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Broad challenge to string theorists:
what is the ‘landscape’ of 4D A = 1 string vacua ??

what can we build from string theory ?

what can we not build (with ot without gravity ...swampland...) ?
what can we learn ? Dualities ?
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Easier in ‘clean’ setups with fewer ingredients, e.g. :
orbifolds
F-Theory



heterotic E8 x 8

heterotic SO(32)
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starting points:

11D

heterotic E8 x E8 type 1A

heterotic SO(32) type 1B

type |

from the central node of M-theory/11D SUGRA and without sources for 7},,,, obtain 4D
N =1 by compactifying on a 7D manifold with

¢ a Ricci-flat metric
e a single covariantly constant spinor



G5 manifolds

A G, manifold M is a 7D Riemannian manifold which allows a metric g,,,, with holonomy
group G2

e M has a Ricci-flat metric R,,, =0

e SUSY: M has a single covariantly constant spinor V,£ =0



(> manifolds

A G, manifold M is a 7D Riemannian manifold which allows a metric g,,,, with holonomy

group G2
e M has a Ricci-flat metric R,,, =0

e SUSY: M has a single covariantly constant spinor V,£ =0

btw: manifolds of reduced holonomy (..simply connected..) which allow Ricci-flat metrics

and cov. const. spinors:

# cov.const spinors

n  hol(gar)
Calabi-Yau 2m  SU(m)
Hyper-Kéhler 4m  Sp(m)
Go 7 G2

Spin(7) 8  Spin(7)

2
m—+1
1
1
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(> manifolds

A G, manifold M is a 7D Riemannian manifold which allows a metric g,,,, with holonomy
group G2

e M has a Ricci-flat metric R,,, =0

e SUSY: M has a single covariantly constant spinor V,£ =0

special holomomy <« calibrating forms; for G:

dd; =0
d‘l’4=d*gq)3:0

e Vol(X) > [, ®3, equality: 'associative’
e Vol(2) > [c ¥4, equality: ‘coassociative’

Moduli space of Ricci-flat metrics has real dimension 3(X) ... think of it as ‘§®3’.



M-Theory on G, manifolds

e everything is geometry !
o Compactifications of M-Theory: b3(X) 4D N = 1 chiral multiplets:

Zi :/ (I>3+i03
3.

i

and v*(X) 4D N = 1 U(1) vector multiplets from Cj.



M-Theory on G, manifolds

e everything is geometry |
e Compactifications of M-Theory: b3(X) 4D A/ = 1 chiral multiplets:

Zl:/ @3+i03
.

i

and v*(X) 4D N = 1 U(1) vector multiplets from Cj.

e Gauge Theory data: singularities

codimension
ADE gauge group 4
non-chiral charged matter 6
chiral charged matter 7

e superpotential W from M2-brane instantons on associative three-cycles ~ homology
3-spheres [Harvey, Moore '99]



we want detailed examples !



we want detailed examples !
Summary:

1. TCS: making smooth compact G manifolds
2. heterotic duals of M-Theory on G»

3. type Il theories on G2: mirror symmetry

4. bonus: Spin(7)



Making compact Calabi-Yau manifolds

A Calabi-Yau manifold X is a complex Kahler manifold with holomy group SU(n) for
dim(cX =n.

¢ there exists a Ricci-flat metric

e there are two covariantly constant spinors

e there are two independent calibrating forms w and Q"™°

e Yau’s proof of the Calabi conjecture: X Kéahler is Calabi-Yau iff ¢;(X) =0
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Making compact Calabi-Yau manifolds

A Calabi-Yau manifold X is a complex Kahler manifold with holomy group SU(n) for
dim(cX =n.
¢ there exists a Ricci-flat metric
there are two covariantly constant spinors
e there are two independent calibrating forms w and Q"™°
Yau’s proof of the Calabi conjecture: X Kahler is Calabi-Yau iff ¢, (X) =0
It is easy to make examples using algebraic geometry; use adjunction formula

C1 (X) = (1 (A) — C1 (L)
for hypersurfaces to compute ¢;(X). e.g. the ‘quintic’:

el +al+al+al+=0 C CP*[zy : o : 3 : T4 : T5)

is a Calabi-Yau threefold. Its non-trivial Hodge numbers (~ deformations keeping metric
Ricci-flat) are

RHY(X) =1 r*(X) = 101.
More fancy machinery: use reflexive polytopes to construct Calabi-Yau hypersurfaces (or
complete intersections) in toric varieties.

<Aa Ao> Z -1



Making compact G, manifolds

is harder than just doing complex algebraic geometry ...



Making compact G, manifolds

is harder than just doing complex algebraic geometry ...

... classic Method: resolutions of orbifolds 77 /T" [Joyce '96]



Making compact G, manifolds

New method: twisted connected sums (TCS): [Kovalev’'03, Corti, Haskins, Nordstrém,
Pacini ’13]
M=[X; xSt] # [X-xS!]

for a pair of asymptotically cylindrical Calabi-Yau threefolds S. — X1 —,, C with
(X xSLN[X_xSL]=K3xS'xS'xTand¢: S, < S

S'x X, /@(R\ S'x X
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Making compact G, manifolds

New method: twisted connected sums (TCS): [Kovalev’'03, Corti, Haskins, Nordstrém,
Pacini ’13]
M=[X; xSt] # [X-xS!]

for a pair of asymptotically cylindrical Calabi-Yau threefolds S+ — X1 —,, C with
[X; xS N[X_xSL]=K3xS'xS'xTand¢:S; < 5

S'x X, /Iﬂ(R\ S'x X
N
@ G

o 3 millions of examples [Corti et al'13; AB'16], easy to make and work out H*(M, Z)

e For M-Theory on M, there are N' = 2 and N = 4 subsectors in the stretching limit
[C. da Guio, Jockers, Klemm, Yeh ’17; AB, del Zotto '17]

| —
—

\/




building blocks and cohomology

The acyl Calabi-Yau threefolds X can be constructed from compact ‘building blocks’ Z:

S — Z — P!

e(2) = (8] as X=27\5

There is a natural restriction map

N =im(p)

p: HWY(Z) — HY(S) K =ker(p)/[S]

then
H*(M,Z)=NyNN_& K(Z,)o K(Z_)

H*(M,Z)=2Z[S) &> /(N + N_)® (N-NTy) @ (Ny. NT-)
OHZ)@HZ_)e K(Zy)®e K(Z-)

V(M) + b (M) =234 2 [|Ky|+ |[K_|+ 1> (Zy) + h>'(Z2)]



Making compact G, manifolds

New method: twisted connected sums (TCS): [Kovalev’'03, Corti, Haskins, Nordstrém,
Pacini ’13]
M=[X; xSt] # [X-xS!]

for a pair of asymptotically cylindrical Calabi-Yau threefolds S+ — X, —,, C
and [ X x SL]N[X_ xSL] =K3 xS xSt x 1.

S'x X, KR S'x X
<12
G . >
011070

How can we make progress ? singularities ? (co)associative submanifolds ?
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Making compact G, manifolds

New method: twisted connected sums (TCS): [Kovalev’'03, Corti, Haskins, Nordstrém,
Pacini ’13]
M=[X; xSt # [X_xS!]

for a pair of asymptotically cylindrical Calabi-Yau threefolds Sy — X1 —,, C
and [ X x ST N[X_ xSL]=K3 xS xSt x 1.

STx X, mr  S'x X
<12
G. |
01107710

How can we make progress ? singularities ? (co)associative submanifolds ?
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— use power of string dualities ! +—



Duality to heterotic strings

If G2 manifolds are equipped with a (calibrated) K3 fibration, can apply fibrewise version of
7D duality between M-Theory and heterotic strings [Duff, Nilsson, Pope ’83 86, Witten ’'95]

heterotic «+ M-Theory
™ K3

to find SYZ fibration of a Calabi-Yau threefold + holomorphic vector bundles
[Papadopoulos, Townsend '95; Harvey,Lowe, Strominger ‘95, Acharya '96; Harvey, Moore
‘99, Acharya, Witten '01, Gukov, Yau, Zaslow '02].



Duality to heterotic strings

If G2 manifolds are equipped with a (calibrated) K3 fibration, can apply fibrewise version of
7D duality between M-Theory and heterotic strings [Duff, Nilsson, Pope ’83 86, Witten ’'95]

heterotic <+ M-Theory
™ K3

to find SYZ fibration of a Calabi-Yau threefold + holomorphic vector bundles
[Papadopoulos, Townsend '95; Harvey,Lowe, Strominger ‘95, Acharya '96; Harvey, Moore
‘99, Acharya, Witten '01, Gukov, Yau, Zaslow '02].

TCS G, have K3 fibrations over S®, dual heterotic geometry is always the ‘Schoen’
Calabi-Yau threefold X9 19 with different bundles [AB, Schéafer-Nameki *17] !

3 0]P?
0 3|P?
1 1|P!

Many of these have an F-theory dual on X,; can prove equivalence of light fields !

E— Xy —rp dPgXPl



a few details

In hetetoric — M-Theory duality S} of 7% ~ w; of K3; w; € H?(S) = [U? © —E$?| @R
For each building block Z, only two out of the three forms w; vary non-trivially:

‘) 0

S'x X, HEKR ' xX. st ><

ofc) L
cg g .><I.

‘
This gives a decompostion of X9 19 as two copies of [dPg \ T?] x T? and shows the SYZ
fibration; its discriminant is (also found in [Gross '04, Morrison, Plesser ’15])

P

+

1
I~

\ /

X



an example

Consider a generic Weierstrass elliptic fibration
E— Xy —g. dPyxP.
The topological data of X, is
RUL(Xy) =12 BN (Xy) =112 B3N(Xy) =140  x(X,) =288

so we need to include 12 space-filling D3-branes. Spectrum of F-Theory on X, is

Ny = 12 ne=11+112+ 1404+ 3- 12 = 299

The dual M-Theory geometry is made from building blocks with
V¥ (Z,) =112 N(Z,) =U K(Zy) =0
b} (Z_) =20 N(Z_) =U®Es® Eg |K(Z_)| =12

and
HQ(M,Z) =N,NN_ @K(Z+) @K(Z_) — 712
0P (M) + 6% (M) = 23+ 2 [|[ K| + [K—| + h*}(Z4) + h*H(Z-)] = 23 +2(12 + 112+ 20) = 311



Lessons:

e can systematically engineer codim = 4 and 6 singularities in TCS G5 manifolds
e sometimes the gauge groups are (geometrically) non-Higgsable
e no chiral matter, i.e. no codim = 7 singularities ...

S'x X, HKR S'x X

G

|

@S-
0 -

[\

\ /

G
(I
9

- 0




F-Theory on the Calabi-Yau fourfold
E — X4 —np dPy x P

has infinitely many corrections = Ejg to the superpotential from rigid divisors [Donagi,
Grassi, Witten "96]. ( | do not think they sum to an Eg ©-function though ... spoiled by D3s )



F-Theory on the Calabi-Yau fourfold
E — X4 =, dPy x P

has infinitely many corrections = Ejg to the superpotential from rigid divisors [Donagi,
Grassi, Witten "96]. ( | do not think they sum to an Eg ©-function though ... spoiled by D3s )

aside: For heterotic on X 19, these are world-sheet instantons on rigid curves = Eg @ Eg
[Curio, Lust '97]; does evade the [Beasley, Witten *03] cancellation as X9 19 is far from
favorable; every appearing curve class has a unique holomorphic representative !




F-Theory on the Calabi-Yau fourfold
E — X4 —np dPy x P

has infinitely many corrections = Ejg to the superpotential from rigid divisors [Donagi,
Grassi, Witten "96]. ( | do not think they sum to an Eg ©-function though ... spoiled by D3s )

S'x X, ‘/H& S'x X
™
o

G ™ .
0110]10

On the M-Theory side, these become associative three-cycles (homology 3 spheres)
>~ Fg & Eg [AB, Del Zotto, Halverson, Larfors, Morrison, Schafer-Nameki '18]
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S'x X, ‘/H& S'x X
™
Cj) G

On the M-Theory side, these become associative three-cycles (homology 3 spheres)
>~ Fs & Eg [AB, Del Zotto, Halverson, Larfors, Morrison, Schafer-Nameki '18]
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[Acharya, AB, Svanes, Valandro, to appear]



F-Theory on the Calabi-Yau fourfold
E — X4 =, dPy x P

has infinitely many corrections = Ejg to the superpotential from rigid divisors [Donagi,
Grassi, Witten "96]. ( | do not think they sum to an Eg ©-function though ... spoiled by D3s )

On the M-Theory side, these become associative three-cycles (homology 3 spheres)
=~ Fs & Eg [AB, Del Zotto, Halverson, Larfors, Morrison, Schafer-Nameki ’18]

This result can also be found by the chain F-Theory — IIB — IIA — M-Theory
[Acharya, AB, Svanes, Valandro, to appear]

Associatives are sections of coassociative fibration by 7 !
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Mirror Symmetry

2nd tool: type Il strings on G manifolds, 3D A/ = 2 [Shatashvili, Vafa '94]

CFT: mirror pairs must share the same v? + b3, can make arguments similar to [Strominger,
Yau, Zaslow ’96] to construct mirrors; orbifold case: [Acharya '96]

Stx X, /Iﬂ(R\ S x X.
N
@ <,

SYZ/elliptic fibrations on X lift to 7 and 7* fibrations on G5 manifold A/ and construction

of multiple mirror duals [AB '16; AB, del Zotto, '17], can prove invariance of b*(M) + b*(M)
and equivalence with CFT results for orbifolds [Gaberdiel,Kaste '04]
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Mirror Symmetry

2nd tool: type Il strings on G manifolds, 3D A/ = 2 [Shatashvili, Vafa '94]

CFT: mirror pairs must share the same v? + b3, can make arguments similar to [Strominger,
Yau, Zaslow ’96] to construct mirrors; orbifold case: [Acharya '96]

Stx X, /Iﬂ(R\ S x X.
N
@ <,

¢ ™
01710170

SYZ/elliptic fibrations on X lift to 7 and 7* fibrations on G5 manifold A/ and construction
of multiple mirror duals [AB '16; AB, del Zotto, '17], can prove invariance of b*(M) + b*(M)
and equivalence with CFT results for orbifolds [Gaberdiel,Kaste '04]

cute aside: torH?3(M,Z) = torH, (M, Z) matches discrete torsion of CFT

| —1
~

\/




dual tops

Calabi-Yau manifolds with ¢; (X)) = 0 can be constructed from reflexive polytopes
(A, A°) > —1.

Swapping the roles of A, A° gives the mirror map !



dual tops

Calabi-Yau manifolds with ¢; (X)) = 0 can be constructed from reflexive polytopes
(A A7) > —

Swapping the roles of A, A° gives the mirror map !

In complete analogy, building blocks Z with ¢;(Z) = [S] can be constructed from ‘tops’
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which are ‘halves’ of reflexive polytopes [AB '16].



dual tops

Calabi-Yau manifolds with ¢; (X)) = 0 can be constructed from reflexive polytopes
(A A7) > —

Swapping the roles of A, A° gives the mirror map !

In complete analogy, building blocks Z with ¢, (Z

)=
(0,0° > -
(0,ve) 20 (Me,Ve) = =1 (M, 0°) >0

[S] can be constructed from ‘tops’

which are ‘halves’ of reflexive polytopes [AB '16].Exchanging ¢ « (° gives the mirror
XV=2zV\SVof X =2\, find:

K(XY) =h*'(X)

so that
V(M) + b4 (M) =23+2[K, + K-+ H>'(Z,) + H>'(Z_)]

is invariant [AB, del Zotto '17,18].



lessons/future

e smooth G5,s can have singular mirrors/works similar to K3 mirror symmetry: B-field
makes states massive !

e can actually show that H*(M, Z) is preserved by mirror map of [AB, del Zotto '17,18]
o future: use mirrors to count (co)associatives, spectra of D-branes;
o future: relation to 3D N = 2 field theories !?
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We proposed new construction [AB, Schéfer-Nameki 18] as a connected sum

Z=X4 # MxS!

of an acyl Calabi-Yau fourfold CY; — X, — C and an acyl G, manifold M with
XsNM=CYy xS"x 1.

e These are duals of heterotic models on TCS G, manifolds; recover T? fibration
appearing in mirror maps !
e We checked the equivalence of light fields in examples !



Spin(7)

engineer 3D N = 1 theories via M-Theory.
We proposed new construction [AB, Schéfer-Nameki 18] as a connected sum

Z=X4 # MxS!

of an acyl Calabi-Yau fourfold CY; — X, — C and an acyl G, manifold M with
X4ﬂM:CY3><Sl x 1.

e These are duals of heterotic models on TCS G, manifolds; recover T? fibration
appearing in mirror maps !

We checked the equivalence of light fields in examples !
For many of examples, these are simply resolution of quotients of compact CY}.
e Learn how to construct vector bundles on G> manifolds and singular Spin(7) manifolds

Decomposition shows existence of subsectors with enhanced SUSY: V' = 2 and
N =4in3D
— F-Theory on Spin(7) ? [Vafa’96; Grimm, Bonetti *13] Relation to [Witten '94,95] ?



Summary

New examples, results and conjectures on compact manifolds of exceptional holonomy =
M-theory compactifications to 3D and 4D with minimal SUSY.

Geometries made by gluing ‘simpler’ pieces.

... different theories/dualities teach different lessons which nicely tie into each other ...

string dualities «+ exceptional holonomy < 4D/3D theories with minimal SUSY



Summary

New examples, results and conjectures on compact manifolds of exceptional holonomy =
M-theory compactifications to 3D and 4D with minimal SUSY.

Geometries made by gluing ‘simpler’ pieces.

... different theories/dualities teach different lessons which nicely tie into each other ...

string dualities «+ exceptional holonomy < 4D/3D theories with minimal SUSY

Thank you !



