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Conformal Bootstrap Basics:

Importance of Conformal Field Theories (d > 2)
Realistic symmetry present in many physical systems, (usually
critical systems).
Ubiquitous in dualities in string and gauge theory, such as
AdS/CFT.
Rich mathematical structures, particularly visible in planar
theories. (non-transcendental behavior).

In general we would like to study CFT’s in non-perturbative regimes
(not more love from Feynman :( ).
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Conformal Bootstrap Basics:

Conformal Bootstrap: Constraining observables by imposing physical
conditions.

Conformal symmetry
Crossing symmetry
OPE expansion (“locality”)
Unitarity
Causality
Global symmetries

In essence, same as S-matrix program 60 to 70’s: Veneziano
amplitudes, Regge Theory, BFKL equation...
Applied successfully in the 80’s to 2d-CFT [Ferrara, Gato, Grillo,
Belavin, Polyakov, Zamolodchikov ]
Revisited and implemented in d > 2 CFT ’08 [Rattazzi, Rychkov, Tonni,
Vichi].
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Conformal Bootstrap Basics:

This talk focus on 4-points = 〈
4∏
1

Oi(xi)〉.

Conformal symm.
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Crossing Symm. (Equal. Scalars→ ∆i = ∆)(
1− z
z

)∆

G(z, z̄) =

(
z̄

1− z̄

)∆

G(1− z, 1− z̄) .

OPE expansion

G(z, z̄) =
∑
∆,J

c∆,J G∆,J(z, z̄) .

5 / 27



Conformal Bootstrap Basics:

We will not impose (too heavily), just to keep the most possible
generality,

Unitarity
c∆,J > 0, ∆− J > d− 2 .

Causality

〈
4∏
1

Oi(xi)〉 = 0 x2
ij < 0 (Spacelike)

Global and additional symmetries.

F

(
〈

4∏
1

Oi(xi)

)
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Conformal Bootstrap Basics:

- Analytic lightcone - Analytic euclidean - Numerics
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Lightcone expansion and large spin perturbation

Near to lightcone distances z → 0, G∆,J(z, z̄)→ z
τ
2F∆,J(z̄),

(τ = ∆− J, β = ∆ + J)

z−∆ +
∑
∆,J

c∆,Jz
τ−2∆

2 F∆,J(z̄) ∼ z−∆ =

(
z̄

1− z̄

)∆

G(1− z, 1− z̄) .

such as left hand side is dominated by: OI . Subsequently taking it
near z̄ → 1,

z−∆ =
∑
∆,J

c∆,J(1− z̄)
τ−2∆

2 F∆,J(1− z)

=
∑
∆,J

c∆,J(1− z̄)
τ−2∆

2

(
Γ(β)

Γ(β/2)2
log(z) + finite

)
.
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Lightcone expansion and large spin perturbation

The leading power singularity on LHS can only come from an infinity
sum from the RHS logs. In order to reproduce the LHS, the RHS sum
is dominated by the regime 2β

√
z ∼ 1 and by c∆,J = cMFT

∆,J [Zhiboedov,
Komargodski, Fitzpatrick, Kaplan,Walters, Alday, Maldacena] which
can be seen by a saddle point analysis.
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Lightcone expansion and large spin perturbation

Subleading contributions,

z−∆ + cτmz
τm−2∆

2 F∆,J(z̄) = z−∆ + cτmz
τm−2∆

2

(
log(1− z̄) + fin.

)
=
∑
∆,J

c∆,J(1− z̄)
τ−2∆

2 F∆,J(1− z) .

To reproduce the log(1− z̄) we need τ = 2∆ + γβ, with γβ << 1. This
observation plus the dominance of the sum for large β, suggest to look
for a series expansion for the anomalous dimension and OPE

coefficients in
1

β
,

γβ =

∞∑
n=0

dn
βn
, c∆,J =

∞∑
n=0

cn
βn

.

Such perturbation theory has been developed by [Zhiboedov, Alday]:
essentially putting in those series in the crossing eq. and solve order
by order. We would like instead to study this problem from an
alternative perspective.
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OPE inversion basics

Partial wave expansion,

A(s, t) =

∞∑
`=0

(2`+ 1)f`(t)G`(cos(θ)) ,

G→Kinematics, f →Dynamics, therefore we want to know f`:

f`(t) =

∫ 1

−1
dz A(z, t)G`(z) .

but
G`(z) ∼ z` .

Happily, 2nd sol. Legendre eq.

Q`(z + iε)−Q`(z − iε) = −iπG`(z), & Q`(|z| → ∞) ∼ z−`−1 .
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OPE inversion basics

Froissart-Gribov S-matrix partial wave inversion formula,

f`(t) =

∮
a
dz A(z, t)Q`(z)

=

∫
b
dzDisc[A(z, t)]Q`(z) .

1

1
Taken from Gribov Lectures: Theory of Complex Angular Momenta.
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Froissart-Gribov in CFT

[Simon Caron-Huot] generalized trick above to CFT. Greatly more
involved, but the idea is the same. Starting from the partial wave
expansion of conformal blocks,

G(z, z̄) = 1 +
∑
J=0

∫ i∞

−i∞

d∆

2πi
cJ(∆)FJ(z, z̄|∆) .

FJ(z, z̄|∆) =
1

2

(
K∆,JG∆,J(z, z̄) +Kd−∆,JGd−∆,J(z, z̄)

)
.

Why the Analytic continuation?. Unlike G∆,J , FJ(∆) forms a complete
orthogonal set, therefore,

cJ(∆) = NJ(∆)

∫
d2z µ(z, z̄)FJ(z, z̄|∆)G(z, z̄) .
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Froissart-Gribov in CFT

The function FJ(z, z̄|∆) blows up both at infinity and at zero. However,
similarly as in the S-matrix, it can be written in terms of a function with
the wanted behaviour GJ+d−1(∆ + 1− d)(z, z̄) and after contour
deformation,

cJ(∆) = κ∆+J

∫ 1

0
d2z µ(z, z̄)GJ+d−1(∆ + 1− d)(z, z̄)dDisc[G(z, z̄)] .
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Large spin expansion from OPE inversion

at leading order in small z (β = ∆ + J),

ct(J,∆) =

∫ 1

0

dz

2z
z
τ
2 ct(z, β) , (1)

where the following “generating function” has been defined,

ct(z, β) ≡
∫ 1

z

dz̄ (1− z̄)a+b

z̄2
κβ kβ(z̄)dDisc[G(z, z̄)] ,

at small−z one can expand ct(z, β) =
∑
k

ck z
τk , such as,

ct(J,∆)

∣∣∣∣
poles

= F (J,∆)

∫ 1

0

dz

2z
z
τk−τ0

2 =
F (J,∆)

τk − τ0
.
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Large spin expansion from OPE inversion

Taking the leading order as

ct(z, β)|J,∆ ∼ c0(β)z
τ0
2

+ 1
2
γ12(β) .

If the anomalous dimension γ12(β) is small, then,

ct(z, β)|J,∆ ∼ z
τ0
2 c0(β)

(
1 +

1

2
γ12(β) log(z)

)
,

γ12(β) are attached to the log(z) terms.
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Large spin expansion from OPE inversion Position space analysis 4D

Contribution of a single block to the OPE of a large spin operator.
Simplest in 4D

GJ,∆(1− z, 1− z̄) =
(1− z)(1− z̄)

z − z̄
[
k∆−J−2(1− z)k∆+J(1− z̄)

k∆+J(1− z)k∆−J−2(1− z̄)
]
.

whose leading log-term around 1− z << is given by,

G∆,J(1− z, 1− z̄) =
1− z̄
z̄

log(z)

×

Γ(τ − 2)

Γ
(
τ−2

2

)2kβ(1− z̄)− Γ(β)

Γ
(
β
2

)2kτ−2(1− z̄)

+O(z log z) .
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Large spin expansion from OPE inversion Position space analysis 4D

γJ,∆12 (β) =
Γ
(
β
2

)2
Γ (∆0) 2Γ

(
β
2 −∆0 + 1

)
Γ(β)Γ

(
β
2 + ∆0 − 1

)
Γ
(

∆−J
2 −∆0 + 1

)
2Γ
(
∆0 − ∆−J

2

)
2

×

(
Γ(∆− J − 2)

Γ
(

∆−J−2
2

)2 Ωβ,∆+J,∆0−1 −
Γ(∆ + J)

Γ
(

∆+J
2

)2 Ωβ,∆−J−2,∆0−1

)
.

Ωh,h′,p =
Γ(2h)Γ(h′ − p+ 1)2Γ(−h′ + h+ p− 1)

Γ(h)2Γ(h′ + h− p+ 1)

×4F3

[
h′, h′, h′ − p+ 1, h′ − p+ 1

2h′, h′ + h− p+ 1, h′ − h− p+ 2
; 1

]
+

Γ(2h′)Γ(h+ p− 1)2Γ(h′ − h− p+ 1)

Γ(h′)2Γ(h′ + h− p− 1)

×4F3

[
h, h, h+ p+ 1, h+ p+ 1

2h, h′ + h+ p− 1,−h′ + h+ p
; 1

]
,
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Large spin expansion from OPE inversion Position space analysis d-D

Unfortunately, in general dimensions life is not that easy. Not closed
form for the blocks so far. Best we can do (for simplicitly z → 0) :

gJ,∆(y) = y
∆−J

2

∑
k=0

gk(J,∆)yk ,
1− z̄
z̄
≡ y

Conformal casimir(s)→

pk−1(∆, J) gk−1(J,∆) + pk−2(J,∆) gk−2(J,∆) + pk(J,∆) gk(J,∆) = 0 ,

with for example

pk−1(J,∆) = −2
(
d− 2(k +

τ

2
)
)2

×
(
d(−∆ + J + 4(k +

τ

2
− 1)) + ∆2 + (J − 2)J − 4(k +

τ

2
)2 + 4

)
.
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Large spin expansion from OPE inversion Position space analysis d-D

Solving order by order for the blocks, allow us to compute order by
order on the anomalous dimension,

γJ,∆(β) =
f11(J,∆)f22(J,∆)

2 I
(0,0)
−2∆0

κβ
∑
k=0

ck(J,∆, β) ,

at large β we notice we can write,

ck(∆, J, β)

c0(∆, J, β)
∼ gk(∆, J)

[(
1− J −∆ + 2∆0

2

)
k

]2( 2

β

)2k

.

which matches large spin perturbation theory [Zhiboedov, Alday]
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Mellin space blocks

Mellin space is agnostic to space-time dim.

GJ,∆(u, v) =

∫
dsdtM∆,J(s, t)usvt ,

M∆,J(s, t) =
1

γλ1,aγλ̄1,b

Γ(λ2 − s)Γ(λ̄2 − s)Γ(−t)Γ(−t− a− b)

×Γ(s+ t+ a)Γ(s+ t+ b)PJ,∆(s, t, a, b)

Dual gravity S-Matrix.

21 / 27



Mellin space blocks

γJ,∆12 (β) =

∫ 1

0
dz̄

(1− z̄)2a

z̄2
κβkβ(z̄) dDisc

[
lim
z̄→0
GtJ,∆(z, z̄)

∣∣∣∣
log z

]

=
Γ(∆ + J)Γ(1 + ∆− h)

(d− 2)JΓ(∆+J
2 )4Γ(1− h+ ∆+J

2 )

J∑
m=0

(−1)J−mAm(J,∆)

Γ(1 +m− ∆+J
2 )∫

ds (−1)s
Γ(−s)Γ(s+ ∆−J

2 )2Γ(1 + s)Γ(1− s− ∆−J
2 )

Γ(1 + s+ ∆− h)Γ(1 + s+m− J)

Γ(1− h+m+ s+
∆− J

2
)I

(a,a)
∆−J+τ ′+2s(β) ,

γJ,∆12 (β) ∼
J∑

m=0

Nm(∆, J) 5F4

[
1, b, c, d, f
g, h, i, j

; 1

]
.

22 / 27



Reproducing large-spin results

By using large−j PT [Zhiboedov, Alday] d = 3, ∆ε = 1,

γ12 = −c0

j

(
1 +

∞∑
k=1

ck
j2k

)
,

where the coefficients,

ck = −
(

1

4

)k Γ
(
k + 1

2

)
Γ(k + 1)

.
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Reproducing large-spin results

Plugging d = 3, ∆ε = 1 into ours,

γ12(β) = −2f2
0

Γ(∆)2Γ
(
β
2 −∆ + 1

)
Γ
(
β−3

2 + ∆
)

2π2Γ
(
∆− 1

2

)2
Γ
(

1
2(β − 2∆ + 3)

)
Γ
(
β
2 + ∆− 1

) (1)

By further set ∆ = 1 and replacing β → 1−
√

4j2 + 1 we got,

γ12(β) =
2√

1 + 4j2 π3
, (2)

By Taylor expand around large j,

γ12 = −c0

j

(
1 +

∞∑
k=1

ck
j2k

)
, (3)

24 / 27



Regge Limit

AA
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Regge Limit

Summary and perspectives
S-matrix bootstrap techniques translate in a, perhaps non-obvious
way, but a natural way to the conformal bootstrap.
In particular Caron-Huot Inversion Formula works as the CFT
equivalent of Froissart-Gribov formula in S-matrix theory.
As a relevant application we have applied it to the computation of
anomalous dimensions of large spin operators.
We have obtained resumed expression in spin that reproduce the
results from large spin perturbative expansion
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Regge Limit

Thank you all!
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