Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam data

Chiaki Hikage (U Tokyo, Kavli IPMU)

Cosmic shear

Images before lensing

large-scale structure

Distorted images

Distortion of galaxy images by weak gravitational lensing effect of largescale structure

> Coherent pattern of distortion in galaxy images , i.e., shear, becomes a direct probe of matter density field

Cosmic shear power spectrum

$$\gamma \propto \Omega_{m0} \int_{0}^{z_s} dz_L \frac{d_s(z_L)d_s(z_s - z_L)}{d_s(z_s)} \delta(z_L)$$

distance matter density field

- One can extract the information of the growth of structure by tomographic analysis
- Cosmic shear is sensitive to a combination of σ_8 and Ω_m S₈= $\sigma_8(\Omega_m/0.3)^{\alpha}$ ($\alpha \sim 0.5$)

S₈ tension between Planck and cosmic shear

KiDS/CFHTLenS vs Planck (Hildebrandt et al. 2017, Joudaki et al. 2017 Köhlinger et al. 2017)

DES vs Planck (Troxel et al. 2018, DES collaboration et al. 2018)

0.42

Some systematic or hints for physics beyond Λ CDM?

Prime Focus Instrument

- Wide: 1.5 deg diameter FoV
- Fast and Deep: i~26 (5σ) for Wide layer (20min exposure)
- Excellent Image quality: ~0.58" seeing

@ summit of Mt. Mauna Kea (4200m), Big Island

HYPER SUPRIME-CAM FOV 1.5 DEGREE DIAMETER

лſ

HSC Y1 shear catalog

- Data taken between Mar
 2014 and Apr 2016
- \cdot 6 fields, 137deg²
- HSM re-gaussianization method to measure galaxy shapes
- Selection for 1st year science (e.g., i<24.5, resolution>1/3)
- High number density:
 n_g=25gals/sq.arcmin
- Internal null tests of shear catalogs was done

Map of i-band PSF FWHM

Mandelbaum, Miyatake et al. 2018

Shear catalog meets the HSC Y1 science requirements shown in shaded regions

fractional size residual Correlations of PFS residual 10^{-} BF correction 0.02 /o BF correction 10^{-6} 0.01 fão 5 0.00 PSF stars Y1 science requirement -0.01 -10^{-6} -0.02 -10^{-5} 10^{-1} 100 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 18.022.5 θ [deg] 2PSF

brighter-fatter effect must be corrected

Mass map reconstruction

Oguri et al. 2018

3D mass map

Oguri et al. 2018

tomographic analysis

We divide galaxy samples into 4 redshift bins to extract the information of the growth of matter structure in the expanding Universe

Properties of HSC Y1 shear catalog

4-bin tomographic sample

bin number	z range	$z_{ m med}$	$N_{ m g}$	$n_{ m g}$ [arcmin ⁻²]	$n_{ m g,eff}$ [arcmin ⁻²]
1	0.3 - 0.6	0.446	2842635	5.9	5.4
2	0.6 - 0.9	0.724	2848777	5.9	5.3
3	0.9 - 1.2	1.010	2103995	4.3	3.8
4	1.2 - 1.5	1.300	1185335	2.4	2.0
All	0.3 – 1.5	0.809	8980742	18.5	16.5

 $n_{
m g,eff} = \sum_i e_{
m rms,i}^2/(\sigma_{e,i}^2 + e_{
m rms,i}^2)$ /area

Comparison with other surveys

	survey catalog	area [deg ²]	No. of galaxies	$n_{ m g,eff}$ [arcmin ⁻²]	z range
	KiDS-450	450	14.6M	6.85	0.1 - 0.9
	DES Y1	1321	26M	5.14	0.2 - 1.3
	HSC Y1	137	9.0M	16.5	0.3 - 1.5
4					

Higher number density \rightarrow lower shape noise Higher mean redshift \rightarrow higher signal

How about S₈ from HSC survey ?

Confirmation Bias

People are biased toward confirming their existing beliefs Comparison with other surveys may cause such bias

Blind analysis

- 1. Catalog-level blinding:
 - Three catalogs with different values of shear bias are prepared: one is true, while other two are fake
 - No one can know which catalog is true by oneself.
 Unblinding needs two passwords from each analyst and the blinder-in-chief who is not involved in the analysis
- 2. Analysis-level blinding:
 - Central values of measured cosmological parameters are also blinded
 - \cdot No comparison with other datasets in the blinding phase

Systematics

1. Survey geometry and inhomogeneity of data

2. PSF modeling error and leakage in shape measurement

3. Photo-z uncertainty

4. Intrinsic alignment

5. Baryon physics

1. Survey mask

Shear catalog has complicated survey geometry due to bright star masks

Can we get unbiased estimates of shear power spectra from such data?

Pseudo-Cl estimator

$$\mathbf{C}_{b} = \mathbf{M}_{bb'}^{-1} \sum_{\mathbf{k}}^{k \in k'_{b}} P_{b'k} (\mathbf{\tilde{C}_{k}} - \langle \mathbf{\tilde{N}}_{k} \rangle_{\mathrm{MC}}),$$

- Survey mask effect can be basically removed by multiplying the inverse of the convolution matrix (e.g.,Kogut et al. 2003)
- Shape noise spectrum is estimated by randomly rotating ellipticity data
- The estimator has been tested using simulations with complicated survey geometry (C.H., Hamana, Takada, Spergel 2009)

Mock shear catalogs

- We test pseudo-Cl method using HSC mock shear catalogs by Oguri+ 2018 (Shirasaki+ in prep), which are made from all-sky lensing simulations (Takahashi+ 2017)
 - · Sky positions of sources are identical to data
 - Each source redshift is given from the photo-z PDF
 - Size of each source ellipticity is same as data, but the directions is randomly rotated
 - Convert observed ellipticities to simulated ones

$$\epsilon^{\text{lens}} = \frac{\epsilon^{\text{int}} + 2g + g^2 \epsilon^{\text{int},*}}{1 + |g|^2 + 2\text{Re}[g\epsilon^{\text{int},*}]}$$

(Seitz & Schneider 1995)

Testing pseudo-CI method using mocks

Input cosmology is recovered

parameters	input values	fitted values
S ₈	0.791	0.791±0.005
Ω_{m}	0.279	0.292±0.014
σ8	0.82	0.801±0.020

2. PSF leakage and modeling error

Shape errors & biases are estimated from the image simulations using HST COSMOS galaxy sample (Mandelbaum et al. 2018)

The residual PSF model error and the deconvolution errors of the PSF model ('PSF leakage') are upto ~5% of signals.

3. Photo-z distribution

- P(z) is estimated by reweighting COSMOS 30band photoz data
- Stacked P(z) with different
 methods (e.g.,template fitting,
 neural network, selforganizing map) are used to
 estimate uncertainties of P(z)

 $P_i(z) \rightarrow P_i(z+ \varDelta z_i)$

z range	$100\Delta z_i^{ m method}$	$100\sigma^{ m code}_{\Delta z_i}$	$100\sigma^{ m tot}_{\Delta z_i}$
0.3 - 0.6	2.66	1.01	2.85
0.6 - 0.9	-1.07	0.83	1.35
0.9 - 1.2	-3.79	0.55	3.83
1.2 - 1.5	-3.20	1.98	3.76

comparison of p(z) in 4 tomographic

bins from different estimates

4. Intrinsic alignment (IA)

Galaxies are intrinsically aligned

 $\begin{array}{l} \langle \gamma_i^{\rm obs} \gamma_j^{\rm obs} \rangle = & \langle \gamma_i \gamma_j \rangle + \langle \gamma_i^I \gamma_j \rangle + \langle \gamma_i \gamma_j^I \rangle + \langle \gamma_i^I \gamma_j^I \rangle \\ & \text{cosmic shear} & \text{GI term} & \text{II term} \\ \end{array} \\ \text{We adopt the nonlinear alignment} \\ \text{(NLA) model, which describes the} \end{array}$

measured IA signal upto ~1Mpc

$$egin{aligned} P_{
m II}(k,z) &= F^2(z) P_{
m mm}^{
m NL}(k,z) \ P_{
m GI}(k,z) &= F(z) P_{
m mm}^{
m NL}(k,z). \end{aligned}$$

$$F(z) = -A_{IA}C_1\rho_{\rm crit}\frac{\Omega_m}{D(z)}\left(\frac{1+z}{1+z_0}\right)^{\eta}$$

 Amplitude and power-law index of z-evolution are fitted freely

Troxel et al. 2015

Singh & Mandelbaum 2014

5. Baryon physics

- Baryon physics (e.g., AGN
 feedback) may affect smallscale matter clustering, but
 the details of baryonic
 feedback are uncertain
- We don't use cosmic shear on subMpc scales
- We test the baryon impact on
 final result in the most
 extreme OWLS AGN feedback
 model (Harnois-Deraps et al.
 2015, Mead et al. 2015)

The ratio of matter power spectrum between hydro-sim. and DM only sim.

Chisari et al. 2018

Parameters & Priors

Nested sampling likelihood analysis using "multinest" in MontePython

Parameter	symbols	prior	
physical dark matter density	$\Omega_{ m c}h^2$	flat [0.03,0.7]	
physical baryon density	$\Omega_{ m b} h^2$	flat [0.019,0.026]	
Hubble parameter	h	flat [0.6,0.9]	
scalar amplitude on $k = 0.05 \text{Mpc}^{-1}$	$\ln(10^{10}A_s)$	flat [1.5,6]	Cosmology
scalar spectral index	$n_{ m s}$	flat [0.87,1.07]	e controlegy
optical depth	au	flat [0.01,0.2]	
neutrino mass	$\sum m_{ u} [\text{eV}]$	fixed $(0)^{\dagger}$, fixed (0.06) or flat [0,1]	
dark energy EoS parameter	w	fixed $(-1)^{\dagger}$ or flat $[-2, -0.333]$	
amplitude of the intrinsic alignment	A_{IA}	flat [-5,5]	Intrinsic alignment
redshift dependence of the intrinsic alignment	$\eta_{ m eff}$	flat $[-5, 5]$	
baryonic feedback amplitude	A_B	fixed (0) [†] or flat $[-5,5]$	Baryonic effect
PSF leakage	ã	Gauss (0.057, 0.018)	shoar
residual PSF model error	\tilde{eta}	Gauss (-1.22, 0.74)	Shear
uncertainty of multiplicative bias m	$100\Delta m$	Gauss (0, 1)	measurement error
photo- z shift in bin 1	$100\Delta z_1$	Gauss (0,2.85)	
photo- z shift in bin 2	$100\Delta z_2$	Gauss (0,1.35)	pnoto-z
photo- z shift in bin 3	$100\Delta z_3$	Gauss (0, 3.83)	uncertainties
photo- z shift in bin 4	$100\Delta z_4$	Gauss (0,3.76)	

Fiducial setup: 5 cosmological and 9 nuisance parameters

Shear power spectra of HSC Y1 data

- 4-bin tomographic analysis in z range from 0.3 to1.5
- Focus on the scale
 300<l<1900 to avoid
 potential systematic
 effects
- S/N of cosmic shear
 (EE mode) is ~16
- BB & EB signals are consistent with zero

Model fitting

Excellent fits of our modeling $\chi^2_{min}=45.4$ against effective d.o.f=57.1 (p-value is 0.87)

Definition of d.o.f (Raveri & Hu 2018)

 $\mathrm{DOF} = N_\mathrm{data} - N_\mathrm{eff}$

 $N_{\mathrm{eff}} = N_{\mathrm{para}} - \mathrm{tr}[\mathcal{C}_{\mathrm{prior}}^{-1}\mathcal{C}_{\mathrm{post}}]$

Robustness of S₈ constraints

Systematic test was done before unblinding

		Fiducial (ACDM)
	⊢	w/o shape err.
	⊢	w/o photoz err.
		Ephor AB, stacked
	⊢	MLZ, stacked
	· → ● → →	Mizuki, stacked
		NNPZ, stacked
	⊢	Frankenz, stacked
		DEMP, stacked
F	• • •	w/o IA
	⊢ −−−1	η fixed to be 3
		m, fixed to be 0.06eV
⊢ (• • • •	m, varied
F	• •	A _B varied
	⊢ •−−+	AGN feedback model $(A_B = 1)$
I		w/o Lowest z bin
	⊢	w/o Mid-low z bin
		w/o Mid-high z bin
F	• · · · · · · · · · · · · · · · · · · ·	w/o Highest z bin
	⊢	l _{max} extended to 3500
H	• •	Lower-half bin
	⊢ (Higher-half 1 bin
	⊢	Fixed Cov. (bestfit cosmology)
0.1	0	0.1 0.2 0.3
	$\wedge S_{-} = 0$	$\pi_{-}(\Omega / 0.3)^{0.45}$
		8(**m/ 0.0)

shape error: <0.1 σ Photo-z error: ~0.6 σ Intrinsic alignment: <0.5 σ Massive neutrino: < 0.5 σ Baryonic effect: < 0.6 σ

No significant internal inconsistency

Our constraint is robust against various systematics

Unblinding in Jun 26, 2018

Two passwords of Blinder-in-Chiefand me are necessary to unblind the catalogs

We decided not to change the unblinded results whatever they are

Blnder-in-chief: Jim Bosch (Princeton) is not involved in the analysis team

 S_8

One of the tightest constraints ever obtained from weak lensing surveys

() m

 S_8

Consistent with other lensing surveys

 S_8

 Ω_{m}

Consistent with Planck

S₈

Consistency is evaluated using Bayesian Evidence test and minimum χ^2 based statsitcis (Raveri & Hu 2018)

S₈ from the three WL surveys are systematically lower than Planck \rightarrow Additional parameter beyond \land CDM is necessary?

Evaluation of consistency between different datasets

Bayesian Evidence: the probability of observing dataset D in the basic model M

$$P(\vec{D}|H) = \int d^N \theta \frac{P(\vec{D}|\vec{\theta}, M) P(\vec{\theta}|M)}{\text{likelihood prior}}$$

• Evidence ratio

 $R = \frac{P\left(\vec{D}_1, \vec{D}_2 | M\right)}{P\left(\vec{D}_1 | M\right) P\left(\vec{D}_2 | M\right)}$

two datasets share the same cosmological parameters two datasets have different cosmological parameters

M: \land CDM, wCDM, \land CDM+ $\nu \cdots$

ref. Marshall et al. 2006, DES cosmology paper

Jeffreys' Scale of Evidence for Bayes Factors			
Bayes factor	Interpretation		
$B_{ij} < 1/10$	Strong evidence for \mathcal{M}_j		
$1/10 < B_{ij} < 1/3$	Moderate evidence for \mathcal{M}_i		
$1/3 < B_{ii} < 1$	Weak evidence for \mathcal{M}_i		
$1 < B_{ij} < 3$	Weak evidence for M_i		
$3 < B_{ij} < 10$	Moderate evidence for \mathcal{M}_i		
$B_{ij} > 10$	Strong evidence for \mathcal{M}_i		

wCDM

wCDM model increases overlapped region between HSC and Planck, but has no significant preference to favor wCDM

Neutrino mass

Cosmic shear favors massive neutrino mass

Ho tension

Low Ω_m value of cosmic shear measurements push up H₀ value

H₀ tension is slightly alleviated by combining Planck with HSC $(3.7 \sigma \rightarrow 3.1 \sigma)$

Intrinsic Alignment

Consistent with IA amplitudes extrapolated from bright red galaxies (Joachimin+ 2011, Singh+ 2015)

No evolution signal of IA

IA amplitudes of blue galaxies is not comparable to red ones

Summary

- First cosmological analysis from Hyper Suprime-Cam survey
- Blind analysis to test various systematics, such as shear measurement, photo-z, intrinsic alignment, baryon feedback
- 3.6% measurement on S₈= $\sigma_8 (\Omega_m/0.3)^{0.45} = 0.800^{+0.029}_{-0.028}$ from cosmic shear power spectra
- The value is consistent with Planck, but is lower at $\sim 2\sigma$ level as other lensing surveys such as DES and KiDS shows
- This is just from 11% of HSC planned survey. Upcoming data should clarify the situation