

What's new in G_2 ?

IPMU Tokyo, 30th October 2018

Andreas Braun

[1602.03521] [1708.07215] + [1803.10755] with Sakura Schäfer-Nameki [1701.05202] + [1712.06571] with Michele del Zotto [1803.02343] with Michele Del Zotto, James Halverson, Magdalena Larfors, David R. Morrison, Sakura Schäfer-Nameki + upcoming ...

Broad challenge to string theorists: what is the 'landscape' of 4D $\mathcal{N} = 1$ string vacua ??

- what can we build from string theory ?
- what can we not build (with ot without gravity ...swampland...) ?
- what can we learn ? Dualities ?
- $\mathcal{N} = 0$?!

Broad challenge to string theorists: what is the 'landscape' of 4D $\mathcal{N} = 1$ string vacua ??

- what can we build from string theory ?
- what can we not build (with ot without gravity ...swampland...) ?
- what can we learn ? Dualities ?
- $\mathcal{N} = 0$?!

Easier in 'clean' setups with fewer ingredients, e.g. :

- orbifolds
- F-Theory

starting points:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへで

starting points:

from the central node of M-theory/11D SUGRA and without sources for $T_{\mu\nu}$, obtain 4D $\mathcal{N} = 1$ by compactifying on a 7D manifold with

- a Ricci-flat metric
- a single covariantly constant spinor

$G_2 \text{ manifolds}$

A G_2 manifold M is a 7D Riemannian manifold which allows a metric $g_{\mu\nu}$ with holonomy group G_2

- *M* has a Ricci-flat metric $R_{\mu\nu} = 0$
- SUSY: *M* has a single covariantly constant spinor $\nabla_g \xi = 0$

$G_2 \text{ manifolds}$

A G_2 manifold M is a 7D Riemannian manifold which allows a metric $g_{\mu\nu}$ with holonomy group G_2

- M has a Ricci-flat metric $R_{\mu\nu} = 0$
- SUSY: *M* has a single covariantly constant spinor $\nabla_g \xi = 0$

btw: manifolds of reduced holonomy (..simply connected..) which allow Ricci-flat metrics and cov. const. spinors:

	n	$hol(g_M)$	# cov.const spinors
Calabi-Yau	2m	SU(m)	2
Hyper-Kähler	4m	Sp(m)	m + 1
$\mathbf{G_2}$	7	$\mathbf{G_2}$	1
Spin(7)	8	Spin(7)	1

$G_2 \text{ manifolds}$

A G_2 manifold M is a 7D Riemannian manifold which allows a metric $g_{\mu\nu}$ with holonomy group G_2

- *M* has a Ricci-flat metric $R_{\mu\nu} = 0$
- SUSY: *M* has a single covariantly constant spinor $\nabla_g \xi = 0$

special holomomy \leftrightarrow calibrating forms; for G_2 :

 $d\Phi_3 = 0$ $d\Psi_4 = d *_g \Phi_3 = 0$

G_2 manifolds

A G_2 manifold M is a 7D Riemannian manifold which allows a metric $g_{\mu\nu}$ with holonomy group G_2

- *M* has a Ricci-flat metric $R_{\mu\nu} = 0$
- SUSY: *M* has a single covariantly constant spinor $\nabla_g \xi = 0$

special holomomy \leftrightarrow calibrating forms; for G_2 :

$$d\Phi_3 = 0$$

$$d\Psi_4 = d *_g \Phi_3 = 0$$

- $Vol(\Sigma) \ge \int_{\Sigma} \Phi_3$, equality: 'associative'
- $Vol(\Xi) \ge \int_{\Xi} \Psi_4$, equality: 'coassociative'

G_2 manifolds

A G_2 manifold M is a 7D Riemannian manifold which allows a metric $g_{\mu\nu}$ with holonomy group G_2

- *M* has a Ricci-flat metric $R_{\mu\nu} = 0$
- SUSY: *M* has a single covariantly constant spinor $\nabla_q \xi = 0$

special holomomy \leftrightarrow calibrating forms; for G_2 :

$$d\Phi_3 = 0$$

$$d\Psi_4 = d *_g \Phi_3 = 0$$

- $Vol(\Sigma) \ge \int_{\Sigma} \Phi_3$, equality: 'associative'
- $Vol(\Xi) \ge \int_{\Xi} \Psi_4$, equality: 'coassociative'

Moduli space of Ricci-flat metrics has real dimension $b^3(X)$... think of it as ' $\delta \Phi_3$ '.

M-Theory on *G*₂ manifolds

- everything is geometry !
- Compactifications of M-Theory: $b^3(X)$ 4D $\mathcal{N} = 1$ chiral multiplets:

$$z_i = \int_{\Sigma_i} \Phi_3 + iC_3$$

and $b^2(X)$ 4D $\mathcal{N} = 1$ U(1) vector multiplets from C_3 .

M-Theory on G₂ manifolds

- everything is geometry !
- Compactifications of M-Theory: $b^3(X)$ 4D $\mathcal{N} = 1$ chiral multiplets:

$$z_i = \int_{\Sigma_i} \Phi_3 + iC_3$$

and $b^2(X)$ 4D $\mathcal{N} = 1$ U(1) vector multiplets from C_3 .

• Gauge Theory data: singularities

codimensionADE gauge group4non-chiral charged matter6chiral charged matter7

 \bullet superpotential W from M2-brane instantons on associative three-cycles \sim homology 3-spheres [Harvey, Moore '99]

we want detailed examples !

we want detailed examples !

э.

Summary:

- 1. TCS: making smooth compact G_2 manifolds
- 2. heterotic duals of M-Theory on G_2
- 3. type II theories on G_2 : mirror symmetry
- 4. bonus: Spin(7)

A Calabi-Yau manifold X is a complex Kähler manifold with holomy group SU(n) for $\dim_{\mathbb{C}} X = n$.

- there exists a Ricci-flat metric
- there are two covariantly constant spinors
- there are two independent calibrating forms ω and $\Omega^{n,0}$
- Yau's proof of the Calabi conjecture: X Kähler is Calabi-Yau iff $c_1(X) = 0$

A Calabi-Yau manifold X is a complex Kähler manifold with holomy group SU(n) for $\dim_{\mathbb{C}} X = n$.

- there exists a Ricci-flat metric
- there are two covariantly constant spinors
- there are two independent calibrating forms ω and $\Omega^{n,0}$
- Yau's proof of the Calabi conjecture: X Kähler is Calabi-Yau iff $c_1(X) = 0$

It is easy to make examples using algebraic geometry; use adjunction formula

$$c_1(X) = c_1(A) - c_1(L)$$

for hypersurfaces to compute $c_1(X)$.

A Calabi-Yau manifold X is a complex Kähler manifold with holomy group SU(n) for $\dim_{\mathbb{C}} X = n$.

- there exists a Ricci-flat metric
- there are two covariantly constant spinors
- there are two independent calibrating forms ω and $\Omega^{n,0}$
- Yau's proof of the Calabi conjecture: X Kähler is Calabi-Yau iff $c_1(X) = 0$

It is easy to make examples using algebraic geometry; use adjunction formula

 $c_1(X) = c_1(A) - c_1(L)$

for hypersurfaces to compute $c_1(X)$. e.g. the 'quintic':

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 + \dots = 0 \qquad \subset \mathbb{CP}^4[x_1 : x_2 : x_3 : x_4 : x_5]$$

is a Calabi-Yau threefold.

A Calabi-Yau manifold X is a complex Kähler manifold with holomy group SU(n) for $\dim_{\mathbb{C}} X = n$.

- there exists a Ricci-flat metric
- there are two covariantly constant spinors
- there are two independent calibrating forms ω and $\Omega^{n,0}$
- Yau's proof of the Calabi conjecture: X Kähler is Calabi-Yau iff $c_1(X) = 0$

It is easy to make examples using algebraic geometry; use adjunction formula

$$c_1(X) = c_1(A) - c_1(L)$$

for hypersurfaces to compute $c_1(X)$. e.g. the 'quintic':

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 + \dots = 0 \qquad \qquad \subset \mathbb{CP}^4[x_1 : x_2 : x_3 : x_4 : x_5]$$

is a Calabi-Yau threefold. Its non-trivial Hodge numbers (\sim deformations keeping metric Ricci-flat) are

$$h^{1,1}(X) = 1$$
 $h^{2,1}(X) = 101$.

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

A Calabi-Yau manifold X is a complex Kähler manifold with holomy group SU(n) for $\dim_{\mathbb{C}} X = n.$

- there exists a Ricci-flat metric
- there are two covariantly constant spinors
- there are two independent calibrating forms ω and $\Omega^{n,0}$
- Yau's proof of the Calabi conjecture: X Kähler is Calabi-Yau iff $c_1(X) = 0$

It is easy to make examples using algebraic geometry; use adjunction formula

 $c_1(X) = c_1(A) - c_1(L)$

for hypersurfaces to compute $c_1(X)$. e.g. the 'quintic':

$$x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 + \dots = 0 \qquad \subset \mathbb{CP}^4[x_1 : x_2 : x_3 : x_4 : x_5]$$

is a Calabi-Yau threefold. Its non-trivial Hodge numbers (\sim deformations keeping metric Ricci-flat) are

$$h^{1,1}(X) = 1$$
 $h^{2,1}(X) = 101$.

More fancy machinery: use reflexive polytopes to construct Calabi-Yau hypersurfaces (or complete intersections) in toric varieties.

$$\langle \Delta, \Delta^{\circ} \rangle \ge -1$$

is harder than just doing complex algebraic geometry ...

is harder than just doing complex algebraic geometry ...

... classic Method: resolutions of orbifolds T^7/Γ [Joyce '96]

New method: twisted connected sums (TCS): [Kovalev'03, Corti, Haskins, Nordström, Pacini '13]

$$M = \begin{bmatrix} X_+ \times \mathbb{S}^1_+ \end{bmatrix} \# \begin{bmatrix} X_- \times \mathbb{S}^1_- \end{bmatrix}$$

for a pair of asymptotically cylindrical Calabi-Yau threefolds $S_{\pm} \to X_{\pm} \to_{\pi_{\pm}} \mathbb{C}$ with $[X_+ \times \mathbb{S}^1_+] \cap [X_- \times \mathbb{S}^1_-] = K3 \times \mathbb{S}^1 \times \mathbb{S}^1 \times I$ and $\phi : S_+ \leftrightarrow S_-$

New method: twisted connected sums (TCS): [Kovalev'03, Corti, Haskins, Nordström, Pacini '13]

$$M = \begin{bmatrix} X_+ \times \mathbb{S}^1_+ \end{bmatrix} \# \begin{bmatrix} X_- \times \mathbb{S}^1_- \end{bmatrix}$$

for a pair of asymptotically cylindrical Calabi-Yau threefolds $S_{\pm} \to X_{\pm} \to \pi_{\pm} \mathbb{C}$ with $[X_+ \times \mathbb{S}^1_+] \cap [X_- \times \mathbb{S}^1_-] = K3 \times \mathbb{S}^1 \times \mathbb{S}^1 \times I$ and $\phi : S_+ \leftrightarrow S_-$

- \exists millions of examples [Corti et al'13; AB'16], easy to make and work out $H^k(M, \mathbb{Z})$
- For M-Theory on M, there are $\mathcal{N} = 2$ and $\mathcal{N} = 4$ subsectors in the stretching limit [C. da Guio, Jockers, Klemm, Yeh '17; AB, del Zotto '17]

building blocks and cohomology

The acyl Calabi-Yau threefolds X can be constructed from compact 'building blocks' Z:

$$S \to Z \to \mathbb{P}^1$$

 $c_1(Z) = [S]$ as $X = Z \setminus S_0$

There is a natural restriction map

$$\rho: H^{1,1}(Z) \to H^{1,1}(S) \qquad \begin{array}{c} N \equiv \mathsf{im}(\rho) \\ K \equiv \mathsf{ker}(\rho)/[S] \end{array}$$

then

$$H^{2}(M,\mathbb{Z}) = N_{+} \cap N_{-} \oplus K(Z_{+}) \oplus K(Z_{-})$$

$$H^{3}(M,\mathbb{Z}) = \mathbb{Z}[S] \oplus \Gamma^{3,19}/(N_{+} + N_{-}) \oplus (N_{-} \cap T_{+}) \oplus (N_{+} \cap T_{-})$$

$$\oplus H^{3}(Z_{+}) \oplus H^{3}(Z_{-}) \oplus K(Z_{+}) \oplus K(Z_{-})$$

$$b^{2}(M) + b^{3}(M) = 23 + 2\left[|K_{+}| + |K_{-}| + h^{2,1}(Z_{+}) + h^{2,1}(Z_{-})\right]$$

New method: twisted connected sums (TCS): [Kovalev'03, Corti, Haskins, Nordström, Pacini '13]

$$M = \begin{bmatrix} X_+ \times \mathbb{S}^1_+ \end{bmatrix} \# \begin{bmatrix} X_- \times \mathbb{S}^1_- \end{bmatrix}$$

for a pair of asymptotically cylindrical Calabi-Yau threefolds $S_{\pm} \to X_{\pm} \to_{\pi_{\pm}} \mathbb{C}$ and $[X_{+} \times \mathbb{S}^{1}_{+}] \cap [X_{-} \times \mathbb{S}^{1}_{-}] = K3 \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times I$.

How can we make progress ? singularities ? (co)associative submanifolds ?

New method: twisted connected sums (TCS): [Kovalev'03, Corti, Haskins, Nordström, Pacini '13]

$$M = \begin{bmatrix} X_+ \times \mathbb{S}^1_+ \end{bmatrix} \# \begin{bmatrix} X_- \times \mathbb{S}^1_- \end{bmatrix}$$

for a pair of asymptotically cylindrical Calabi-Yau threefolds $S_{\pm} \to X_{\pm} \to_{\pi_{\pm}} \mathbb{C}$ and $[X_+ \times \mathbb{S}^1_+] \cap [X_- \times \mathbb{S}^1_-] = K3 \times \mathbb{S}^1 \times \mathbb{S}^1 \times I$.

How can we make progress ? singularities ? (co)associative submanifolds ?

ightarrow use power of string dualities ! ightarrow

Duality to heterotic strings

If G_2 manifolds are equipped with a (calibrated) K3 fibration, can apply fibrewise version of 7D duality between M-Theory and heterotic strings [Duff, Nilsson, Pope '83 '86, Witten '95]

heterotic \leftrightarrow M-Theory $T^3 \leftrightarrow K3$

to find SYZ fibration of a Calabi-Yau threefold + holomorphic vector bundles [Papadopoulos, Townsend '95; Harvey,Lowe, Strominger '95, Acharya '96; Harvey, Moore '99, Acharya, Witten '01, Gukov, Yau, Zaslow '02].

Duality to heterotic strings

If G_2 manifolds are equipped with a (calibrated) K3 fibration, can apply fibrewise version of 7D duality between M-Theory and heterotic strings [Duff, Nilsson, Pope '83 '86, Witten '95]

heterotic \leftrightarrow M-Theory $T^3 \leftrightarrow K3$

to find SYZ fibration of a Calabi-Yau threefold + holomorphic vector bundles [Papadopoulos, Townsend '95; Harvey,Lowe, Strominger '95, Acharya '96; Harvey, Moore '99, Acharya, Witten '01, Gukov, Yau, Zaslow '02].

TCS G_2 have K3 fibrations over S^3 , dual heterotic geometry is always the 'Schoen' Calabi-Yau threefold $X_{19,19}$ with different bundles [AB, Schäfer-Nameki '17] !

$$\begin{bmatrix} 3 & 0 & | & \mathbb{P}^2 \\ 0 & 3 & | & \mathbb{P}^2 \\ 1 & 1 & | & \mathbb{P}^1 \end{bmatrix}$$

Many of these have an F-theory dual on X_4 ; can prove equivalence of light fields !

$$E \to X_4 \to_{\pi_F} d\widetilde{P_9 \times \mathbb{P}^1}$$

a few details

In hetetoric – M-Theory duality \mathbb{S}^1_I of $T^3 \sim \omega_I$ of K3; $\omega_I \subset H^2(S) = [U^3 \oplus -E_8^{\oplus 2}] \otimes \mathbb{R}$ For each building block Z, only two out of the three forms ω_I vary non-trivially:

This gives a decomposition of $X_{19,19}$ as two copies of $[dP_9 \setminus T^2] \times T^2$ and shows the SYZ fibration; its discriminant is (also found in [Gross '04, Morrison, Plesser '15])

an example

Consider a generic Weierstrass elliptic fibration

$$E \to X_4 \quad \to_{\pi_F} \quad dP_9 \times \mathbb{P}^1$$

The topological data of X_4 is

$$h^{1,1}(X_4) = 12$$
 $h^{2,1}(X_4) = 112$ $h^{3,1}(X_4) = 140$ $\chi(X_4) = 288$

so we need to include 12 space-filling D3-branes. Spectrum of F-Theory on X_4 is

$$n_v = 12$$
 $n_c = 11 + 112 + 140 + 3 \cdot 12 = 299$

The dual M-Theory geometry is made from building blocks with

$$b^{3}(Z_{+}) = 112 N(Z_{+}) = U K(Z_{+}) = 0$$

$$b^{3}(Z_{-}) = 20 N(Z_{-}) = U \oplus E_{8} \oplus E_{8} |K(Z_{-})| = 12$$

and

$$H^{2}(M,\mathbb{Z}) = N_{+} \cap N_{-} \oplus K(Z_{+}) \oplus K(Z_{-}) = \mathbb{Z}^{12}$$

$$b^{2}(M) + b^{3}(M) = 23 + 2\left[|K_{+}| + |K_{-}| + h^{2,1}(Z_{+}) + h^{2,1}(Z_{-})\right] = 23 + 2(12 + 112 + 20) = 311$$

Lessons:

- can systematically engineer codim = 4 and 6 singularities in TCS G_2 manifolds
- sometimes the gauge groups are (geometrically) non-Higgsable
- no chiral matter, i.e. no codim = 7 singularities ...

F-Theory on the Calabi-Yau fourfold

$$E \to X_4 \to_{\pi_F} dP_9 \times \mathbb{P}^1$$

has infinitely many corrections $\cong E_8$ to the superpotential from rigid divisors [Donagi, Grassi, Witten '96]. (I do not think they sum to an $E_8 \Theta$ -function though ... spoiled by D3s)

 $E \to X_4 \to_{\pi_F} dP_9 \times \mathbb{P}^1$

has infinitely many corrections $\cong E_8$ to the superpotential from rigid divisors [Donagi, Grassi, Witten '96]. (I do not think they sum to an $E_8 \Theta$ -function though ... spoiled by D3s)

aside: For heterotic on $X_{19,19}$, these are world-sheet instantons on rigid curves $\cong E_8 \oplus E_8$ [Curio, Lüst '97]; does evade the [Beasley, Witten '03] cancellation as $X_{19,19}$ is far from *favorable*; every appearing curve class has a unique holomorphic representative !

F-Theory on the Calabi-Yau fourfold

$$E \to X_4 \to_{\pi_F} dP_9 \times \mathbb{P}^1$$

has infinitely many corrections $\cong E_8$ to the superpotential from rigid divisors [Donagi, Grassi, Witten '96]. (I do not think they sum to an $E_8 \Theta$ -function though ... spoiled by D3s)

On the M-Theory side, these become associative three-cycles (homology 3 spheres) $\cong E_8 \oplus E_8$ [AB, Del Zotto, Halverson, Larfors, Morrison, Schäfer-Nameki '18]

F-Theory on the Calabi-Yau fourfold

$$E \to X_4 \to_{\pi_F} dP_9 \times \mathbb{P}^1$$

has infinitely many corrections $\cong E_8$ to the superpotential from rigid divisors [Donagi, Grassi, Witten '96]. (I do not think they sum to an $E_8 \Theta$ -function though ... spoiled by D3s)

On the M-Theory side, these become associative three-cycles (homology 3 spheres) $\cong E_8 \oplus E_8$ [AB, Del Zotto, Halverson, Larfors, Morrison, Schäfer-Nameki '18]

This result can also be found by the chain *F*-Theory $\rightarrow IIB \rightarrow IIA \rightarrow M$ -Theory [Acharya, AB, Svanes, Valandro, to appear] $E \to X_4 \to_{\pi_F} dP_9 \times \mathbb{P}^1$

has infinitely many corrections $\cong E_8$ to the superpotential from rigid divisors [Donagi, Grassi, Witten '96]. (I do not think they sum to an $E_8 \Theta$ -function though ... spoiled by D3s)

On the M-Theory side, these become associative three-cycles (homology 3 spheres) $\cong E_8 \oplus E_8$ [AB, Del Zotto, Halverson, Larfors, Morrison, Schäfer-Nameki '18]

This result can also be found by the chain *F*-Theory $\rightarrow IIB \rightarrow IIA \rightarrow M$ -Theory [Acharya, AB, Svanes, Valandro, to appear]

Associatives are sections of coassociative fibration by T^4 !

2nd tool: type II strings on G_2 manifolds, 3D $\mathcal{N} = 2$ [Shatashvili, Vafa '94]

2nd tool: type II strings on G_2 manifolds, 3D $\mathcal{N} = 2$ [Shatashvili, Vafa '94]

CFT: mirror pairs must share the same $b^2 + b^3$, can make arguments similar to [Strominger, Yau, Zaslow '96] to construct mirrors; orbifold case: [Acharya '96]

2nd tool: type II strings on G_2 manifolds, 3D $\mathcal{N} = 2$ [Shatashvili, Vafa '94]

CFT: mirror pairs must share the same $b^2 + b^3$, can make arguments similar to [Strominger, Yau, Zaslow '96] to construct mirrors; orbifold case: [Acharya '96]

SYZ/elliptic fibrations on X_{\pm} lift to T^3 and T^4 fibrations on G_2 manifold M and construction of multiple mirror duals [AB '16; AB, del Zotto, '17], can prove invariance of $b^2(M) + b^3(M)$ and equivalence with CFT results for orbifolds [Gaberdiel,Kaste '04]

2nd tool: type II strings on G_2 manifolds, 3D $\mathcal{N} = 2$ [Shatashvili, Vafa '94]

CFT: mirror pairs must share the same $b^2 + b^3$, can make arguments similar to [Strominger, Yau, Zaslow '96] to construct mirrors; orbifold case: [Acharya '96]

SYZ/elliptic fibrations on X_{\pm} lift to T^3 and T^4 fibrations on G_2 manifold M and construction of multiple mirror duals [AB '16; AB, del Zotto, '17], can prove invariance of $b^2(M) + b^3(M)$ and equivalence with CFT results for orbifolds [Gaberdiel,Kaste '04] cute aside: tor $H^3(M, \mathbb{Z}) = \text{tor}H_2(M, \mathbb{Z})$ matches discrete torsion of CFT

dual tops

Calabi-Yau manifolds with $c_1(X) = 0$ can be constructed from reflexive polytopes

 $\langle \Delta, \Delta^{\circ} \rangle \geq -1$.

Swapping the roles of Δ, Δ° gives the mirror map !

dual tops

Calabi-Yau manifolds with $c_1(X) = 0$ can be constructed from reflexive polytopes

 $\langle \Delta, \Delta^{\circ} \rangle \geq -1$.

Swapping the roles of Δ, Δ° gives the mirror map !

In complete analogy, building blocks Z with $c_1(Z) = [S]$ can be constructed from 'tops'

$$\begin{split} \langle \Diamond, \Diamond^{\circ} \rangle &\geq -1 \\ \langle \Diamond, \nu_e \rangle &\geq 0 \\ & \langle m_e, \nu_e \rangle = -1 \quad \langle m_e, \Diamond^{\circ} \rangle \geq 0 \end{split}$$

which are 'halves' of reflexive polytopes [AB '16].

dual tops

Calabi-Yau manifolds with $c_1(X) = 0$ can be constructed from reflexive polytopes

 $\langle \Delta, \Delta^{\circ} \rangle \geq -1$.

Swapping the roles of Δ, Δ° gives the mirror map !

In complete analogy, building blocks Z with $c_1(Z) = [S]$ can be constructed from 'tops'

$$\begin{split} \langle \Diamond, \Diamond^{\circ} \rangle &\geq -1 \\ \langle \Diamond, \nu_e \rangle &\geq 0 \end{split} \qquad \langle m_e, \nu_e \rangle &= -1 \quad \langle m_e, \Diamond^{\circ} \rangle &\geq 0 \end{split}$$

which are 'halves' of reflexive polytopes [AB '16].Exchanging $\Diamond \leftrightarrow \Diamond^{\circ}$ gives the mirror $X^{\vee} = Z^{\vee} \setminus S^{\vee}$ of $X = Z \setminus S$, find:

$$K(X^{\vee}) = h^{2,1}(X)$$

so that

$$b^{2}(M) + b^{3}(M) = 23 + 2 \left[K_{+} + K_{-} + H^{2,1}(Z_{+}) + H^{2,1}(Z_{-}) \right]$$

is invariant [AB, del Zotto '17,'18].

lessons/future

- smooth *G*₂s can have singular mirrors/works similar to K3 mirror symmetry: B-field makes states massive !
- can actually show that $H^{\bullet}(M,\mathbb{Z})$ is preserved by mirror map of [AB, del Zotto '17,'18]
- future: use mirrors to count (co)associatives, spectra of D-branes;
- future: relation to 3D $\mathcal{N} = 2$ field theories !?

engineer 3D $\mathcal{N}=1$ theories via M-Theory.

Spin(7)

engineer 3D $\mathcal{N} = 1$ theories via M-Theory.

We proposed new construction [AB, Schäfer-Nameki '18] as a connected sum

 $Z = X_4 \ \# \ M \times \mathbb{S}^1$

of an acyl Calabi-Yau fourfold $CY_3 \to X_4 \to \mathbb{C}$ and an acyl G_2 manifold M with $X_4 \cap M = CY_3 \times \mathbb{S}^1 \times I$.

- These are duals of heterotic models on TCS G_2 manifolds; recover T^3 fibration appearing in mirror maps !
- We checked the equivalence of light fields in examples !

Spin(7)

engineer 3D $\mathcal{N} = 1$ theories via M-Theory.

We proposed new construction [AB, Schäfer-Nameki '18] as a connected sum

 $Z = X_4 \ \# \ M \times \mathbb{S}^1$

of an acyl Calabi-Yau fourfold $CY_3 \to X_4 \to \mathbb{C}$ and an acyl G_2 manifold M with $X_4 \cap M = CY_3 \times \mathbb{S}^1 \times I$.

- These are duals of heterotic models on TCS G_2 manifolds; recover T^3 fibration appearing in mirror maps !
- We checked the equivalence of light fields in examples !
- For many of examples, these are simply resolution of quotients of compact CY_4 .
- Learn how to construct vector bundles on G_2 manifolds and singular Spin(7) manifolds
- Decomposition shows existence of subsectors with enhanced SUSY: $\mathcal{N}=2$ and $\mathcal{N}=4$ in 3D

 \rightarrow F-Theory on Spin(7) ? [Vafa'96; Grimm, Bonetti '13] Relation to [Witten '94,'95] ?

Summary

New examples, results and conjectures on compact manifolds of exceptional holonomy = M-theory compactifications to 3D and 4D with minimal SUSY.

Geometries made by gluing 'simpler' pieces.

... different theories/dualities teach different lessons which nicely tie into each other ...

string dualities \leftrightarrow exceptional holonomy \leftrightarrow 4D/3D theories with minimal SUSY

Summary

New examples, results and conjectures on compact manifolds of exceptional holonomy = M-theory compactifications to 3D and 4D with minimal SUSY.

Geometries made by gluing 'simpler' pieces.

... different theories/dualities teach different lessons which nicely tie into each other ...

string dualities \leftrightarrow exceptional holonomy \leftrightarrow 4D/3D theories with minimal SUSY

Thank you !