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SUMMARY

The goal of this talk is to revisit two old questions:
I. How big are strings?
II. Does this say anything about black holes?



REVIEW OF HAWKING’S INFORMATION PARADOX

I A black hole is the unique spherically symmetric solution to Einstein’s
equation in vacuum with no charge or angular momentum (the no-hair
theorem)

ds2 = −
(

1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2 dΩ2, rs = 2GNM.

I Hawking showed in 1975 that black holes evaporate quantum
mechanically, via production of Hawking radiation. To good
approximation the radiation is thermal at temperature

THawking ∼
1
rs
.

I We can then think of black holes as thermal systems. Using dS = T dE,
we get the Bekenstein-Hawking area law

S ∼ Area
GN

.

This is formalized in AdS/CFT, where black holes are dual to a thermal
ensemble in a conformal field theory.



I Once the black hole evaporates completely, we are left with radiation in
a thermal density matrix. So we lose all information about what formed
the black hole, which violates unitarity. This is Hawking’s information
paradox.

I If unitarity is not violated then the radiation must not be exactly
thermal, so there are corrections to Hawking’s calculation that must be
understood. This is one motivation for understanding the role of string
theory in black hole physics.

I Almheiri, Marolf, Polchinski and Sully intensified the argument: if
unitarity is restored then modes near the horizon of an old black hole are
entangled with each other and also with the early radiation (assuming
EFT is valid). This violates ”monogamy of entanglement.”

I This is the firewall argument, which has led to many interesting
proposals/solutions (Maldacena-Susskind’s ER=EPR,
Papadodimas-Raju’s mirror operators, etc.). Here our goal is to
investigate the assumption of the validity of EFT in string theory.



CONDITIONS FOR VALIDITY OF EFFECTIVE FIELD THEORY

I AMPS1 Postulate 2: the equivalence principle is valid near BH horizons
(no drama). When is this true?

I Throw two objects with energies E = m� MBH into a Schwarzschild
black hole from a radius R� r,

ds2 = −
(

1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2

= −2rs

r
e1−r/rs dx+ dx−.

x+

1

x−

2

I If the time separation between 1 and 2 is ∆t� rs, then in EFT 2 sees a
black hole with mass MBH + m ∼ MBH.

I Since 1 and 2 have small Schwarzschild energy, we naively conclude that
EFT is valid, so there’s no drama for ∆t� rs.

1Almheiri, Marolf, Polchinski, Sully



I However, black holes are powerful particle accelerators. For
|r− rs| � rs, we can approximate the near horizon region by flat space.
A time translation acts as a boost in the Rindler region with rapidity
∆t/(2rs), since

x± = ±
√

rs(r− rs) exp

(
r− rs ± t

2rs

)
.

I For a geodesic with Schwarzschild energy E = m,

p+(r = rs) =
m
rs

x+(r = rs) ⇒ − p1 · p2

m2 =
x+

2

x+
1

= exp

(
∆t
2rs

)
I There are no large local invariants at r = rs, but there is a large nonlocal

invariant for ∆t� rs. If our UV theory has E-dependent nonlocalities,
these could be important.

I In (weakly coupled) QFT we don’t get to use this accelerator because the
particles never hit.



I Let ∆X+
12 be the null size of 1 according to 2 in the flat space UV theory.

In a frame where p+
1 ≈ 0, Lorentz invariance and dimensional analysis

require

∆X+
12 = f

(
−p1 · p2

m2

)
α′p+

2 = f
(

exp

(
∆t
2rs

))
α′p+

2 , [α′] = L2

I We are safe from drama if

∆X+
12 < x+

2 (r = rs)− x+
1 (r = rs) ⇒ α′m

rs
f
(

exp

(
∆t
2rs

))
< 1

I If f ′ > 0, EFT is violated drastically at late enough times. If f ′ < 0 the
nonlocalities decouple at late times. f ′ = 0 is marginal: violations occur
for m ∼ rs/α

′ if α′ satisfies

m
MBH

∼ GN

α′
� 1 ⇒ weak coupling.

In fact one finds violations for arbitrary m1, as long as m2 ∼ rs/α
′.

I In the rest of the talk we will argue that f = 1 in tree level string theory.



THE SIZE OF STRINGS IN LIGHT-CONE GAUGE

I Choice of gauge can’t matter, but light-cone gauge X− = x− + p−τ is
ideal for computing the size of strings2: local Hamiltonian system with
only physical DOF.

S = −T
∫

d2σ (∂Xi)2 ⇒ Xi = xi + piτ +
√
α′
∑

n

1
n
αi

ne−inτ cos(nσ).

I The transverse distribution of the endpoints is Gaussian, with width

〈(∆Xi)2〉 = α′
∑

n

1
n

= α′ log(nmax)→∞

Strings are infinitely big, but in practice we can only measure up to a
frequency nmax.

I The longitudinal distribution is highly nonlinear, but has RMS size

X+ = x+ + p+τ +
√
α′
∑

n

1
n
α+

n e−inτ cos(nσ)

[α+
m , α

+
n ] =

(m− n)α+
m+n√

α′p−
+

m3δm+n

α′(p−)2 ⇒ 〈(∆X+)2〉 =
1

(p−)2

∑
n

n =
n2

max

(p−)2 .

2Susskind ’69,’92; Karliner, Klebanov, Susskind ’89.



k+
A

k+
B

k+
1

k+
2

T

I What is nmax for string scattering? The four-point function in light-cone
gauge is an integral over light-cone time T. We are interested in the
Regge limit k2

⊥ � E2, since this is dominated by T → 0, 3

∫
dT
T2 eET exp

(
−
∑

n

α′k2
⊥

n + n2T/(α′E)

)
.

I For E2 � k2
⊥ � 1/α′, this has a saddle point at

T ∼ α′k2
⊥

E
→ 0 ⇒ nmax =

E2

k2
⊥
.

The short time resolution means that the interaction probes large n.
I The size of String A according to String B is

∆Xi =
√
α′ log(s/k2

⊥), ∆X+ =
p+

B

k2
⊥
.

Note that ∆X+ doesn’t depend on p+
A : String A fails to Lorentz contract.

In the CM frame ∆X+ ∼ E.
3Brower, Polchinski, Strassler, Tan



I Strings are hadrons4, so we should cross-check against the size of
hadrons.

I The multiperipheral model generates
the cloud of partons by splitting a bare
hadron (with a strongly damped
cascade ηi+1 � ηi). The partons form a
random walk with transverse RMS
size log E.

η1
η2
η3
1 − η1 − η2 − η3

I Near-neighbor hypothesis: partons can only interact if they’re close in
phase space. For hadron-hadron scattering this means that only wee
(low energy) partons can interact. So hadrons don’t Lorentz contract - a
boost introduces new wee partons into the spectrum.5

I The time it takes for two hadrons to
cascade, interact, and recombine in the
CM frame scales like E.

E

4Nambu; Olesen; Polyakov; Susskind; Maldacena, etc.
5Feynman; Kogut, Susskind; Gribov



THE GROSS-MENDE SADDLE AND THE INTERACTION SCALE

I For s, |t| � 1/α′, the string path integral is dominated by a complex
saddle point

Xµ = iα′
∑

i

kµi log |z− zi|2

I Use SL(2,C) to choose zA = 0, zB = 1, z2 =∞. Then

z1 ∼
p2
⊥

E2 → 0.

I The exchanged state is defined by 0� |z| � 1. In this limit one finds
large spikes in the saddle,

X+ X− ≤ α′2p2
⊥, |X+|, |X−| ≤ α′E.

A

1

B

2

I A simple test of this saddle: we should get corrections to string
scattering in AdS when the hyperbola is larger than an AdS radius. And
indeed there are corrections controlled by α′2p2

⊥/L2
AdS.



I To connect the Gross-Mende saddle to the longitudinal spreading scale,
we slice the saddle in light cone time X−,

A

1

B

2

I This slicing begins at X− ∼ −α′E, where String B is very small. String B
grows to a size ∆X+ ∼ α′E and joins with String A at time
X− = −p2

⊥/E2. Then they split and String B shrinks again.
I Note that String B grows bigger than the longitudinal spreading scale

X+ ∼ E/p2
⊥. Assume a linear distribution since X+ ∼ (X⊥)2. Then we

pay a suppression factor

e−k2
⊥|∆X+|/E = e−α

′k2
⊥ .

I This factor is present in the amplitude at large k2
⊥,

A(s, k2
⊥) = e−α

′k2
⊥

(
s

k2
⊥

)−α′k2
⊥
.



I We can also draw a picture of the saddle in the spatial dimensions,

A

B

1

2

I Focus on the endpoint connecting A and 1. This satisfies the equations

Ẍ⊥ =
p⊥sech2(T/(α′E))

E2

Ẍ|| =
p2
⊥sech2(T/(α′E))tanh(T/(α′E))

E3 .

This is equivalent to the motion of a particle in a potential,

U =
p2
⊥sech2(X||/(α′E))

E2 .

I This potential is constant for X|| � α′E, and approaches a linear
distribution at large X||,

U ∼ p2
⊥

E2 e−|X|||/(α
′E).



SIMULATING HORIZON PHYSICS IN FLAT SPACE
I We’re interested in extracting the large longitudinal scale ∆X+ ∼ α′E

from some gauge-invariant quantity. The strategy is to set up a situation
like in the black hole and compute A(∆X+),

1

C

2

∆X+

I This is not an S-matrix element. But we can add a few auxiliary particles
(dashed lines) to set up the above picture in an on-shell way:

1

C

2 3

A

B
∆X+

I This is a six-point function. Longitudinal spreading predicts a long
range over which A(∆X+) is supported, ∆X+ ∼ α′E1. Of course we
need to make sure that there is no early collision between the dashed
and solid lines.



I Use the rules for perturbative string theory (in the ordering B2C1A3):

A =

∫ ∞
1

dyA

∫ 1

0
dyC

∫ yC

0
dy2 yKB2

2 (1− y2)
K12 yKBC

C (1− yC)KC1 (yC − y2)
KC2

yKAB
A (yA − y2)

KA2 (yA − yC)KAC (yA − 1)KA1 .

I This integral is dominated by saddle points, assuming all invariants
� 1/α′. We found several interesting saddles in Regge kinematics, I’ll
focus on one of them here. Introduce momenta

k1′ = k1 + kC + k2, kB′ = kB + kC + k2.

The saddle of interest is then∣∣∣∣KA1

KA3

∣∣∣∣−KA3

×
∣∣∣∣K12

KC2

∣∣∣∣−KC2

× Γ(k2
1′)Γ(k2

B′)

Γ(k2
B′ + k2

1′)
.

I The first two factors are Regge four-point interactions with momentum
transfer KA3 and KC2. The third factor will turn out to contain all the
longitudinal dynamics.

I Our goal is to compute the dependence of the amplitude on ∆X+,∫
d(EC − EA) ei(EC−EA)∆X+

A(KIJ).



I Again we look for a saddle point, this time in the integral over energies.
At ∆X+ = 0, the integrand is peaked at k2

1′ = k2
B′ = −k2

⊥, where k2
⊥ is a

combination of transverse momenta. Varying away from this peak, the
integrand is

ei∆X+δEC

(
1− EBδEC

k2
⊥

)−α′(k2
⊥−EBδEC)(

1 +
EBδEC

k2
⊥

)−α′(k2
⊥+EBδEC)

I This has a saddle point at

δEC =
ik2
⊥

EB
tan

(
∆X+

2α′EB

)
,

and the corresponding amplitude is

cos

(
∆X+

2α′EB

)α′k2
⊥

θ(∆X+)

The longitudinal distribution is purely delayed, but is constant for
∆X+ � α′EB, as expected for an object with longitudinal size α′EB.

I There are also other saddles that contribute, corresponding to
oscillations of on-shell strings in various channels. These have the same
cosine shape, but are delayed by a multiple of α′EB.



I For the black hole application, we are particularly interested in the case
where 1′ is produced by the AB collision,

1

C

2 3

A

B

1′

I This is Reggeon exchange in the 1’ channel, |k2
1′ | � |k2

B′ |. The amplitude
factorizes,

A =

∣∣∣∣KA1′

KA3

∣∣∣∣−KA3

×
∣∣∣∣K1′2

KC2

∣∣∣∣−KC2

× eiπk2
1′

∣∣∣∣ k2
B′

k2
1′

∣∣∣∣−k2
1′

.

I The first factor is the four-point amplitude for preparing 1′, and the
second factor is a Regge interaction between C and 1′. So far so good –
the amplitude can be interpreted as production of a late-time particle 1’
via an auxiliary process, and then interaction between C and 1′.

I Finally there is the third factor, which is Pomeron exchange in the k1′

channel. This has a phase eiπk2
1′ , arising from production of on-shell

states in the kB′ channel.



13

A

2

CB

B′
1′

I We set up localized wavepackets for the ingoing strings in this regime,

|i〉 =

∫
dδEA dδEC ei(δEC−δEA)∆X+

exp

(
−δE2

C + δE2
A

2σ2

)
|kA, kB, kC〉.

I Solve for δEA in terms of δEC. Then the amplitude is just

〈k1, k2, k3|i〉 =

∫
dδEC eiδEC∆X+

exp

(
−δE2

C

2σ2

)
A(KIJ).

I Let’s start by asking where this function is peaked. One finds

∂EC k2
1′ = EB.

Recall that the phase of the amplitude is eiπk2
1′ . This shifts the peak to

∆X+ ∼ −α′EB!



1

C

2 3

A

B
α′E

I What about the spread of the amplitude? Expanding in δEC,

A(KIJ) ∝ exp

(
−α
′EB

2
log

(
k2

1′

k2
B′

)
δEC +

α′E2
B

4k2
1′

(δEC)2 + . . .

)
.

I If the width of the wavepacket dominates in the amplitude, then we
only need to keep the linear term and we get

A(X+) = exp

(
− (σ−)2

8

(
πα′EB + ∆X+ − iα′EB log

(
k2

B′

k2
1′

))2
)
.

This gets contributions up to ∆X+ ∼ α′EB log(k2
B′/k2

1′), a huge scale.
I The conclusion persists if we use wavepackets with compact support in

the longitudinal direction - it’s not just an interaction on the tail of the
wavepackets.



PROBING THE NONLOCALITY WITH A BACKGROUND FIELD

I Another simple test is to take the string coupling to depend on X+, the
simplest being a linear dependence,

gs(X+) = gs,0eV−X+

.

Then we can track where the interaction is happening by looking for
factors of eV−X+

in the amplitude.
I The linear dilaton theory is exactly solvable (albeit strongly coupled in

the far future). The dilaton basically just shifts the conserved
momentum,

pµ → pµ + iVµ.

I Repeating the worldsheet spreading calculation gives

〈(∆X+)2〉 ∼
∑
n>0

n
(p−)2 + n2(V−)2 .

So for a weak enough dilaton the spreading prediction is the same.
I We found the expected factors of the dilaton in the scattering amplitude:

for a term where a string oscillates n times we get eα
′nEBV− , and for the

above early six point interaction we get e−α
′EBV− .



DRAMA FROM SECONDARY PROBES

I This was supposed to be a talk about black holes. From now on assume

∆X+
12 =

p+
2

m2 for m2 > 1/α′.

I Can the late string 2 detect the early
infaller 1 at times ∆t� rs? The best
experiment it can do is to shoot a light
ray 3 outward, decaying into 2′.

x+

1

x− 2′

2

3

I Momentum conservation gives

p+
2 = p+

2′ + p+
3 , p−2 = p−2′ ⇒ p+

3 = p+
2

(
1− m2

2′

m2
2

)
.

I Taking E2 = m2, the condition for drama is

∆X+
13 > x+

2 (r = rs)− x+
1 (r = rs) ⇒ α′p+

3 >
rs

m2
p+

2

I So we get violations of EFT for m2 > rs/α
′, m2 −m2′ > rs/α

′.



I Easily extended to m1 6= m2, and gives the same condition m2 > rs/α
′.

I The size of a typical string at mass rs/α
′ is

m1/2
2 α′3/4 ∼ r1/2

s α′1/4 � rs.

I rs/α
′ is parametrically smaller than the black hole mass at weak

coupling,

rs

α′MBH
∼ g2

s � 1.

I The condition for perturbative control is satisfied in a wide range of ∆t,

−p1 · p2 = m1m2 exp

(
∆t
2rs

)
⇒ ∆t� rs log

(
M2

p

m1m2

)
.

I Giveon, Kutasov, Itzhaki computed the reflection amplitude off the
Euclidean cigar with an additional time coordinate,

ds2 = −dt2 + k(dr2 + tanh2 r dθ2), Φ− Φ0 = − log cosh r.

Found a new phase shift in the amplitude at E ∼ rs/α
′, possibly related?



HAWKING QUANTA AND THE INFORMATION PARADOX

I Above we needed a secondary probe. Better idea: let’s consider a
situation where an outgoing particle is produced naturally by the black
hole, i.e. Hawking quanta.

I Defining χ =
√

1− rs/r,

ds2 = −χ2 dt2 + r2
s dχ2 + sphere.

I χ is the redshift factor so a typical Hawking quantum at radius r0 has
local energy

E ∼ 1
χ0rs

⇒ p+(r = r0) =
1

(χ0rs)2 x+(r = r0)

These can be mined so must be real.
I The condition for the Hawking quanta to detect the formation matter is

α′p+
2 (r = r0) ≥ x+

2 (r = r0) ⇒ α′ ≥ χ2
0r2

s .

I So Hawking quanta emitted from the stretched horizon are sensitive to
the shell that formed the BH.



I Could this be the solution to the information paradox6?
I Nice slice argument would fail because there’s no Hamiltonian

formulation of string theory on nice slices (need to go to light cone
gauge).

info

6See also Susskind ’92.



COSMOLOGICAL HORIZONS

I Need to check consistency of this effect with cosmological data. Take dS
space in global coordinates,

ds2 =
L2

cos2 γ
(−dγ2 + dθ2 + sin2 θ dΩ2

2), − π/2 < γ < π/2,

where L = H−1. Strings 1 and 2 are at θ1 and θ2.
I Transform to Kruskal-like coordinates in the static patch of the θ = 0

observer,

ds2 =
1

(L2 − x+x−)2

(
−dx+ dx− + (L2 + x+x−)2 dΩ2

2

)
.

At the observer horizon x− = 0 or r = L, we get

p+(r = L) =
m
L

x+(r = L) (Compare p+(r = rs) =
m
rs

x+(r = rs))

I Using secondary probes as above, the analog of m2 > rs/α
′ is

m2 >
1
α′H

∼ 1020g2
effMsun.

For geff ∼ 1/10 this is a bit bigger than a supercluster mass. Extra
dimensions would lower geff. Cosmic strings could be the detector but
haven’t been found yet.



LONGITUDINAL SPREADING IN QCD?

I So far we’ve focused on fundamental string theory. Strings in AdS are
dual to gauge theories, so we should ask whether gauge theories exhibit
longitudinal spreading as well.

I This is not in direct conflict with locality. Local operators commute at
spacelike separation but hadrons might have some intrinsic size. After
all we already know they have transverse size log s.

I The strategy is to set up the same six point amplitude from before, but
now on the boundary of AdS. We take all kinematic invariants to not
scale with LAdS. Then the amplitude is7∫ ∞

0
dz
∏

i

ψi(z)A6,flat space

(
α′ki · kjz2/L2

AdS

)
.

I The wavefunctions go like z∆ near the boundary. Folding in the flat
space amplitude, the integrand is

z4∆
∣∣∣∣KA1

KA3

∣∣∣∣−z2KA3/L2
AdS

×
∣∣∣∣K12

KC2

∣∣∣∣−z2KC2/L2
AdS

× cos

(
∆X+L2

AdS

2α′EBz2

)α′k2
⊥z2/L2

AdS

.

7See Polchinski-Strassler 2001



I At large ∆ and small ∆X+, this integral is dominated by a saddle point
near the boundary, so that the power-law form of the wavefunctions is
justified,

z2
∗ =

∆2L2
AdS

α′
∑

i ti log si
.

I The leading time-dependence of the amplitude is then

1− p2
⊥L2

AdS

α′E2
Bz2
∗

(∆X+)2 + . . . ,

which is constant for

∆X+ <
α′EB∆

p⊥
∑

i ti log si
.

I Note the enhancement by ∆; more wee partons for higher operator
dimensions? In hard-wall QCD the masses are given by the zeroes of the
bessel function J∆(M/Λ). At large ∆ the first zero is at M ∼ ∆Λ. Since
length is mass over tension, the length should scale linearly with ∆.



CONCLUSION

I Off-shell calculations of longitudinal spreading in light-cone gauge
imply that a detector with mass rs/α

′ is not in its vacuum near the
horizon of a black hole if it falls in a time ∆t� rs after a string. In
addition, Hawking quanta emitted from the stretched horizon are
sensitive to the formation matter.

I Longitudinal spreading seems to be confirmed in on-shell scattering
calculations; in particular, a situation mimicking the black hole can be
set up in flat space. The amplitude exhibits long-range nonlocalities
consistent with the longitudinal spreading scale.

I This is a testable effect, both in AdS/CFT and with real experiments (in
principle), since it involves physics outside the horizon.


