 2ℓ− ei1 − · · · − ei5, · · ·
∈ Pic(X) = Zℓ⊕ Ze1 ⊕ · · · ⊕ Ze9.

Their defining equations τ(λ) = 0→ τ -functions.

• Bilinear relations: For dim|ℓ− e9| = 1

→ [e2 − e3][ℓ− e2 − e3 − e9]τ(ℓ− e1 − e9)τ(e1) + (123 cyc) = 0,

For dim|2ℓ− e1 − e2 − e3 − e4| = 1

→ [e1 − e2][e3 − e4]τ(ℓ− e1 − e2)τ(ℓ− e3 − e4) + (123 cyc) = 0.
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Quantization

We will consider only the differential cases here.

▲ Since (q, p) are canonical variables, there is a natural quantization.

→ The duality (x, ∂x)↔ (q, ∂q) becomes manifest.
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▲ Quantum Lax pair for PVI: L̂ψ = B̂ψ = 0.

L̂ = x(x−1)(x−t)
{
α
(2)
0

x
+
α
(2)
1

x−1
+
α
(2)
t

x−t
−
ϵ1−ϵ2
x−q

}
ϵ1∂x

−q(q−1)(q−t)
{
α
(1)
0

q
+
α
(1)
1

q−1
+
α
(1)
t

q−t
−
ϵ2−ϵ1
q−x

}
ϵ2∂q

+x(x−1)(x−t)ϵ12∂x2−q(q−1)(q−t)ϵ22∂q2 + C(x−q),

B̂ = q(q−1)
{
α
(1)
0

q
+
α
(1)
1

q−1
+

αt

q−t
−

ϵ2
q−x

}
ϵ2∂q

+
t(t−1)
q−t

ϵ1ϵ2∂t+
x(x−1)
q−x

ϵ1ϵ2∂x+q(q−1)ϵ22∂q2+C,

where α(j)i = αi− ϵj. The parameters ϵ1, ϵ2 play the role of the Planck constants for

quantization : (x, ϵ1∂x) and (q, ϵ2∂q).
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▲ L̂ψ = B̂ψ = 0 are the BPZ equations for 6-points block ψ on P1

ψ(x, q, t) =
⟨
V−ϵ2(x)V−ϵ1(q)Vα0(0)Vα1(1)Vαt(t)Vα∞(∞)

⟩
.

Where Vα(z) is the Virasoro primary operator (AGT):

c = 1+ 6
(ϵ1 + ϵ2)

2

ϵ1ϵ2
, ∆(α) =

α

2ϵ1ϵ2
(ϵ1 + ϵ2 −

α

2
).

→ can be extended to quantum Garnier system:

ψ(x,{qi}, t) =
⟨
V−ϵ2(x)

N∏
i=1

V−ϵ1(qi)
N+3∏
a=1

Vαa(ta)
⟩
.

• Problem. Classical (q-)Painlevé/Garnier systems appear at c = 1(ϵ2 =

−ϵ1) and c =∞(ϵ2 = 0). How do they related? (PSL(2,Z) duality of

WL,M,N [−ϵ2ϵ1] [Gaiotto-Rapčák (2017)], DIM algebra [Awata-Feigin-Shiraishi (2011)])
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Special solutions by Padé method

▲ Padé problems (Approximation by a rational function):

(1) Padé approximation (differential):

ψ(x) =
Pm(x)

Qn(x)
+O(xm+n+1).

(2) Padé interpolation:

ψ(x) =
Pm(x)

Qn(x)
. (x = x0, x1, . . . , xm+n)

▲ Main idea. The functions Pm(x) and ψ(x)Qn(x) solve the Lax equa-

tions for IMD.
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▲ Example. Padé approximation problem

ψ(x) := (1− x)a(1−
x

t
)b =

Pm(x)

Qn(x)
+O(xm+n+1)

→ Special solution for PVI

q =
t(m+ n+1)

(m− n− a− b)
τm,nτm+1,n+1

τm+1,nτm,n+1
,

τm,n = det
(
pm−i+j

)n
i,j=1

, ψ(x) =
∞∑
k=0

pkx
k,

associated with the Riemann data:

x 0 1 t ∞ q
exp. 0 0 0 −m 0

m+ n+1 a b −n− a− b 2
.
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▲ Some generalizations.

• ψ(x) =
N∏
i=1

(1− x/ti)ai

(Padé approx.) → Garnier system.

• ψ(x) =
N∏
i=1

(xai; q)∞
(xbi; q)∞

, (z; q)∞ =
∞∏
i=0

(1− qiz)

(q-grid interpolation)→ q-Garnier system.

• ψ(x) =
N∏
i=1

Γp,q(xai)

Γp,q(xk/ai)
, Γp,q(z) =

∞∏
i,j=0

1− z−1pi+1qj+1

1− zpiqj

(elliptic grid interpolation)→ elliptic Garnier system.
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