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The subject of this talk is recent progress in classifying 5d SCFTs
with interacting UV fixed points, and is based on:

I 1705.05836 [PJ, Hee-Cheol Kim, Cumrun Vafa, Gabi Zafrir]

I 1801.04036 [PJ, Sheldon Katz, Hee-Cheol Kim, Cumrun Vafa]

I 1809.01650 [Lakshya Bhardwaj, PJ]

I 1811.10616 [Lakshya Bhardwaj, PJ]

I (to appear) [Lakshya Bhardwaj, Hee-Cheol Kim, PJ, Houri Tarazi, Cumrun

Vafa]

and references therein.



A bit of history

In the 1990s, it was found that string theory predicts UV complete
SQFTs in 5d and 6d. Investigation of 5d N = 1 theories was
initiated by series of papers from ‘96-‘98. [Seiberg] [Morrison-Seiberg]

[Douglas-Katz-Vafa] [Ganor-Morrison-Seiberg] [Intriligator-Morrison-Seiberg (IMS)]

[Diaconescu-Entin]

These authors used string compactifications and SUSY to identify
many 5d theories, notably leading to some partial classifications:

1. Geometric classification of rank one SCFTs in terms of del
Pezzo surfaces dPn, n = 0, . . . , 8 and P1 × P1

2. Gauge theory classification in terms of (g,R, k)

3. (p, q) 5-brane webs in type IIB



Status of the problem

Since then, there have been numerous papers produced studying
various aspects of 5d SCFTs such 5-brane webs in type IIB string
theory, global symmetry enhancements, counting BPS
degeneracies, geometric singularities, and more:
[Bergman-Rodriguez-Gomez-Zafrir ‘14][Tachikawa ‘15][Bergman-Zafrir

‘15][Hayashi-Kim-Lee-Taki-Yagi ‘15][Yonekura ‘15][Zafrir ‘15][Kim-Taki-Yagi

‘15][Hwang-Kim-Kim-Park ‘16][PJ-Kim-Vafa-Zafrir ‘17][Xie-Yau

‘17][Hayashi-Kim-Lee-Yagi ‘18][Apruzzi-Lin-Mayrhofer ‘19][Closset-Del Zotto-Saxena

‘18][...and others!]

Full classification of 5d N = 1 theories remains an open problem.
Today I will discuss some current efforts to arrive at a more
complete classification of 5d SQFTs with UV fixed points.



Old wisdom...

M-theory compactified on a local CY 3-fold X is described at low
energies by an effective abelian 5d N = 1 QFT:

R1,4

×

X

Dynamics, massive deformations, and vacuum moduli are
completely encoded in the topology and complex geometry of X .
Also, the abelian theory has UV superconformal fixed point if X
admits a suitable singular degeneration.

Problem of classifying 5d SCFTs is equivalent to the problem of
classifying 3-folds X which admit such singularities.



...New perspective

So far, I have not described anything new. What’s crucial to our
program is the following observation: a local 3-fold X can be
described as a neighborhood of a union of holomorphic surfaces

S = ∪Si

intersecting along holomorphic curves

Cij = Si ∩ Sj

In order to check if X has a UV fixed point, we conjecture we only
need the following data:

1. Topological intersection numbers cijk =
∫
X Si · Sj · Sk

2. Cone of holomorphic curves M(Si ) for each Si

Physically the above data corresponds to BPS central charges,
effective gauge couplings, and Chern-Simons couplings of the
theory.



There are several advantages to this approach. For one, the
description of X in terms of S = ∪Si is uniform and quite
general. Example, 5d T5 theory (toric)
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The data cijk is explicit, and M(Si ) are implicit in the righthand
diagram.
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Another example, F4 gauge theory with one hypermultiplet
transforming in the 26 (non-toric):
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RG flow

Another advantage—mass deformations/RG flows of theories can
easily be read off from geometry.



Biggest advantage: condition for X to admit elliptic fibration (i.e.
6d UV fixed point theory) easily identified! This establishes a
geometric link between 6d and 5d fixed points—can we use this
link to classify 5d SCFTs?

Current results:
I 5d SCFTs up to rank 2; all descend from elliptic 3-folds

1. Rank 1:
I F8

0 → F7
0 → · · ·

2. Rank 2 [PJ-Katz-Kim-Vafa ‘18]:
I F5

0—F5
0 → F4

0—F5
0 → · · ·

I F9
4—F0 → F8

4—F0 → · · ·
I F6

0—F2 → F6
0—F2 → · · ·

I F3
0—F6 → F2

0—F6 → · · ·

I Elliptic 3-folds associated to 6d SCFTs compactfied on a circle

I Elliptic 3-folds associated to twisted compatifications [in

progress]



Goal and plan for talk

In this talk I will explain how RG flows of 5d SCFTs are encoded in
geometry, and how this idea can be used to more exhaustively
classify 5d SCFTs starting from circle compactifications of 6d
SCFTs.

Plan for the talk:

1. Review of 5d SCFTs

2. M-theory construction

3. RG flows

4. Classifying 5d SCFTs via 6d SCFTs

5. Conclusion and future prospects



5d N = 1 field theories

The 5d N = 1 superconformal algebra has bosonic subgroup
SO(2, 5)× SU(2)R × F . No exact marginal deformations, and only
SUSY-preserving relevant deformations are mass deformations.
There is a Coulomb branch of moduli C parametrized by real
scalars φi=1,...,r which is not lifted by mass deformations.

At a generic point the low energy EFT is a U(1)r gauge theory
where r is the rank (i.e. number of photon fields):

L = (∂i∂jF)dφi ∧ ?dφj + (∂i∂jF)F i ∧ ?F j

+
1

24π2
(∂i∂j∂kF)Ai ∧ F j ∧ F k + · · ·



The massive BPS spectrum consists of electric particles and
magnetic monopole strings with central charges:

Zelec = niφ
i + sfm

f , Zmag = ni∂iF

The abelian theory is described by a one-loop exact prepotential at
most cubic in φi :

6F = clmnφ
lφmφn, φl=r+f ≡ mf

The prepotential controls (for i , j , k = 1, . . . , r):

I Monopole string tensions ∂iF = 1
2cimnφ

mφn

I U(1) couplings ∂i∂jF = cijnφ
n

I Chern-Simons couplings ∂i∂j∂kF



Coulomb branch moduli φi have mass dimension 1, define a scale
for the theory. For the theory to have a UV completion, there must
be a consistent EFT at all energy scales. Hence, φi are unbounded
=⇒ Coulomb branch is non-compact.

The phase structure is dictated by three possibilities for the
massive BPS spectrum:

1. A particle becomes massless, along hyperplane.

2. Monopole string becomes tensionless (also along hyperplanes.)

3. Particles and strings become massless and tensionless—this is
the CFT fixed point.



This gives the Coulomb branch the structure of a fan in Rr :

2. tensionless string

1. massless particle

3. CFT fixed point

We assume above structure is common to generic 5d N = 1
theories.



M-theory on a CY 3-fold

M-theory compactified on a smooth local CY 3-fold X is described
at low energies by a 5d N = 1 QFT on the Coulomb branch [Witten

‘97]:

R1,4

×

X



We have the following dictionary:

I M2 branes wrapping holomorphic curves (volume) are BPS
particles (mass)

I M5 branes wrapping holomorphic surfaces (volume) are BPS
strings (tension)

Let [J] = φi [Si ] be an expansion of Kähler class [J] in a basis of
surface classes [Si ]. The volumes of holomorphic p-cycles Cp are
controlled by Kähler moduli:

vol(Cp) =
1

p!

∫
Cp

[J]p =
1

p!

∫
X

[J]p · [Cp]

where · denotes the intersection product. (I will drop the bracket
notation.) In particular, for fixed φ, we get the prepotential for an
EFT:

vol(X ) =
1

3!

∫
X
J3 =

1

3!
cijkφ

iφjφk = F , cijk =

∫
X
Si · Sj · Sk .



Phase structure

Let’s talk about the full moduli space using a string dual cartoon:
type IIB (p, q) 5-brane diagrams.

Three types of singularities can occur:

1. A curve can collapse to a point (massless particle.)

2. A surface can collapse to a curve (tensionless string.)

3. A surface can collapse to a point (CFT fixed point.)

1 2 3



When these singularities occur at finite distance in moduli space,
the (extended) Kähler moduli space of X represents the Coulomb
branch of the 5d theory:

2. vanishing surface

1. vanishing curve

3. canonical singularity



Ex.: Zoom in on singular phase transition (1) due to a massless
particle/collapsing curve:

C

S1 S2

X

C ′

S ′1 S ′2

X ′

vol(C)→ −vol(C)

−vol(C ′)← vol(C ′)

CFT fixed point



5d N = 1 theory is captured by a collection of surfaces S = ∪Si
intersecting each other in X

This captures two pieces of data:

1. Prepotential (triple intersection numbers), for EFT
description

2. Central charges of elementary BPS spectrum (volumes of hol.
p-cycles), to check UV completion

The volumes of the full set of holomorphic curves Ci (i.e. the Mori
cone) cannot be extracted from non-abelian gauge theory
presentation:

6F =
3

g2
YM

hijφ
iφj +

1

2

 ∑
α,roots

|〈φ, α〉|3 −
∑

Rf ,irreps

∑
w∈Rf

|〈φ,w〉+ mf |3


Full BPS spectrum is visible in geometry!



Criteria for UV fixed point

The basic consistency test that at theory must pass is that the
massive BPS spectrum and U(1) couplings are positive at a generic
point in C =⇒

vol(Ci ) =

∫
X
J · Ci > 0

on the interior of C, where Ci are generators of the Mori cone.

The above ensures volumes of all holomorphic cycles will be
positive [Kleiman]. This also seems to be sufficient for positivity of
∂i∂jF , but a I am not aware of a proof of why this is true.

Conjecture: the above conditions imply the existence of a
canonical singularity =⇒ Si are rational or ruled surfaces [Reid].

(Notation: Fp
n ≡ BlpFn, i.e. blowup of the Hirzebruch surface Fn

at p points.)



As an example, consider the rank 1 theory S = F0—N:

f

b

S

N

We expand a Kähler class as J = φS + mN. Using∫
X
S3 =

∫
F0

K 2
F0
,

∫
X
S2 · N =

∫
N
b2,

∫
X
S · N2 =

∫
F0

b2

we get

6F =

∫
X
J3 = 8φ3 − 6mφ2.

Positivity of the hol. curves c = c1f + c2b, ci ≥ 0 (i.e. BPS
charges) implies

Coulomb branch : vol(b) = 2φ ≥ 0, vol(f ) = 2φ+ m ≥ 0.



RG flows

Different 5d theories can be related by RG flows triggered by large
mass deformations.

Example: SU(2) + 1F. We describe X as:

C

F1
0

N1
N2

=

F1
0

N2 N1

Using J = φ[F1
0] + mfNf , we have vol(C ) = φ+ m1 −m2 > 0.



We mass deform this theory by sending m1 → −∞, which drives
vol(C )→ −∞:

C

Bl1F0

N1N2
C ′

F0

N1N2 C ′

F0

N2

This is the geometric version of integrating out matter:

F1
0

SU(2) + 1F
RG flow−→

F0

SU(2)θ=0

Geometrically, this looks like a blowdown of a curve in F1
0.



What happens in the other direction, i.e. integrating in matter?
Conjecture: this can be done finitely many times, ending with a
theory which is not a 5d SCFT.

In fact this appears to classify 5d SCFTs:

1. Rank 1:
I F8

0 → F7
0 → · · ·

2. Rank 2 [PJ-Katz-Kim-Vafa ‘18]:
I F5

0—F5
0 → F4

0—F5
0 → · · ·

I F9
4—F0 → F8

4—F0 → · · ·
I F6

0—F2 → F6
0—F2 → · · ·

I F3
0—F6 → F2

0—F6 → · · ·

We can also flop to different phases and study mass deformations
there!



dP2 [ dP2

SU(2)0⇥SU(2)0

F2 [ dP6

SU(3) 7
2
+5F

Sp(2)+1AS+4F

F3 [ dP6

SU(3) 9
2
+5F

Sp(2)+2AS+3F
G2+5F

F2 [ dP5

SU(3)3+4F
Sp(2)+4F

F3 [ dP5

SU(3)4+4F
Sp(2)+1AS+3F

F4 [ dP5

SU(3)5+4F
Sp(2)+2AS+2F

G2+4F

F2 [ dP4

SU(3) 5
2
+3F

F3 [ dP4

SU(3) 7
2
+3F

Sp(2)+3F

F4 [ dP4

SU(3) 9
2
+3F

Sp(2)+1AS+2F

F5 [ dP4

SU(3) 11
2

+3F

Sp(2)+2AS+1F
G2+3F

(F6 [ dP4)
⇤

Sp(2)0+3AS

F2 [ dP3

SU(3)2+2F
F3 [ dP3

SU(3)3+2F

F4 [ dP3

SU(3)4+2F
Sp(2)+2F

F5 [ dP3

SU(3)5+2F
Sp(2)+1AS+1F

F6

3`�2X1�X2[ dP3

SU(3)6+2F
Sp(2)⇡+2AS

G2+2F

F6

2`[ dP3

Sp(2)0+2AS

F1 [ dP5

SU(3)2+4F

F1

`�X1�X2[ dP2
F1

X1[ dP2

SU(3) 1
2
+1F

F3 [ dP2

SU(3) 5
2
+1F

F2 [ dP2

SU(3) 3
2
+1F

F4 [ dP2

SU(3) 7
2
+1F

F5 [ dP2

SU(3) 9
2
+1F

Sp(2)+1F

F7 [ dP2

SU(3) 13
2

+1F

G2+1F

F6

3`�2X1�X2[ dP2

SU(3) 11
2

+1F

Sp(2)⇡+1AS

F6

2`[ dP2

Sp(2)0+1AS

F2 [ dP1 F1 [ dP1

SU(3)0

F2 [ F0

SU(3)1

F4 [ F0

SU(3)3

F6 [ F0

SU(3)5
Sp(2)⇡

F8 [ F0

SU(3)7
G2

F3 [ dP1

SU(3)2

F5 [ dP1

SU(3)4

F7 [ dP1

SU(3)6

F6 [ dP1

Sp(2)0

F3 [ P2 F6 [ P2

(F10 [ F0)
⇤

SU(3)9

F1 [ dP6

SU(3) 5
2
+5F

Sp(2)+5F

F1 [ dP4

SU(3) 3
2
+3F

F1 [ dP3

SU(3)1+2F

dP8

SU(2) + 7F

dP7

SU(2) + 6F

dP6

SU(2) + 5F

dP5

SU(2) + 4F

dP4

SU(2) + 3F

dP3

SU(2) + 2F

dP2

SU(2) + 1F

dP1

SU(2)⇡

F0

SU(2)0

P2

(dP9)
⇤

SU(2) + 8F

Rank 1 Rank 2

With O7+

(SU(3)0+1Sym+1F)⇤

SU(3) 1
2
+1Sym

Bl8F3 [ dP1

SU(3)�2+8F, Sp(2)+1AS+7F

(Bl9F4 [ F0)
⇤

SU(3)� 3
2
+9F, Sp(2)+1AS+8F

F1 [ dP7

SU(3)3+6F
Sp(2)+1AS+5F

Bl2F1 [ dP4

SU(3) 1
2
+5F

[SU(2)+1F]⇥[SU(2)+2F]

Bl3F1 [ dP4

SU(3)0+6F
[SU(2)+2F]⇥[SU(2)+2F]

Bl2F1 [ dP5

SU(3)1+6F
[SU(2)+1F]⇥[SU(2)+3F]

Bl1F1 [ dP6

SU(3)2+6F, Sp(2)+6F
SU(2)⇡⇥[SU(2)+4F]

Bl1F1 [ dP5

SU(3) 3
2
+5F

SU(2)⇡⇥[SU(2)+3F]

Bl2F1 [ dP3

SU(3)0+4F
[SU(2)+1F]⇥[SU(2)+1F]

Bl1F1 [ dP4

SU(3)1+4F
SU(2)⇡⇥[SU(2)+2F]

Bl1F1 [ dP3

SU(3) 1
2
+3F

SU(2)⇡⇥[SU(2)+1F]

Bl1F1

X1[ dP2

SU(3)0+2F
SU(2)⇡⇥SU(2)⇡

(Bl5F1 [ dP6)
⇤

SU(3)0+10F, Sp(2)+10F
[SU(2)+4F]⇥[SU(2)+4F]

Bl4F1 [ dP6

SU(3) 1
2
+9F, Sp(2)+9F

[SU(2)+3F]⇥[SU(2)+4F]

Bl3F1 [ dP6

SU(3)1+8F, Sp(2)+8F
[SU(2)+2F]⇥[SU(2)+4F]

Bl4F1 [ dP5

SU(3)0+8F
[SU(2)+3F]⇥[SU(2)+3F]

Bl3F1 [ dP5

SU(3) 1
2
+7F

[SU(2)+2F]⇥[SU(2)+3F]

Bl2F1 [ dP6

SU(3) 3
2
+7F, Sp(2)+7F

[SU(2)+1F]⇥[SU(2)+4F]

Bl7F2 [ F0

SU(3)� 5
2
+7F, Sp(2)+1AS+6F

[SU(2)+5F]⇥SU(2)⇡

(F2 [ dP7)
⇤

SU(3)4+6F
Sp(2)+2AS+4F

G2+6F

Bl5F1 [ dP2

[SU(2)+4F]⇥SU(2)0

Bl4F1 [ dP2

[SU(2)+3F]⇥SU(2)0

Bl3F1 [ dP2

[SU(2)+2F]⇥SU(2)0

Bl2F1 [ dP2

[SU(2)+1F]⇥SU(2)0

Bl1F1

`�X1�X2[ dP2

SU(2)⇡⇥SU(2)0

Bl8F3 [ P2

Figure: RG-flow diagram of rank 1 and 2 SCFTs



5d KK Theories

The theories at the top are 5d Kaluza-Klein (KK) theories. They
have 6d UV fixed points, and can be viewed as 6d SCFTs
compactified on S1 (more on this later!)

5d KK theories correspond to elliptically fibered 3-folds. If X is
elliptic, we can invoke duality between M-theory and F-theory:

M-theory

X
(string duality)

=
F-theory

X × S1
R

and check that X corresponds to a 6d SCFT on S1, where

vol(F ) =
1

R
.

Criterion for elliptic 3-fold: ∃ J3(φ∗) = 0 s.t. J2(φ∗) 6= 0.



5d SCFTs can be found by studying RG flows of 5d KK theories
∪Si . The one requirement is that such a deformation removes the
KK scale,

vol(F )→∞.
In principle, there are many ways to do this [del-Zotto-Heckman-Morrison

‘17] which may lead to 5d SCFTs of various rank.

Example:
Is2
2

S1

→ F0
—
— F4

0. The red line is the elliptic fiber. We
send the volume of F to infinity to flow to SU(2)0.

F0

F4
0

F ‘

F

F0

vol(F )→∞



To make this procedure systematic, we study a subset of RG flows
corresponding to sending the volume of −1 curves C to infinity,
which preserve the rank of the 5d theory [PJ-Bhardwaj ‘18]. Three
cases:

1. C does not intersect any junction Si ∩ Sj . (See RG flow
cartoon.)

2. C intersects a point on a junction Si ∩ Sj . Only flop
transitions.

3. C is part of some junction Si ∩ Sj . (Si are joined in a loop):

C

S2

S1

C ′

S′
2

S′
1

S′
2

S′
1



Let’s see an example of the third case. Again, consider F0
—
— F4

0.
We can perform two flop transitions:

5d KK

F0
—
— F4

0
flop(s)→ F1

—
— F3

0
RG flow→

5d SCFT

F1—F3
0.

Schematically,

flop flop RG flow



Classifying 5d SCFTs via 6d SCFTs

The tensor branch of a 6d SCFT T can be constructed by
compactifying F-theory on a singular elliptically fibered CY 3-fold
XT,

XT → B

where B is a non-compact complex surface. The locus ∆ ⊂ B
carrying singular fibers is a collection of rational curves Σi such
that

Aij =

∫
B

Σi · Σj

is negative-definite.

T is the worldvolume theory of 7-branes wrapping Σi , and D3
branes wrapping Σi are BPS strings with tension proportional to
vol(Σi ). At the conformal point, BPS strings become tensionless.



Consider T compactified on S1
R with generic holonomies for all

symmetries around S1
R . This is engineered by F-theory on X̃T × S1

R

M-theory

X̃T

F-theory

X̃T × S1
R

6d T on S1
R 5d TKK

∼=

∼=

where X̃T → XT is a resolution. The circle compactification of T on
the tensor branch is a 5d KK theory TKK on the Coulomb branch.

Thus given a 6d SCFT XT, we can identify many 5d SCFTs by
studying RG flows using geometry of a smooth 3-fold X̃T!



Example: 6d SU(2) + 4F on S1

The 3-fold X is a curve Σ ⊂ B with Σ2 = −2, carrying type Is2
Kodaira singular fibers. A resolution X̃ → X is given by the
hypersurface

y2
1 z + a1x1y1z + a3,1σ1y1z

2

− (e1x
3
1 + a2,1σ1e1x

2
1 z + a4,1σ1x1z

2 + a6,2σ
2
1z

3) = 0

of a projective bundle f : Ỹ → B whose fibers have homogeneous
coordinates

[e1x1 : e1y1 : z ][x1 : y1 : σ1]

with certain projective symmetries. Here, σ ≡ σ1e1 = 0 is the
location of the pullback of Σ and e1 = 0 describes the exceptional
divisor E1 of the blowup.



We need to describe X̃ as a collection of surfaces ∪Si , from which
we extract:

1. Triple intersection numbers cijk

2. Mori cone M(X̃ )

First, let us expand a Kähler class J in the following basis:

J = φ0S
′
0 + φ1S

′
1, S ′i ≡ Si |X̃ , S0 = f ∗(Σ)− S1, S1 = E1

Above, S0, S1 are (respectively) the classes of the divisors σ1 = 0
and e1 = 0 in Ỹ .



Why the above choice of basis? This basis is compatible with the
total transform of the singular fiber F = F0 + F1:

f 0

F0

f 1

F1

Since each irreducible component Fi ∼= P1 is a rational curve, as it
moves over Σ it sweeps out a ruled surface Si .

Figure: (Source: arXiv:1504.01387)

This information can be used to determine the birational
equivalence class and Mori cone of each Si .



The triple intersection numbers cijk can straightforwardly be
evaluated as pushforwards of intersection products in the
intersection ring of the ambient space Ỹ to the base B:

cijk =

∫
X̃
S ′i · S ′j · S ′k = f∗

∫
Ỹ
Si · Sj · Sk · [X̃ ].

The above strategy allows us to use the intersection data of
Σ2,KB · Σ = 2g(Σ)− 2− Σ2 to evalute cijk :

c000 =

∫
S0

K 2
S0

= −4

∫
B

(Σ · KB + Σ2) = 8

c111 =

∫
S1

K 2
S1

= 2

∫
B

(2Σ · KB − Σ2) = 4

c011 =

∫
S0

(S0 · S1)2 = −4

∫
B

Σ · KB = 0

c001 =

∫
S1

(S0 · S1)2 = 2

∫
B

(2Σ · KB + Σ2) = −4.



The above computations show X̃ is described by
S = S0 ∪ S1 = F0

—
— F4

0,

F0

F4
0

Cb

F0

Ca

X3

X4

F1 − X3 − X4

X4

where F0 ∩ F4
0 = Ca + Cb satisfies∫

F0

Ca
2 =

∫
F0

Cb
2 = 0,

∫
F4

0

Ca
2 =

∫
F4

0

Cb
2 = −2.



Summary and current status

5d SCFTs, associated to local 3-folds X , are efficiently described
as collection of rational or ruled surfaces S = ∪Si intersecting in
some pattern—this picture has led to a classification of rank one
and two theories

RG flows are encoded in geometry as blowdowns of −1 curves in S

Using M/F theory duality, we can use rank-preserving RG flows
from smooth elliptically fibered 3-folds X̃T to (partially?) classify
5d SCFTs

A method for identifying a collection of surfaces ST associated to
some resolution X̃T → XT has been described for all 6d SCFTs T



Future directions

There is still much work to be done for classification:

1. Explicit description of Mori cones for ST (currently implicit)

2. Mapping out RG flows

3. Twisted compactifications XT × S1
R (in progress)

4. Frozen singularities

Nekrasov partition function?

Flavor symmetry enhancements at the UV fixed point?

Higgs branch?

T-dual pairs of LSTs admitting F-theory construction (without
frozen singularities)?



Thank you!


