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Hadamard and negatively curved surfaces (1898)
The set E of vectors at a base point whose geodesics are bounded
Les surfaces à courbures opposées et leurs lignes géodésique. J. Math. Pures Appl. 4 (1898): 27–73.

Picture from Hadamard

“The manner in which these
sets arise clearly recalls that of
the sets encountered by Mr.
Poincaré, introduced more
explicitly to the subject by Mr.
Bendixson, then studied by Mr.
Cantor and which, while being
perfect, are not dense in any
interval. Here the angles λ play
the role of the intervals called
(aν,bν) by Mr. Cantor.”
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The Maxwell–Boltzmann Ergodic Hypothesis

James Clerk Maxwell (1831–1879) and Ludwig Boltzmann
(1844–1906) aimed to give a rigorous formulation of the kinetic
theory of gases and statistical mechanics.

Boltzmann’s H-theorem says that the time and space
(ensemble) averages of an observable (a function on the phase
space) agree.
Vorlesungen über Gastheorie I & II. Leipzig: Ambrosius Barth, 1896–1898, or
Gesamtausgabe, Graz: Akademische Druck und Verlagsanstalt, 1981, 1.
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The Maxwell–Boltzmann Ergodic Hypothesis

Boltzmann’s H-theorem assumed the Ergodic Hypothesis:

The trajectory of the point representing the state of the system in
phase space passes through every point on the constant-energy
hypersurface of the phase space.
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The Quasi-Ergodic Hypothesis

Poincaré and many physicists doubted the Ergodic Hypothesis
since no example satisfying it had been exhibited.
Poincaré: Sur la théorie cinétique des gas. Revue Générale des Sciences pures et appliqueés 5 (1894), 513–521

Paul and Tatiana Ehrenfest proposed the alternative
Quasi-Ergodic Hypothesis: The trajectory of the point
representing the state of the system in phase space is dense on the
constant energy hypersurface of the phase space.
Begriffliche Grundlagen der statistischen Auffassung in der Mechanik.
In Encyklopaedie der Mathematischen Wissenschaften, Leipzig 1912: Teubner. 4: Art. 32, 1–90.

The quest was on. . .
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Ein mechanisches System mit quasiergodischen
Bahnen

Emil Artin:
Ein mechanisches System mit quasiergodischen Bahnen
Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität, vol. 3 (1924), pp. 170-175.

“May it be permitted to point to a simple mechanical system
with 2 degrees of freedom and quasiergodic orbits upon which
the author came in the course of a correspondence with Mr. G.
Herglotz. . .

. . . From this, one already obtains that the “quasiergodic chains”
have the cardinality of the continuum. More! According to
results of Mr. Celestyn Burstin almost all numbers ξ have a
“quasiergodic” continued-fraction expansion. Therefore, almost
all of the geodesic lines through a point of the surface are
quasiergodic.”
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Ein mechanisches System mit quasiergodischen
Bahnen

“Let us remark on the physical
realizability. One obtains. . . the
surface of rotation of a tractrix (curve
of pursuit) of a string of length 1. It is
known to have curvature K =−1, so
our half-plane can be partially
developed onto this surface. . . But
with that we have our physical
realization. . . Our mechanical system
can be interpreted. . . as the force-free
motion of a point particle (the point
being constrained to remain on the
surface).”
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Free particle motion on. . .
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Breaking the configuration space. . .
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Foulon–Ding–Geiges–Weinstein–
Handel–Thurston surgery
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Agenda

Foulon–Ding–Geiges–Weinstein–Handel–Thurston surgery
is a contact surgery on the unit tangent bundle of a surface.

This forces orbit complexity.

It produces several contact 3-flows.

From the fiber flow a flow with quadratic or exponential
complexity.

From the geodesic flow a contact structure whose every
Reeb flow has positive entropy.

If the surgered geodesic flow is hyperbolic, then it has
increased orbit growth.

There are manifolds with 2 contact flows, one
exponentially complex, one polynomially.

The entire talk is in dimension 3.
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Definition of contact Anosov flow

Definition (Contact, Anosov, algebraic)

A 1-form A is contact :⇔A∧dA is a volume.
Its Reeb field RA is defined by RA ∈ kerdA & A(RA) = 1.
Its flow ϕ : R×M → M preserves A (contact flow)

Φ is an Anosov flow if TM =RX
flow

⊕E+

unstable

⊕E−

stable

,

∃ C > 0, λ ∈ (0,1) ∀t > 0:

‖Dϕ−t � E+‖ ≤ Cλt and ‖Dϕt � E−‖ ≤ Cλt .

Algebraic :⇔ finitely covered by the geodesic flow of a surface
[or the suspension of a diffeomorphism of the 2-torus].1

1not contact—hence out of scope!
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Comments

Anosov flows are abundant (surgeries by Franks–Williams,
Christy, Fried, Handel–Thurston, Goodman, Bonatti–Langevin,
Barbot, Fenley, Béguin–Bonatti–Yu).

But, experts thought surgeries could not produce contact flows

The method for showing that this surgery yields contact flows
was new: It involves a suitable deformation of the contact form
and a time-change adapted to this deformation.
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Nonalgebraic flows

Theorem (Exotic contact Anosov flows)

Geodesic flows of negatively curved surfaces admit smooth Dehn
surgeries that produce new (analytic) contact Anosov flows. These
surgeries include the Handel–Thurston surgery, and the resulting
flow always has the following properties:

1 It acts on a manifold that is not a unit tangent bundle.

2 It is not topologically orbit equivalent to an algebraic flow.

3 It has “exponentially more” closed orbits than its progenitor. . .

4 . . . even in any one homology class.
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“Exotic” properties

Theorem (Contact Anosov flows on hyperbolic manifolds)

∃ contact Anosov flows on hyperbolic 3-manifolds.2 For them3

each closed orbit is isotopic to infinitely many others.4 and any
Reeb flow5 with the same contact structure has exponential orbit
growth, infinite free homotopy classes, and exponential growth
in each homology class.

2If M àK is a hyperbolic manifold, e.g., K projects to a filling geodesic, then
all but finitely many of our Dehn surgeries produce a hyperbolic manifold.

3and for any topologically orbit equivalent contact Anosov flow
4Barthelmé–Fenley: Freely homotopic closed orbits are isotopic

—so there is no knot theory of closed orbits in a free homotopy class.
5A(RA) = 1 & dA(RA, ·) = 0
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Mechanisms
due to Fenley and Barbot

These flows are R-covered, i.e., on the universal cover the stable
and unstable leaf spaces are R.
That each orbit lies in exactly one (center-)un/stable leaf
defines an embedding of OΦ in L u ×L s. Its image O is either

L u ×L s—“product flow” (orbit-equivalent to suspension
of toral automorphism), or

the open set between graphs of homeomorphisms
α,β : L u →L s—“skewed”.
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In the product structure, :P
is a foliation by horizontal 

in H
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 P 

is a foliation by vertical lines in H
. In the skew

ed structure :P
 is the foliation 

by horizontal segm
ents in H

 and P 
is a foliation by (bounded) parallel seg-

m
ents m

aking an angle =/= 1r /2 w
ith the horizontal; see Figure 7. Suspensions 

have a product structure and geodesic flow
s have a skew

ed structure. 
T

he next result is the central tool of this article. It show
s that a transitive, 

A
nosov flow

 has, up to isotopy, either a product or skew
ed structure 

in the universal cover. In fact the sam
e holds if w
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e that one of :P
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ark that B
arbot [Ba] has also obtained, using different m

ethods, a 
proof of T

heorem
 3.4. 

T
H

E
O

R
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 3.4. If ci> is a transitive Anosov flow

 in M
3 for w

hich one of 
the stable or unstable foliations is 

then ci> is an 
flow. 
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ore the structure induced by the foliations :P

 and P 
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(equivalently in 0

) is, up to isotopy, either skewed or product. 

Proof. U
p to a finite cover w
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e that ci> is orientable. Suppose 
that :P
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If the structure of the foliations is of product type, then 

clearly the flow
 is JR-covered. Therefore assum
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is 

G
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R-covered cases [Picture by Fenley]
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Mechanisms
due to Fenley and Barbot

Ls ∈ Ls I := {Lu ∈ Lu | Lu ∩ Ls ≠ ∅} I
Ls ≃ R ∂I 2 φt

Ls ηs(Ls)
∂I ηu

Γ(ηs) := {(λs, ηs(λs)) , λs ∈ Ls} ⊂ Ls × Lu Γ(ηu) := {(ηu(λu), λu) , λu ∈
Lu} ⊂ Ls × Lu ηs ηu O

Ls × Lu Γ(ηs) Γ(ηu) F̃s F̃u O

Ls

Lu

Γ(ηs)

Γ(ηu)

O Ls × Lu
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M
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ANOSOV FLOWS IN DIMENSION 3 — PRELIMINARY VERSION 13

Proposition 3.16 (Barbot [Bar01]). If �t is a contact Anosov flow, then it is R-covered.

As a corollary, all the examples obtain by Foulon–Hasselblatt surgery are R-covered. In fact, I believe
that we have a much stronger relationship between R-covered and contact Anosov flows:

Conjecture 3.17. If �t is R-covered, then it is orbit equivalent to a contact Anosov flow.

Remark 3.18. Barbot [Bar96] proved that every R-covered Anosov flow on a graph-manifold is orbit
equivalent to one obtained by generalized Handel–Thurston surgery (see [Bar96] for the definition of gen-
eralized Handel–Thurston). Now, by Foulon–Hasselblatt [FH13], any flow obtained by (non generalized)
Handel–Thurston surgery is orbit equivalent to a contact flow. If one can prove that every generalized
Handel–Thurston surgery is actually just a classical Handel–Thurston surgery, then the conjecture above
would be proven for graph-manifolds.

We will state without proofs two important results on R-covered Anosov flows

Proposition 3.19 (Barbot [Bar95a], Fenley [Fen94]). Let �t be an Anosov flow on a 3-manifold. We
have Ls ' R if and only if Lu ' R.

So, in particular, it makes sense not to di↵erentiate between the stable and unstable leaf space in the
definition of R-covered.

One of the most important result about R-covered Anosov flows is the following:

Theorem 3.20 (Barbot [Bar95a]). Let �t be a R-covered Anosov flow on a closed 3-manifold M .

• either no leaf of eFs intersect every leaf of eFu (and vice-versa),
• or �t is orbit equivalent to a suspension of an Anosov di↵eomorphism

Definition 3.21. If �t is a R-covered Anosov flow and is not the suspension of an Anosov di↵eomorphism,
then �t is said to be skewed.

The previous result implies that the structure of the orbit space and the stable and unstable foliations
are particularly nice for skewed R-covered Anosov flows: Consider a leaf �s 2 Ls. Then the set

Iu(�s) := {�u 2 Lu | �u \ �s 6= ;}
is an open, non-empty, connected and bounded set in Lu ' R. Hence it admits an upper and lower
bound. Let ⌘s(�s) 2 Lu be the upper bound and ⌘�u(�s) 2 Lu be the lower bound. Similarly, for any
�u 2 Lu, define ⌘u(�u) and ⌘�s(�u) as, respectively, the upper and lower bounds in Ls of the set of
stable leaves that intersects �u. We have the following result (see Figure 10):

Proposition 3.22 (Fenley [Fen94], Barbot [Bar95a, Bar01]). Let �t be a skewed R-covered Anosov flow
in a 3-manifold M , where Fs is transversely orientable. Then, the functions ⌘s : Ls ! Lu and ⌘u : Lu !
Ls are Hölder-homeomorphisms and ⇡1(M)-equivariant. We have (⌘u)�1 = ⌘�u, and (⌘s)�1 = ⌘�s.
Furthermore, ⌘u � ⌘s and ⌘s � ⌘u are strictly increasing homeomorphisms and we can define ⌘ : O ! O by

⌘(o) := ⌘u
⇣
eFu(o)

⌘
\ ⌘s

⇣
eFs(o)

⌘
.

Lu

Ls

eFs(o)

eFu(o)

o

⌘s
⇣
eFs(o)

⌘

⌘u
⇣
eFu(o)

⌘
⌘ (o)

L

Figure 10. The orbit space in the R-covered case

If Fs is not transversely orientable the homeomorphisms ⌘s, ⌘u are twisted ⇡1(M)-equivariant, i.e., if

g 2 ⇡1(M) reverses the orientation of fM , then

⌘s(g · l) = g · ⌘�s(l) and ⌘u(g · l) = g · ⌘�u(l)

The orbit space of a skewed R-covered flow [Pictures by Barthelmé]

Fenley: IfΦ is skewed and M is a hyperbolic manifold, then
every closed orbit is freely homotopic to infinitely many others.
Barthelmé: Actually, isotopic.
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Surgery in phase space

Annulus Σ= S1 × (−π/2−ϵ,−π/2+ϵ) ⊂ S1 ×S1 before surgery
Annulus Σ= S1 × (π/2−ε,π/2+ε) ⊂ S1 ×S1 before surgery
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Darboux flow box

γ: Normal vectors to closed geodesic = knot tangent to the
contact structure (Legendrian, A(γ′) ≡ 0) and transverse to both
E− and E+.

Smooth annulus Σ: γ⊂ΣtX , Σt E−⊕E+ away from γ

∃ coordinates (s,w) on Σ such that S1 3 s = parameter for γ, and

onΛ := ⋃
t∈(−η,η)ϕ

t(Σ) [t = transverse parameter = flow time]

A = dt +w ds, dA = dw∧ds, A∧dA = dt ∧dw∧ds.
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Surgery and volume-preservation

Define (1,q)-Dehn surgery (q ∈N) by the transition map

F : S1 × (−ε,ε) → S1 × (−ε,ε), (s,w) 7→ (s +f (w),w)

with f : [−ε,ε] → S1, w 7→ exp(−iqg(w/ε)).
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Surgery and volume-preservation

Define (1,q)-Dehn surgery (q 2N) by the transition map

F : S1 £ (°≤,≤) ! S1 £ (°≤,≤), (s,w) 7! (s +f (w),w)

with f : [°≤,≤] ! S1, w 7! exp(°iqg(w/≤)).

Contact
Anosov flows
on hyperbolic
3-manifolds

Patrick Foulon,
Boris

Hasselblatt,
Anne Vaugon

Introduction

Summary of results

Definitions

Statement of results

Comments

Proofs

Surgery

Local computations

Intrinsic
complexity of
the contact
structure

Hyperbolic
manifolds

Contact surgery

Define contact (1,q)-Dehn surgery (q 2N) by the transition map

F : S1 £ (°≤,≤) ! S1 £ (°≤,≤), (s,w) 7! (s +f (w),w)

with f : [°≤,≤] ! S1, w 7! exp(°iqg(w/≤)).

°1 10

2º

g °≤ ≤0
°2qº

°qg(w/≤)

The function g

Then F§A = A +wf 0(w)dw (oops!) and F§dA = dA.
At least the new flow preserves the Liouville volume A^dA.
It has the same Lyapunov exponents as the original flow.

Contact Anosov flows on hyperbolic 3–manifolds 1235

neighborhoods of the surgery annulus, and while the initial transition map between these
on f0g ⇥ S

1 ⇥ .�✏; C✏/ is the identity, the surgered manifold is defined by imposing
the desired shear as the transition map on this annulus. The use of flow-box charts
ensures that the original vector field defining the contact Anosov flow defines a smooth
vector field on the surgered manifold, that is, that the orbits are reglued to smooth
curves.

The transition map pulls meridians around the equator q 2 N times before exiting (see
Figure 2).

Figure 2: Surgery in the chart (here, q D 1)

Definition 3.1 The contact .1; q/–Dehn surgery for q 2 N is defined by imposing on
the aforementioned chart overlap the transition map

(2) F W S
1 ⇥ .�✏; ✏/ ! S

1 ⇥ .�✏; ✏/; .s; w/ 7! .s C f .w/; w/:

Here (see Figure 3),

f W Œ�✏; ✏ç ! S
1; w 7! exp.�iqg.w=✏//;

where gW R ! Œ0; 2⇡ç is a monotone smooth function with 0  g
0  4 even such that

g..�1; �1ç/ D f0g and g.Œ1; 1// D f2⇡g (see Figure 3).

!1 10

2!

g !! !0
!2q"

!qg.w=!/

Figure 3: The function g

Because of our use of flow-box charts it is apparent that the vector field generating the
original contact Anosov flow defines a smooth vector field X on the surgered manifold

Geometry & Topology, Volume 17 (2013)

Then F§A^dA = A^dA: the new flow XF preserves volume.
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Figure 3: The function g

Because of our use of flow-box charts it is apparent that the vector field generating the
original contact Anosov flow defines a smooth vector field X on the surgered manifold
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Then F∗A∧dA = A∧dA: the new flow XF preserves volume.
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Fixing the contact form
“Splitting the difference”

But F∗A = A +wf ′(w) dw. To fix, “split the difference”:

h(t,w) := 1

2
λ(t)

λ : R→[0,1] is a smooth bump function

∫ w

−ε
xf ′(x) dx on (−η,η)×(−ε,ε) and h = 0 outside.

Then dh|t=0 = 1
2 wf ′(w) dw ; Ah := A±dh for ±t ≥ 0 gives

F∗(Ah) = F∗(A−dh) = F∗A−F∗ dh = (A+2dh)−dh = A+dh = Ah

⇒ Ah defines a contact form on the surgered manifold.

Its Reeb field is a time-change Xh := XF

1±dh(XF )
.

Did I mention hyperbolicity?
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Hyperbolicity

The flow is hyperbolic (only) if q ∈N by the cone criterion—the
surgery transition kicks cones into cones. . .

. . . and indeed in such a way that:

Proposition (Lyapunov exponents)

The positive Lyapunov exponent of XF is no less than the positive
Lyapunov exponent of X, so

hLiouville(XF ) ≥ hLiouville(X)

by the Pesin entropy formula.
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Periodic orbit growth

Suppose the original geodesic flow X0 comes from a surface of
constant curvature.

constant curvature

htop(X0) = hLiouville(X0) ≤
Foulon Entropy Rigidity

hLiouville(Xh) < htop(Xh)hLiouville(Xh)

“no less Lyapunov exponent”

< htop(Xh)

⇒ More periodic orbits: htop(Xh) > htop(X0)

NB: lim
t→∞ thtop(ϕ)Pt(ϕ)e−thtop(ϕ) = 1, i.e., Pt(ϕ)

:=#closed orbits of length up to t

∼ ethtop(ϕ)

thtop(ϕ)
.
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This contact structure forces orbit growth
Other Reeb fields

Given a contact structure ξ= kerα, consider another contact
form α′ = fα where f ∈C ∞(M ,Rà {0}). Then kerα′ = kerα= ξ.

But dα′ = df ∧α+ f dα —so kerdα′ is quite different.

The condition ιRα′ dα′ = 0 implies that Rα and Rα′ are not
collinear unless f is constant.

A Reeb field on a contact manifold (M ,ξ) is the Reeb field of any
contact form α with ξ= kerα. “A contact form on (M ,ξ)”

By Lieberman’s Theorem, these are exactly the
nowhere-vanishing vector fields transverse to ξ whose flows
preserve ξ.
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This contact structure forces orbit growth
(Not new: if a Reeb flow is Anosov then others have positive entropy)

Theorem (Periodic orbit growth in homotopy classes)

(MF ,Ah) = contact manifold from surgery (not assumed
hyperbolic), Xh Anosov, ρ a primitive free homotopy class
containing an Xh-periodic orbit, λ hypertight 6 contact form.

∃a > 0,b ∈Rwith Nρ
T (λ) ≥ a ln(T)+b for all T > 0.7

[We use estimates by Barthelmé–Fenley.]

Theorem (Entropy without hyperbolicity—after Alves (“separating”))

(MF ,Ah) = contact manifold from surgery along a simple
geodesic (so MF is not hyperbolic), Ah not assumed Anosov.
If λ is a contact form on (MF ,ker(Ah)), then htop(Rλ) > 0.

6:⇔“no contractible periodic Reeb orbit.”
If we drop “hypertight” and assume MF hyperbolic we get “ln(lnT).”

7N
ρ
T (λ) = number of closed orbits in ρ of length up to T .
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More contact flows
An S1-family of contact Anosov flows on SH

Structure equations: [V ,X ]=:

(
0 1/2

1/2 0

)

H
horizontal

, [H ,X ] =

(
0 −1/2

1/2 0

)

V
vertical

, [H ,V ] =

(
1/2 0
0 −1/2

)

X
geodesic

Contact flows: B := dA(V , ·) is a contact form with RB = H ;
so is E := Eθ := cosθA+ sinθB,8

and P := RE = cosθX + sinθH is Anosov:
Q := cosθH − sinθX and ζ± := Q±V give

[P,ζ±] =∓ζ± so 0 = [P, f ζ±]

f ζ± invariant

= (ḟ ∓ f )ζ±⇒ f = e±t .

(S1-family of Anosov flows)
V = RC with C := dA(H , ·) gives a periodic flow, the fiber rotation.

8E ∧dE(P,V ,Q ) ≡ 1
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More contact flows
The fiber rotation

V
surgery7−−−−−→

• parabolic flow (quadratic growth) using a simple geodesicCONTACT FORM — AFTER CONTACT SURGERY 3

⇡(⌃)

Therefore, UTS \ T ƒ M \ TG ƒ SÕ ◊ S1 where SÕ is a (possibly non-connected) surface with
boundary and Y generates the S1 component. Thus, the Reeb vector field is completely understood
in M \ TG and all its orbits are periodic. In TG, the tori t = cst are invariant by the Reeb flow and
foliated by Reeb orbits of slope ≠g(t) (the foliation is linear).

Conjecture 1. If ” is simple, the growth rate of contact homology for ›—M = ker(—M ) is polynomial.

Sketch of proof : The number of tori t = cst foliated by Reeb periodic with period smaller than
T grows quadratically in T . This should be written properly, in particular, one has to perturb the
contact form to obtain non-degenerate periodic orbits.

4. Dynamical properties of (M,—M ) if ” is not simple

If ” is not simple, fi≠1 (fi(�±)) is not a thickened tori and the dynamic is not anymore described
by a suspension... On UTS \ �± ƒ M \ �± the Reeb vector field is tangent to the (UTS)-fiber and
the shear map shifts the orbits.

⇡(⌃)

Conjecture 2. If ” is not simple, the growth rate of the number of periodic orbits of R—M is expo-
nential (with respect to the period).

Conjecture 3. If ” is not simple, the growth rate of contact homology for ›—M = ker(—M ) is expo-
nential.

Question : How can we describe the dynamics here ?
It may be tricky to describe the dynamics near the boundary of fi≠1 (fi(�±)). Our conjecures do

not require a perfect understanding of the periodic orbits. For instance, having a unique periodic
orbit in a lot (more precisely an exponential lot) of di�erent homotopy classes would be enough...

• (nonuniformly) hyperbolic flow otherwise (Heberle).

CONTACT FORM — AFTER CONTACT SURGERY 3

⇡(⌃)

Therefore, UTS \ T ƒ M \ TG ƒ SÕ ◊ S1 where SÕ is a (possibly non-connected) surface with
boundary and Y generates the S1 component. Thus, the Reeb vector field is completely understood
in M \ TG and all its orbits are periodic. In TG, the tori t = cst are invariant by the Reeb flow and
foliated by Reeb orbits of slope ≠g(t) (the foliation is linear).

Conjecture 1. If ” is simple, the growth rate of contact homology for ›—M = ker(—M ) is polynomial.

Sketch of proof : The number of tori t = cst foliated by Reeb periodic with period smaller than
T grows quadratically in T . This should be written properly, in particular, one has to perturb the
contact form to obtain non-degenerate periodic orbits.

4. Dynamical properties of (M,—M ) if ” is not simple

If ” is not simple, fi≠1 (fi(�±)) is not a thickened tori and the dynamic is not anymore described
by a suspension... On UTS \ �± ƒ M \ �± the Reeb vector field is tangent to the (UTS)-fiber and
the shear map shifts the orbits.

⇡(⌃)

Conjecture 2. If ” is not simple, the growth rate of the number of periodic orbits of R—M is expo-
nential (with respect to the period).

Conjecture 3. If ” is not simple, the growth rate of contact homology for ›—M = ker(—M ) is expo-
nential.

Question : How can we describe the dynamics here ?
It may be tricky to describe the dynamics near the boundary of fi≠1 (fi(�±)). Our conjecures do

not require a perfect understanding of the periodic orbits. For instance, having a unique periodic
orbit in a lot (more precisely an exponential lot) of di�erent homotopy classes would be enough...
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More contact flows
The fiber rotation

V generates an elliptic flow (fiber rotation). V
surgery7°°°°°!

• parabolic flow (quadratic growth) using a simple geodesic
CONTACT FORM � AFTER CONTACT SURGERY 3

�(�)

Therefore, UTS \ T � M \ TG � S� � S1 where S� is a (possibly non-connected) surface with
boundary and Y generates the S1 component. Thus, the Reeb vector field is completely understood
in M \ TG and all its orbits are periodic. In TG, the tori t = cst are invariant by the Reeb flow and
foliated by Reeb orbits of slope �g(t) (the foliation is linear).

Conjecture 1. If � is simple, the growth rate of contact homology for ��M = ker(�M ) is polynomial.

Sketch of proof : The number of tori t = cst foliated by Reeb periodic with period smaller than
T grows quadratically in T . This should be written properly, in particular, one has to perturb the
contact form to obtain non-degenerate periodic orbits.

4. Dynamical properties of (M,�M ) if � is not simple

If � is not simple, ��1 (�(�±)) is not a thickened tori and the dynamic is not anymore described
by a suspension... On UTS \ �± � M \ �± the Reeb vector field is tangent to the (UTS)-fiber and
the shear map shifts the orbits.

�(�)

Conjecture 2. If � is not simple, the growth rate of the number of periodic orbits of R�M is expo-
nential (with respect to the period).

Conjecture 3. If � is not simple, the growth rate of contact homology for ��M = ker(�M ) is expo-
nential.

Question : How can we describe the dynamics here ?
It may be tricky to describe the dynamics near the boundary of ��1 (�(�±)). Our conjecures do

not require a perfect understanding of the periodic orbits. For instance, having a unique periodic
orbit in a lot (more precisely an exponential lot) of di�erent homotopy classes would be enough...

• hyperbolic flow (horseshoe) otherwise.

CONTACT FORM � AFTER CONTACT SURGERY 3
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Therefore, UTS \ T � M \ TG � S� � S1 where S� is a (possibly non-connected) surface with
boundary and Y generates the S1 component. Thus, the Reeb vector field is completely understood
in M \ TG and all its orbits are periodic. In TG, the tori t = cst are invariant by the Reeb flow and
foliated by Reeb orbits of slope �g(t) (the foliation is linear).

Conjecture 1. If � is simple, the growth rate of contact homology for ��M = ker(�M ) is polynomial.

Sketch of proof : The number of tori t = cst foliated by Reeb periodic with period smaller than
T grows quadratically in T . This should be written properly, in particular, one has to perturb the
contact form to obtain non-degenerate periodic orbits.

4. Dynamical properties of (M,�M ) if � is not simple

If � is not simple, ��1 (�(�±)) is not a thickened tori and the dynamic is not anymore described
by a suspension... On UTS \ �± � M \ �± the Reeb vector field is tangent to the (UTS)-fiber and
the shear map shifts the orbits.

�(�)

Conjecture 2. If � is not simple, the growth rate of the number of periodic orbits of R�M is expo-
nential (with respect to the period).

Conjecture 3. If � is not simple, the growth rate of contact homology for ��M = ker(�M ) is expo-
nential.

Question : How can we describe the dynamics here ?
It may be tricky to describe the dynamics near the boundary of ��1 (�(�±)). Our conjecures do

not require a perfect understanding of the periodic orbits. For instance, having a unique periodic
orbit in a lot (more precisely an exponential lot) of di�erent homotopy classes would be enough...
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The entropy gap

Foulon rigidity: hLiouville(ϕt) < htop(ϕt)—but no control of the gap.
Before:

constant curvature

htop(X0)

=htop(gt )

= hLiouville(X0) ≤
Foulon Entropy Rigidity

hLiouville(Xh) < htop(Xh)hLiouville(Xh)

“no less Lyapunov exponent”

< htop(Xh)

=htop(ϕt )

⇒More periodic orbits:

htop(ϕt) > htop(gt).

NB: lim
t→∞ thtop(ϕ)Pt(ϕ)e−thtop(ϕ) = 1, i.e., Pt(ϕ) ∼ ethtop(ϕ)

thtop(ϕ)
.
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The entropy gap quantified—an open problem
(Idea: Bishop–Hughes–Vinhage–Yang @MRC2017)

B–H–V–Y idea to quantify the gap in htop(ϕt) > htop(gt):

Contact Anosov flows on hyperbolic 3–manifolds 1235

neighborhoods of the surgery annulus, and while the initial transition map between these
on f0g ⇥ S

1 ⇥ .�✏; C✏/ is the identity, the surgered manifold is defined by imposing
the desired shear as the transition map on this annulus. The use of flow-box charts
ensures that the original vector field defining the contact Anosov flow defines a smooth
vector field on the surgered manifold, that is, that the orbits are reglued to smooth
curves.

The transition map pulls meridians around the equator q 2 N times before exiting (see
Figure 2).

Figure 2: Surgery in the chart (here, q D 1)

Definition 3.1 The contact .1; q/–Dehn surgery for q 2 N is defined by imposing on
the aforementioned chart overlap the transition map

(2) F W S
1 ⇥ .�✏; ✏/ ! S

1 ⇥ .�✏; ✏/; .s; w/ 7! .s C f .w/; w/:

Here (see Figure 3),

f W Œ�✏; ✏ç ! S
1; w 7! exp.�iqg.w=✏//;

where gW R ! Œ0; 2⇡ç is a monotone smooth function with 0  g
0  4 even such that

g..�1; �1ç/ D f0g and g.Œ1; 1// D f2⇡g (see Figure 3).

!1 10

2!

g !! !0
!2q"

!qg.w=!/

Figure 3: The function g

Because of our use of flow-box charts it is apparent that the vector field generating the
original contact Anosov flow defines a smooth vector field X on the surgered manifold

Geometry & Topology, Volume 17 (2013)

Contact
Anosovflows
onhyperbolic

3-manifolds

PatrickFoulon,
Boris

Hasselblatt,
AnneVaugon

Introduction

Summaryofresults

Definitions

Statementofresults

Comments

Proofs

Surgery

Localcomputations

Intrinsic
complexityof
thecontact
structure

Hyperbolic
manifolds

Handel–Thurstonsurgery

Asimpleclosedgeodesicandnormalvectors

Surgery in an annulus chart lfiber ↔base



Increased
complexity by

surgery

Foulon
Hasselblatt

Vaugon

Introduction

Algebraic examples

Summary

Foulon surgery

Definitions

Statement of results

Proofs

Surgery

Local computations

Periodic orbit
growth

Complexity of
contact
*structure*

Many flows

Mind the gap

The ghost of configuration space past

Figure 7: Top: ⇡1(S1) is generated by a and b. Bottom: ⇡1(S2) is generated by a, b, c, d. In general,
⇡1(Sg) has 2g generators. Each handle has one generator going around the outside, and one going
through the handle itself. From [10].

after gluing. By homotopy, we may push any loop out to the boundary of Pg. This should
convince the reader that the ai’s and bi’s generate ⇡1(Sg). To see why the relation with the
commutators comes into play, we must carefully understand the picture. First, notice that
after gluing, there is only one vertex on the polygon. So, nontrivial loops may be written
by traveling along part of the boundary.

Figure 8: The dodecagon on the right gets glued to form the triple torus on the left. From [10].

Notice if a loop makes it all the way around, it may be homotoped to a constant map
by contracting the whole loop through the interior of the polygon; topologically, this is the
same as traveling around the boundary of a disk. But the labeling of the edges is the same
as the product of the commutators. Studying the diagram carefully should convince the
reader that this is the only way (up to homotopy) to get a trivial map S1 ! Sg. The reader
is encouraged to study CW complexes (see Chapter 0 of [10]) for a more rigorous treatment
of this matter.

One additional remark about fundamental groups is required. If f : X ! Y is a
continuous map between path-connected spaces, then there is an induced map f⇤ : ⇡1(X) !
⇡1(Y ) defined by taking the images of representatives of curves in X and then considering
their homotopy class. The induced map is a group homomorphism.

The utility of the fundamental group is far-reaching, and it would be impossible to do
justice to it here. The theory of covering spaces will be instrumental in later sections, and
has a very beautiful connection to the theory of fundamental groups. We will only briefly
discuss a few basic points which we will need for later.

Definition 6. Let p : X ! Y be a continuous map between topological spaces. We say
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The entropy gap quantified—an open problem
(Idea: Bishop–Hughes–Vinhage–Yang @MRC2017)

Bishop–Hughes–Vinhage–Yang:

Use the configuration space with cutting sequences à la Series:

The Vinhage picture
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Thank you for your attention!
Feedback invited on the book draft at https://tinyurl.com/HypFlows

https://tinyurl.com/HypFlows
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