BLACK HOLE ENTROPY AND (0,4) SCFTs FROM F-THEORY

MS seminar, Kavli IPMU Tokyo

January 29, 2019

Kilian Mayer

Utrecht University

based on arXiv 1808.05228 work in progress:

related work: 1509.00455

1705.04679

[T.W. Grimm, H. het Lam, KM, S. Vandoren] [C. Couzens, T.W. Grimm, H. het Lam, KM, S. Vandoren]

[Haghighat, Murthy, Vafa, Vandoren]

[Couzens, Lawrie, Martelli, Schäfer-Nameki, Wong]

OUTLINE

- A. What and Why?
- B. F-theory preliminaries and previous work
- C. 4d Black Holes from D3-branes
- D. Computation of central charges and levels: Macroscopics
 - (i) "classical" contribution
 - (ii) "quantum" contribution
- E. Other families of F-theory Black Holes: ADE classification
- F. Summary & Outlook

Part I

A. What and Why?

A. WHAT AND WHY?

study 4d and 5d SUSY black holes within the framework of F-theory

Construct SCFTs: 6d (1,0), 4d \mathcal{N} =3,

2d SCFTs, ...

QG in F-theory: black holes, AdS/ CFT, QG conjectures phenomenology, GUT model building

A. WHAT AND WHY?

study 4d and 5d SUSY black holes within the framework of F-theory

A. WHAT AND WHY?

study 4d and 5d SUSY black holes within the framework of F-theory

B. F-theory preliminaries

B. F-THEORY PRELIMINARIES

Why F-theory?

Type IIB model building:

Type IIB orientifolds with D3/D7 and O3/O7 planes

- (i) perturbative string theory $\Rightarrow g_s = \mathrm{e}^\phi \ll 1$
- (ii) probe approximation: no back-reaction of branes

Is this a good (enough) starting point to construct string compactifications?

Yes, at least under certain limiting assumptions!

(asymptotically back-reaction negligible, large volume, D7/O7 on top)

Way out: **F-theory**

B. F-THEORY PRELIMINARIES

A problem with D7-brane back-reaction:

BPS solution of Type IIB supergravity for p-branes (p < 7)

$$ds^{2} = H_{p}^{-\frac{1}{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + H_{p}^{\frac{1}{2}} \delta_{ij} dx^{i} dx^{j}$$

$$e^{2\phi} = e^{2\phi_{0}} H_{p}^{\frac{3-p}{2}}, \qquad H_{p} = 1 + \left(\frac{r_{p}}{r}\right)^{7-p}$$

For p = 7 (i.e. codimension 2) separate analysis needed

[Greene, Shapere, Vafa, Yau '90]

B. F-THEORY PRELIMINARIES

A problem with D7-brane back-reaction:

BPS solution of Type IIB supergravity for p-branes (p < 7)

$$ds^{2} = H_{p}^{-\frac{1}{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + H_{p}^{\frac{1}{2}} \delta_{ij} dx^{i} dx^{j}$$

$$e^{2\phi} = e^{2\phi_{0}} H_{p}^{\frac{3-p}{2}}, \qquad \left(H_{p} = 1 + \left(\frac{r_{p}}{r}\right)^{7-p}\right)$$

[Greene, Shapere, Vafa, Yau '90]

For p = 7 (i.e. codimension 2) separate analysis needed

back-reaction!!

- ullet D7-brane in the background $\mathbb{R}^{1,7} imes \mathbb{C}$
- ullet D7 bane couples to RR 0-form $\,C_0\,$ magnetically

Constraints from SUSY and equations of motions: $\overline{\partial}\tau=0\,, \qquad \tau=C_0+i\,\mathrm{e}^{-\phi}$ $\mathrm{d}\star F_9=\delta_{\mathrm{D}7}\,, \qquad \star F_9=\mathrm{d}C_0$

Analysis in [Greene, Shapere, Vafa, Yau '90] shows: back-reaction of D7-branes not negligible, $\tau(z) \ \ {\rm generically\ strongly\ varying}$

Integrate around D7:
$$\int_{\mathbb{C}} d\star F_9 = \int_{S^1_{\mathrm{D7}}} \star F_9 = \int_{S^1_{\mathrm{D7}}} dC_0 = 1$$

Solution close to the D7:
$$\tau(z) = \tau_0 + \frac{1}{2\pi i} \log z + \dots$$

$$\Rightarrow \tau \rightarrow \tau + 1$$
 Monodromy

Analysis in [Greene, Shapere, Vafa, Yau `90] shows: back-reaction of D7-branes not negligible, $\tau(z) \ \ {\rm generically\ strongly\ varying}$

Integrate around D7:
$$\int_{\mathbb{C}} d\star F_9 = \int_{S^1_{\mathrm{D7}}} \star F_9 = \int_{S^1_{\mathrm{D7}}} \mathrm{d}C_0 = 1$$

Solution close to the D7:
$$\tau(z) = \tau_0 + \frac{1}{2\pi i} \log z + \dots$$

$$\Rightarrow au o au + 1$$
 Monodromy

How to interpret this monodromy?

Analysis in [Greene, Shapere, Vafa, Yau `90] shows: back-reaction of D7-branes not negligible, $\tau(z) \,\, {\rm generically \, strongly \, varying}$

Integrate around D7:
$$\int_{\mathbb{C}} d\star F_9 = \int_{S^1_{\mathrm{D7}}} \star F_9 = \int_{S^1_{\mathrm{D7}}} dC_0 = 1$$

Solution close to the D7:
$$au(z) = au_0 + rac{1}{2\pi i} \log z + \dots$$

$$\Rightarrow au o au + 1$$
 Monodromy

How to interpret this monodromy?

Type IIB invariant under $SL(2,\mathbb{R}) \stackrel{\mathrm{D}(-1)}{\longrightarrow} SL(2,\mathbb{Z})$

$$SL(2,\mathbb{Z}): \quad \tau \to \frac{a\tau + b}{c\tau + d}, \qquad \begin{pmatrix} C_2 \\ B_2 \end{pmatrix} \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} C_2 \\ B_2 \end{pmatrix}$$

Analysis in [Greene, Shapere, Vafa, Yau `90] shows: back-reaction of D7-branes not negligible, $\tau(z) \,\, {\rm generically \, strongly \, varying}$

Integrate around D7:
$$\int_{\mathbb{C}} d\star F_9 = \int_{S^1_{\mathrm{D7}}} \star F_9 = \int_{S^1_{\mathrm{D7}}} dC_0 = 1$$

Solution close to the D7:
$$\tau(z) = \tau_0 + \frac{1}{2\pi i} \log z + \dots$$

$$\Rightarrow au o au + 1$$
 Monodromy

How to interpret this monodromy?

Type IIB invariant under
$$SL(2,\mathbb{R}) \stackrel{\mathrm{D}(-1)}{\longrightarrow} SL(2,\mathbb{Z})$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$SL(2,\mathbb{Z}): \quad \tau \to \frac{a\tau + b}{c\tau + d} \,, \qquad \begin{pmatrix} C_2 \\ B_2 \end{pmatrix} \to \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} C_2 \\ B_2 \end{pmatrix}$$

Monodromy by encircling D7 symmetry of the theory!

Need to consider [p,q] 7-branes in Type IIB/F-theory

[p, q] 7-brane induces a monodromy transformation

$$M_{p,q} = \begin{pmatrix} 1 - pq & p^2 \\ -q^2 & 1 + pq \end{pmatrix} \in SL(2, \mathbb{Z})$$

worldvolume action of [p,q] 7-branes unknown

Need to consider [p,q] 7-branes in Type IIB/F-theory

[p, q] 7-brane induces a monodromy transformation

$$M_{p,q} = \begin{pmatrix} 1 - pq & p^2 \\ -q^2 & 1 + pq \end{pmatrix} \in SL(2, \mathbb{Z})$$

worldvolume action of [p,q] 7-branes unknown

Insight in [Vafa `96]:

Type IIB axio-dilaton $au_{ ext{IIB}}$ complex structure of T^2 $SL(2,\mathbb{Z})$ in Type IIB \longleftarrow modular group of T^2

- Interpret axio-dilaton $au_{ ext{IIB}}$ as complex structure of an additional auxiliary T^2
- back-reaction of 7-branes induces profile for τ_{IIB} non-triviality of the T^2 fibration
- however: no 12d origin/interpretation of these T^2 dimensions (known) (no suitable 12d supergravity exisits, $\mathrm{vol}(T^2)$ not in the 10d effective action, ...)

Various definitions of F-theory:

- Type IIB with varying au and 7-branes
- sometimes via F-theory/heterotic duality
- F-theory via M-theory

Various definitions of F-theory:

- ullet Type IIB with varying au and 7-branes
- sometimes via F-theory/heterotic duality
- F-theory via M-theory

F-theory via M-theory

M-theory on
$$\,\mathbb{R}^{1,8} imes T^2$$

$$(T^2 = S_A^1 \times S_B^1)$$

F-theory via M-theory

M-theory on
$$\mathbb{R}^{1,8} \times T^2$$

$$(T^2 = S_A^1 \times S_B^1)$$
 reduce along S_A^1 , $R_A \to 0$ weakly coupled Type IIA on $\mathbb{R}^{1,8} \times S_B^1$ with $g_s^{\text{\tiny (IIA)}} = \frac{R_A}{\ell_s}$

F-theory via M-theory

M-theory on
$$\mathbb{R}^{1,8} \times T^2$$
 $(T^2 = S^1_A \times S^1_B)$ reduce along S^1_A , $R_A \to 0$ pled Type IIA on $\mathbb{R}^{1,8} \times S^1_B$ with $g^{\text{\tiny (IIA)}}_s = \frac{R_A}{\ell_s}$

weakly coupled Type IIA on $\mathbb{R}^{1,8} \times S_B^1$ with $g_s^{\text{\tiny (IIA)}} = \frac{R_A}{\ell_s}$ T-duality along S_B^1 Type IIB on $\mathbb{R}^{1,8} \times \tilde{S}_B^1$ with $\tilde{R}_B = \frac{\ell_s^2}{R_B}$ and $\operatorname{Im} \tau = \frac{R_A}{R_B}$

F-theory via M-theory

M-theory on
$$\mathbb{R}^{1,8} \times T^2$$
 $(T^2 = S_A^1 \times S_B^1)$ reduce along S_A^1 , $R_A \to 0$ weakly coupled Type IIA on $\mathbb{R}^{1,8} \times S_B^1$ with $g_s^{(\text{IIA})} = \frac{R_A}{\ell_s}$ T-duality along S_B^1 Type IIB on $\mathbb{R}^{1,8} \times \tilde{S}_B^1$ with $\tilde{R}_B = \frac{\ell_s^2}{R_B}$ and $\operatorname{Im} \tau = \frac{R_A}{R_B}$ $R_B \to 0 \pmod{T^2} \to 0$

F-theory via M-theory

M-theory on
$$\mathbb{R}^{1,8} imes T^2$$
 $(T^2 = S^1_A imes S^1_B)$ reduce along S^1_A , $R_A o 0$ weakly coupled Type IIA on $\mathbb{R}^{1,8} imes S^1_B$ with $g^{ ext{(IIA)}}_s = \frac{R_A}{\ell_s}$

T-duality along
$$S_B^1$$
 Type IIB on $\mathbb{R}^{1,8} imes ilde{S}_B^1$ with $ilde{R}_B = rac{\ell_s^2}{R_B}$ and $\mathrm{Im}\, au = rac{R_A}{R_B}$ and $\mathrm{Im}\, au = rac{R_A}{R_B}$ fiber-wise!

For non-trivial fibration apply this duality fiber-wise!

fibration	SUSY F-theory	SUSY M-theory
$CY_2 = K3$	$8d \mathcal{N} = 1 (16)$	$7d \mathcal{N} = 2 (16)$
CY_3	6d $\mathcal{N} = (1,0)$ (8)	$5d \mathcal{N} = 2 (8)$
CY_4	$4d \mathcal{N} = 1 (4)$	$3d \mathcal{N} = 2 (4)$
CY_5	$2d \mathcal{N} = (2,0) (2)$	$1d \mathcal{N} = 2 \text{ SQM } (2)$

fibration	SUSY F-theory	SUSY M-theory
$CY_2=K3$	$8d \mathcal{N} = 1 (16)$	$7d \mathcal{N} = 2 (16)$
CY_3	6d $\mathcal{N} = (1,0)$ (8)	$5d \mathcal{N} = 2 (8)$
CY_4	$4d \mathcal{N} = 1 (4)$	$3d \mathcal{N} = 2 (4)$
CY_5	$2d \mathcal{N} = (2,0) (2)$	$1d \mathcal{N} = 2 \text{ SQM } (2)$

 \mathbb{P}^1 `s have an intersection pattern as the nodes of affine Dynkin diagrams

→ intersection pattern dictates gauge algebra

F-theory on X_{n+1}

reduce on S^1 and push to the Coulomb branch

integrate out massive KK modes and W-bosons

M-theory on resolved X_{n+1} at large volumes

d-dim. eff. action for CY-zeromodes of \hat{g} , \hat{C}_3

d-dim. eff. action for S^1 -zeromodes and Cartan U(1)s

F-theory on X_{n+1}

reduce on S^1 and push to the Coulomb branch

integrate out massive KK modes and W-bosons

M-theory on resolved X_{n+1} at large volumes

F-theory on $X_{n+1} \times S^1$

d-dim. eff. action for CY-zeromodes of \hat{g} , \hat{C}_3

d-dim. eff. action for S^1 -zeromodes and Cartan U(1)s

M2-branes wrapping \mathbb{P}_i^1 's over codim. 1 singularity: massive W-bosons

F-theory on X_{n+1}

reduce on S^1 and push to the Coulomb branch

integrate out massive KK modes and W-bosons

M-theory on resolved X_{n+1} at large volumes

F-theory on $X_{n+1} \times S^1$

d-dim. eff. action for CY-zeromodes of \hat{g} , \hat{C}_3

d-dim. eff. action for S^1 -zeromodes and Cartan U(1)s

- \longrightarrow M2-branes wrapping \mathbb{P}_i^1 's over codim. 1 singularity: massive W-bosons
- \longrightarrow M2-branes wrapping \mathbb{P}_i^1 's over codim. 2 singularity: massive charged matter

F-theory on X_{n+1}

reduce on S^1 and push to the Coulomb branch

integrate out massive KK modes and W-bosons

M-theory on resolved X_{n+1} at large volumes

F-theory on $X_{n+1} \times S^1$

d-dim. eff. action for CY-zeromodes of \hat{g} , \hat{C}_3

d-dim. eff. action for S^1 -zeromodes and Cartan U(1)s

- \longrightarrow M2-branes wrapping \mathbb{P}_i^1 's over codim. 1 singularity: massive W-bosons
- lacktriangle M2-branes wrapping \mathbb{P}_i^1 's over codim. 2 singularity: massive charged matter
- lacktriangle M2-branes wrapping $\mathbb{E}_{ au}$: Kaluza-Klein modes

F-THEORY IN A NUTSHELL

mathematics of elliptic fibrations

$$ightharpoonup$$
 physics of F-theory \simeq Type IIB string theory with varying axio-dilaton

Holy grail: establish dictionary between physics and mathematics

Physics of effective theory in $\mathbb{R}^{1,9-2n}$	Geometry of elliptic fibration Y_{n+1}	
non-abelian gauge algebra	codimone singular fibers	
localised charged matter representation	codimtwo singular fibers	
localised uncharged matter	Q-factorial terminal singularities in codim. two	
triple Yukawa interactions (4d/2d)	codimthree singular fibers	
quartic Yukawa interactions (2d)	codimfour singular fibers	
abelian gauge algebra	free part of Mordell-Weil group	
global structure of gauge group	torsional part of Mordell-Weil group	

B. 5D BLACK HOLES FROM D3-BRANES

ullet F-theory on $\,\mathbb{R}^{1,5} imes \mathrm{CY}_3$: 6d supergravity with $\,\mathcal{N} = (1,0)\,$

$$CY_3 \xrightarrow{\pi} B_2$$

An interesting sub-sector of the theory:

B. 5D BLACK HOLES FROM D3-BRANES

ullet F-theory on $\,\mathbb{R}^{1,5} imes \mathrm{CY}_3$: 6d supergravity with $\,\mathcal{N} = (1,0)\,$

$$CY_3 \xrightarrow{\pi} B_2$$

An interesting sub-sector of the theory: D3-branes wrapped on $C \subset B_2$

- $ightharpoonup ext{strings of 6d } (1,0) ext{ SCFTs} ext{ [e.g. del Zotto, Lockhart, Vafa, Haghighat, Tachikawa, Shimizu ...]}$
- excitations of 6d strings satisfy WGC and SDC in highly non-trivial way [Lee, Lerche, Weigand `18]
- ightharpoonup 5d spinning black holes $AdS_3/CFT_{(0,4)}$

[Haghighat, Murthy, Vafa, Vandoren `15]

B. 5D BLACK HOLES FROM D3-BRANES

ullet F-theory on $\,\mathbb{R}^{1,5} imes \mathrm{CY}_3$: 6d supergravity with $\,\mathcal{N} = (1,0)\,$

$$CY_3 \xrightarrow{\pi} B_2$$

An interesting sub-sector of the theory: D3-branes wrapped on $C \subset B_2$

- $ightharpoonup ext{strings of 6d } (1,0) ext{ SCFTs} ext{ [e.g. del Zotto, Lockhart, Vafa, Haghighat, Tachikawa, Shimizu ...]}$
- excitations of 6d strings satisfy WGC and SDC in highly non-trivial way [Lee, Lerche, Weigand `18]
- → 5d spinning black holes $AdS_3/CFT_{(0,4)}$

[Haghighat, Murthy, Vafa, Vandoren `15]

$$\mathbb{R}_t \times S^1 \times \mathbb{R}^4_\perp \times B_2$$

MICROSCOPICS VS. MACROSCOPICS

• in IR: 2d $\mathcal{N}=(0,4)$ SCFT

$$c_R = 6k_R$$
 $\mathrm{SU}(2)_R$ current algebra

- novel feature: identify $\mathrm{SU}(2)_L$ current algebra $\mathrm{SO}(4)_\perp = \mathrm{SU}(2)_L imes \mathrm{SU}(2)_R$
- entropy determined by Cardy's formula $S = 2\pi \sqrt{\frac{c_L}{6} \Big(n \frac{J^2}{k_L}\Big)}$

MICROSCOPICS VS. MACROSCOPICS

- in IR: 2d $\mathcal{N}=(0,4)$ SCFT
 - $c_R = 6k_R$ $SU(2)_R$ current algebra

- novel feature: identify $\mathrm{SU}(2)_L$ current algebra $\mathrm{SO}(4)_\perp = \mathrm{SU}(2)_L imes \mathrm{SU}(2)_R$
- entropy determined by Cardy's formula $S = 2\pi \sqrt{\frac{c_L}{6}} \Big(n \frac{J^2}{k_L} \Big)$

microscopics

- lacktriangle D3 brane on $C\subset B_2$ + D7's lacktriangle au(z) varying on B_2
- ightharpoonup worldvolume theory: $\mathcal{N}=4$ SYM with varying coupling + monodromies
- lacktriangle supercharges transform under $SL(2,\mathbb{Z})$ lacktriangle need generalization of top. twist

MICROSCOPICS VS. MACROSCOPICS

- in IR: 2d $\mathcal{N}=(0,4)$ SCFT

 $c_R = 6k_R$ $\mathrm{SU}(2)_R$ current algebra

- novel feature: identify $\mathrm{SU}(2)_L$ current algebra $\mathrm{SO}(4)_\perp = \mathrm{SU}(2)_L imes \mathrm{SU}(2)_R$
- entropy determined by Cardy's formula $S = 2\pi \sqrt{\frac{c_L}{6}} \Big(n \frac{J^2}{k_L} \Big)$

microscopics

- lacktriangle D3 brane on $C\subset B_2$ + D7's lacktriangle au(z) varying on B_2
- ightharpoonup worldvolume theory: $\mathcal{N}=4$ SYM with varying coupling + monodromies
- lacktriangle supercharges transform under $SL(2,\mathbb{Z})$ lacktriangle need generalization of top. twist

Topological duality twist [Martucci `14]

However: procedure misses D3-D7 modes

microscopics

dimensional reduction of D3-brane action and counting of left/right movers

[Haghighat, Murthy, Vafa, Vandoren `15]

[Lawrie, Schäfer-Nameki, Weigand `16]

$$c_R^{D3} = 6k_R = 3C \cdot C + 3c_1(B_2) \cdot C$$

$$c_L^{D3} = 3C \cdot C + c_1(B_2) \cdot C + \Delta c_L^{D3-D7}$$

$$k_L = \frac{1}{2}C \cdot C - \frac{1}{2}c_1(B_2) \cdot C$$

notation:
$$C=q^{\alpha}\omega_{\alpha}$$
, $c_1(B_2)=c^{\alpha}\omega_{\alpha}$, $\omega_{\alpha}\in H^{1,1}(B_2,\mathbb{Z})$

$$A \cdot B = A^{\alpha} \eta_{\alpha\beta} B^{\beta} = \int_{B_2} A \wedge B$$

$$\eta_{\alpha\beta} = \int_{B_2} \omega_\alpha \wedge \omega_\beta$$

microscopics

dimensional reduction of D3-brane action and counting of left/right movers

[Haghighat, Murthy, Vafa, Vandoren `15]

[Lawrie, Schäfer-Nameki, Weigand `16]

$$c_R^{\mathrm{D3}} = 6k_R = 3C \cdot C + 3c_1(B_2) \cdot C$$
 [Lawrie, Schäfer-Nameki $c_L^{\mathrm{D3}} = 3C \cdot C + c_1(B_2) \cdot C + \Delta c_L^{\mathrm{D3}-\mathrm{D7}}$ $k_L = \frac{1}{2}C \cdot C - \frac{1}{2}c_1(B_2) \cdot C$

microscopics

dimensional reduction of D3-brane action and counting of left/right movers

[Haghighat, Murthy, Vafa, Vandoren `15]

[Lawrie, Schäfer-Nameki, Weigand `16]

$$c_R^{\mathrm{D3}} = 6k_R = 3C \cdot C + 3c_1(B_2) \cdot C$$

$$c_L^{\mathrm{D3}} = 3C \cdot C + c_1(B_2) \cdot C + \Delta c_L^{\mathrm{D3-D7}}$$

$$k_L = \frac{1}{2}C \cdot C - \frac{1}{2}c_1(B_2) \cdot C$$
 dualize to M-theory!

dual M-theory picture: M5 brane wrapping $\hat{C} = \pi^{-1}(C) \in H_4(CY_3)$

M5 brane wrapping 4-cycle in CY_3 described by MSW CFT

[Maldacena, Strominger, Witten '97]

 $AdS_3 \times S^3 \times B_2$ computation...more later macroscopics

Short summary

Today:

- generalize the setup in [Haghighat, Murthy, Vafa, Vandoren `15]
- compute CFT data from macroscopic side and match with microscopics
- ullet express CFT data in terms of $geometric\ data$ of $\ CY_3$

How: CFT data related to certain Chern-Simons coefficients

- ,classical' supergravity analysis not sufficient
- → need to include one-loop generated Chern-Simons terms

,classical' supergravity + one-loop Chern Simons terms = microscopics

Part II

C. 4d Black Holes from D3-branes

background:
$$\mathbb{R}_t imes S^1 imes \mathbf{TN}_m imes B_2$$

 \bullet geometry of TN_m $U(1)_L \times \operatorname{SU}(2)_R$ $\vec{x}_{(1)} \quad \vec{x}_{(2)} \quad \vec{x}_{(3)} \quad \mathbb{R}^3$

centers on top: A_{m-1} singularity interpolates between $\mathbb{C}^2/\mathbb{Z}_m$ & $\mathbb{R}^3 \times S^1$ carries ,topological charge'

near horizon geometry of D3-branes:

$$AdS_3 \times S^3/\mathbb{Z}_m \times (CY_3 \to B_2)$$

$$\mathbb{R}_t \times S^1 \times \mathbf{TN_m} \times B_2$$

ullet geometry of TN_m

centers on top: A_{m-1} singularity

interpolates between $\mathbb{C}^2/\mathbb{Z}_m$ & $\mathbb{R}^3 \times S^1$ carries ,topological charge'

near horizon geometry of D3-branes:

$$AdS_3 \times S^3/\Gamma_{ADE} \times (CY_3 \to B_2)$$

background:

$$\mathbb{R}_t \times S^1 \times \mathbb{TN}_m \times B_2$$

ullet geometry of TN_m

centers on top: A_{m-1} singularity

interpolates between $\mathbb{C}^2/\mathbb{Z}_m$ & $\mathbb{R}^3 imes S^1$ carries ,topological charge'

near horizon geometry of D3-branes:

focus on $\Gamma=\mathbb{Z}_m$

in fact

$$AdS_3 \times S^3/\Gamma_{ADE} \times (CY_3 \to B_2)$$

Charges of the setup

characterize C

KK momentum around S^1 n:

m:

topological charge of
$$\mathrm{TN}_m$$
 $p_1(\mathrm{TN}_m) = -\frac{1}{2}\int \mathrm{tr}\,\mathcal{R}\wedge\mathcal{R} = 2m$

Charges of the setup

 q^{α} : characterize C

KK momentum around S^1 n:

m:

topological charge of
$$\mathrm{TN}_m$$
 $p_1(\mathrm{TN}_m) = -\frac{1}{2}\int \mathrm{tr}\,\mathcal{R}\wedge\mathcal{R} = 2m$

Goals:

- (i) compute $c_{L,R}, k_{L,R}$ in terms of the charges q^{α}, m
- (ii) compare macroscopics with microscopics
- (iii) extend F-theory dictionary: physics ← → geometry/topology

MICROSCOPICS

ullet N D3-branes probing \mathbb{Z}_m singularity [Kachru, Silverstein `98, Lawrence, Nekrasov, Vafa `98]

4d
$$\mathcal{N}=2$$
 SCFT:

4d $\mathcal{N}=2$ SCFT: $\mathrm{SU}(N)^m$ quiver + m bifundamental hypers

$$\tau_i = \frac{\tau}{m}$$

type IIB axio-dilaton

wrapped over $\ C \subset B_2 \ woheadrightarrow complexified gauge coupling <math>\ au \$ varies over C

need for top. *duality* twist

Some issues with this approach:

- ignoring D3-D7 string contributions
- no (obvious) generalization of top. duality twist known...

microscopics

use suitable dual M-theory description

D3-brane wrapped on $C \subset B_2$ probing TN_m transversally

D3-brane wrapped on $C \subset B_2$ probing TN_m transversally

M-theory on $\mathbb{R}_t imes \mathrm{TN}_m imes \mathrm{CY}_3$

M2-brane wrapping $\,C_n = C + n \mathbb{E}_{ au}\,$

D3-brane wrapped on $C \subset B_2$ probing TN_m transversally

M-theory on $\mathbb{R}_t imes \mathrm{TN}_m imes \mathrm{CY}_3$

M2-brane wrapping $C_n = C + n\mathbb{E}_{\tau}$

microstate counting difficult task

D3-brane wrapped on $C \subset B_2$ probing TN_m transversally

take S^1_{D3} small

M-theory on $\mathbb{R}_t imes \mathrm{TN}_m imes \mathrm{CY}_3$

M2-brane wrapping $C_n = C + n\mathbb{E}_{\tau}$

T-dualize along $S^1_{
m NUT}$

Type IIA on $\mathbb{R}^{1,3} imes S^1_{\mathrm{D3}} imes ilde{S}^1_{\mathrm{NUT}} imes B_2$

D4 wrapping $S^1_{\mathrm{D3}} \times C$

m NS5's wrapping $S^1_{\mathrm{D3}} imes B_2$

D3-brane wrapped on $C \subset B_2$ probing TN_m transversally

take S^1_{D3} small

M-theory on $\mathbb{R}_t imes \mathrm{TN}_m imes \mathrm{CY}_3$

M2-brane wrapping $C_n = C + n\mathbb{E}_{\tau}$

microstate counting difficult task

T-dualize along $S^1_{
m NUT}$

Type IIA on $\mathbb{R}^{1,3} imes S^1_{\mathrm{D3}} imes ilde{S}^1_{\mathrm{NUT}} imes B_2$ D4 wrapping $S^1_{\mathrm{D3}} imes C$

m NS5's wrapping $S^1_{\mathrm{D3}} imes B_2$

M-theory uplift

M-theory on $\mathbb{R}^{1,3} imes S^1_{\mathrm{D}3} imes \mathrm{CY}_3$ M5 brane on $S^1_{\mathrm{D}3} imes \hat{C}$ m M5 branes on $S^1_{\mathrm{D}3} imes B_2$

D3-brane wrapped on $C \subset B_2$ probing TN_m transversally

take S^1_{D3} small

M-theory on $\mathbb{R}_t imes \mathrm{TN}_m imes \mathrm{CY}_3$

M2-brane wrapping $C_n = C + n\mathbb{E}_{\tau}$

microstate counting difficult task

If $q^{\alpha} \gg mc^{\alpha}$

- lacktriangledown can eff. describe M5 system as Single M5 on $\,\hat{C}_m = \hat{C} + m B_2 \,$
- → MSW CFT techniques!

T-dualize along $S^1_{
m NUT}$

Type IIA on $\mathbb{R}^{1,3} imes S^1_{\mathrm{D3}} imes ilde{S}^1_{\mathrm{NUT}} imes B_2$ D4 wrapping $S^1_{\mathrm{D3}} imes C$

m NS5's wrapping $S^1_{\mathrm{D3}} imes B_2$

M-theory uplift

M-theory on $\mathbb{R}^{1,3} imes S^1_{\mathrm{D}3} imes \mathrm{CY}_3$ M5 brane on $S^1_{\mathrm{D}3} imes \hat{C}$ m M5 branes on $S^1_{\mathrm{D}3} imes B_2$

[Maldacena, Strominger, Witten `97]

5d BPS string states: M5-brane wrapped on $[P] \in H_4(\mathrm{CY}_3)$

[Maldacena, Strominger, Witten `97]

ullet M-theory compactified on compact CY_3 ullet 5d $\mathcal{N}=2$ supergravity

5d BPS string states: M5-brane wrapped on $[P] \in H_4(\mathrm{CY}_3)$

RG flow to IR

2d $\mathcal{N}=(0,4)$ SCFT is IR fixed point of M5 world-volume theory

[Maldacena, Strominger, Witten `97]

• M-theory compactified on compact CY_3 o 5d $\mathcal{N}=2$ supergravity

5d BPS string states: M5-brane wrapped on $[P] \in H_4(\mathrm{CY}_3)$

2d $\mathcal{N}=(0,4)$ SCFT is IR fixed point of M5 world-volume theory

central charges of IR fixed point:

counted by top. number

$$c_L = P \cdot P \cdot P + c_2(CY_3) \cdot P$$
$$c_R = P \cdot P \cdot P + \frac{1}{2}c_2(CY_3) \cdot P$$

[Maldacena, Strominger, Witten `97]

• M-theory compactified on compact CY_3 o 5d $\mathcal{N}=2$ supergravity

5d BPS string states: M5-brane wrapped on $[P] \in H_4(\mathrm{CY}_3)$

2d $\mathcal{N}=(0,4)$ SCFT is IR fixed point of M5 world-volume theory

central charges of IR fixed point:

counted by top. number

$$c_L = P \cdot P \cdot P + c_2(CY_3) \cdot P$$
$$c_R = P \cdot P \cdot P + \frac{1}{2}c_2(CY_3) \cdot P$$

Compute the following integrals for ell. fibered CY_3

$$P^{3} = \int_{CY_{3}} (q^{\alpha}\omega_{\alpha} + m\omega_{0})^{3} = 3mC \cdot C - 3m^{2}c_{1}(B_{2}) \cdot C + m^{3}c_{1}(B_{2})^{2}$$

Compute the following integrals for ell. fibered CY_3

$$P^{3} = \int_{\text{CY}_{3}} (q^{\alpha}\omega_{\alpha} + m\omega_{0})^{3} = 3mC \cdot C - 3m^{2}c_{1}(B_{2}) \cdot C + m^{3}c_{1}(B_{2})^{2}$$

$$c_2(CY_3) \cdot P = m\chi(B_2) + 12c_1(B_2) \cdot C - mc_1(B_2)^2$$

Compute the following integrals for ell. fibered CY_3

$$P^{3} = \int_{\text{CY}_{3}} (q^{\alpha}\omega_{\alpha} + m\omega_{0})^{3} = 3mC \cdot C - 3m^{2}c_{1}(B_{2}) \cdot C + m^{3}c_{1}(B_{2})^{2}$$

$$c_{2}(\text{CY}_{3}) \cdot P = m\chi(B_{2}) + 12c_{1}(B_{2}) \cdot C - mc_{1}(B_{2})^{2}$$

$$\chi(B_{2}) = 2 + h^{1,1}(B_{2}) = 12 - c_{1}(B_{2})^{2}$$

Compute the following integrals for ell. fibered CY_3

$$P^{3} = \int_{\text{CY}_{3}} (q^{\alpha}\omega_{\alpha} + m\omega_{0})^{3} = 3mC \cdot C - 3m^{2}c_{1}(B_{2}) \cdot C + m^{3}c_{1}(B_{2})^{2}$$

$$c_{2}(\text{CY}_{3}) \cdot P = m\chi(B_{2}) + 12c_{1}(B_{2}) \cdot C - mc_{1}(B_{2})^{2}$$

$$\chi(B_{2}) = 2 + h^{1,1}(B_{2}) = 12 - c_{1}(B_{2})^{2}$$

...which leads to the microscopic prediction

$$c_L = 3mC \cdot C - 3m^2c_1(B_2) \cdot C + m^3c_1(B_2)^2 + 12c_1(B_2) \cdot C + 12m - 2mc_1(B_2)^2$$

$$c_R = 3mC \cdot C - 3m^2c_1(B_2) \cdot C + m^3c_1(B_2)^2 + 6c_1(B_2) \cdot C + 6m - mc_1(B_2)^2$$

Compute the following integrals for ell. fibered CY_3

$$P^{3} = \int_{\text{CY}_{3}} (q^{\alpha}\omega_{\alpha} + m\omega_{0})^{3} = 3mC \cdot C - 3m^{2}c_{1}(B_{2}) \cdot C + m^{3}c_{1}(B_{2})^{2}$$

$$c_{2}(\text{CY}_{3}) \cdot P = m\chi(B_{2}) + 12c_{1}(B_{2}) \cdot C - mc_{1}(B_{2})^{2}$$

$$\chi(B_{2}) = 2 + h^{1,1}(B_{2}) = 12 - c_{1}(B_{2})^{2}$$

...which leads to the microscopic prediction

$$c_L = 3mC \cdot C - 3m^2c_1(B_2) \cdot C + m^3c_1(B_2)^2 + 12c_1(B_2) \cdot C + 12m - 2mc_1(B_2)^2$$

$$c_R = 3mC \cdot C - 3m^2c_1(B_2) \cdot C + m^3c_1(B_2)^2 + 6c_1(B_2) \cdot C + 6m - mc_1(B_2)^2$$

to get k_L one has to work a bit harder...

$$k_L = \frac{1}{2}mC \cdot C - \frac{1}{2}m^2c_1(B_2) \cdot C$$

Compute the following integrals for ell. fibered CY_3

$$P^{3} = \int_{\text{CY}_{3}} (q^{\alpha}\omega_{\alpha} + m\omega_{0})^{3} = 3mC \cdot C - 3m^{2}c_{1}(B_{2}) \cdot C + m^{3}c_{1}(B_{2})^{2}$$

$$c_{2}(\text{CY}_{3}) \cdot P = m\chi(B_{2}) + 12c_{1}(B_{2}) \cdot C - mc_{1}(B_{2})^{2}$$

$$\chi(B_{2}) = 2 + h^{1,1}(B_{2}) = 12 - c_{1}(B_{2})^{2}$$

...which leads to the microscopic prediction

$$c_L = 3mC \cdot C - 3m^2 c_1(B_2) \cdot C + m^3 c_1(B_2)^2 + 12c_1(B_2) \cdot C + 12m - 2mc_1(B_2)^2$$

$$c_R = 6k_R = 3mC \cdot C - 3m^2 c_1(B_2) \cdot C + m^3 c_1(B_2)^2 + 6c_1(B_2) \cdot C + 6m - mc_1(B_2)^2$$

$$k_L = \frac{1}{2}mC \cdot C - \frac{1}{2}m^2 c_1(B_2) \cdot C$$

- starting point: 6d $\mathcal{N}=(1,0)$ supergravity describing F-theory on CY_3 [Ferrara, Minasian, Sagnotti `97; Bonetti, Grimm `11]
- 6d $\mathcal{N} = (1,0)$ supergravity has 4 types of multiplets

$$g_{\mu\nu}\oplus\psi_L\oplus B_{\mu\nu}^+$$

 n_V vector

$$A_{\mu} \oplus \lambda_{L}$$

$$n_T$$
 tensor

$$B_{\mu\nu}^- \oplus \chi_R \oplus j$$

 n_H hyper

$$ilde{\lambda}_R \oplus q_1 \oplus q_2$$

- starting point: 6d $\mathcal{N}=(1,0)$ supergravity describing F-theory on CY_3 [Ferrara, Minasian, Sagnotti `97; Bonetti, Grimm `11]
- 6d $\mathcal{N} = (1,0)$ supergravity has 4 types of multiplets

gravity
$$g_{\mu\nu}\oplus\psi_L\oplus B_{\mu\nu}^+$$
 n_V vector $A_\mu\oplus\lambda_L$ n_T tensor $B_{\mu\nu}^-\oplus\chi_R\oplus j$ n_H hyper $\tilde\lambda_R\oplus q_1\oplus q_2$

• simplifying assumption: $n_V = 0$

tensor multiplets in supergravity

- lacktriangle denote collectively tensor and gravity multiplet two forms B^{lpha} , $\alpha=1,\ldots,n_T+1$
- lacktriangle tensor multiplet scalars j^{lpha}

- starting point: 6d $\mathcal{N}=(1,0)$ supergravity describing F-theory on CY_3 [Ferrara, Minasian, Sagnotti `97; Bonetti, Grimm `11]
- 6d $\mathcal{N} = (1,0)$ supergravity has 4 types of multiplets

gravity
$$g_{\mu\nu}\oplus\psi_L\oplus B_{\mu\nu}^+$$
 n_V vector $A_\mu\oplus\lambda_L$ n_T tensor $B_{\mu\nu}^-\oplus\chi_R\oplus j$ n_H hyper $ilde\lambda_R\oplus q_1\oplus q_2$

• simplifying assumption: $n_V = 0$

tensor multiplets in supergravity

- lacktriangle denote collectively tensor and gravity multiplet two forms B^{lpha} , $\alpha=1,\ldots,n_T+1$
- lacktriangle tensor multiplet scalars j^{lpha}

parametrize coset manifold
$$\mathcal{M}_{ ext{tensor}} = rac{ ext{SO}(1, n_T)}{ ext{SO}(n_T)}$$

obey quadratic constraint
$$\;\Omega_{lphaeta}j^{lpha}j^{eta}=m{j}\cdotm{j}=1\;$$

- starting point: 6d $\mathcal{N}=(1,0)$ supergravity describing F-theory on CY_3 [Ferrara, Minasian, Sagnotti `97; Bonetti, Grimm `11]
- 6d $\mathcal{N} = (1,0)$ supergravity has 4 types of multiplets

gravity
$$g_{\mu\nu}\oplus\psi_L\oplus B_{\mu\nu}^+$$
 n_V vector $A_\mu\oplus\lambda_L$ n_T tensor $B_{\mu\nu}^-\oplus\chi_R\oplus j$ n_H hyper $\tilde\lambda_R\oplus q_1\oplus q_2$

ullet simplifying assumption: $n_V=0$

tensor multiplets in supergravity

- lacktriangle denote collectively tensor and gravity multiplet two forms B^{lpha} , $\alpha=1,\ldots,n_T+1$
- lacktriangle tensor multiplet scalars j^{lpha}

parametrize coset manifold
$$\mathcal{M}_{\mathrm{tensor}} = \frac{\mathrm{SO}(1,n_T)}{\mathrm{SO}(n_T)}$$
 obey quadratic constraint $\Omega_{\alpha\beta}j^{\alpha}j^{\beta} = \boldsymbol{j}\cdot\boldsymbol{j} = 1$ $(\Omega_{\alpha\beta}) = \mathrm{signature}(1,-1,\cdots,-1)$

more on tensor multiplets in supergravity

lacktriangle kinetic terms of two forms and scalars $g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$

more on tensor multiplets in supergravity

- ullet kinetic terms of two forms and scalars $g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$
- ullet (anti-)self-duality constraint $g_{lphaeta}*G^eta=\Omega_{lphaeta}G^eta$

- lacktriangle kinetic terms of two forms and scalars $g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$
- lacktriangle (anti-)self-duality constraint $g_{lphaeta}*G^eta=\Omega_{lphaeta}G^eta$

$$S_{\text{tensor}} = \int_{M_6} -\frac{1}{4} g_{\alpha\beta} G^{\alpha} \wedge *G^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge *dj^{\beta} + \text{fermions}$$

- lacktriangle kinetic terms of two forms and scalars $g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$
- lacktriangle (anti-)self-duality constraint $g_{\alpha\beta}*G^{eta}=\Omega_{\alpha\beta}G^{eta}$

$$S_{\text{tensor}} = \int_{M_6} -\frac{1}{4} g_{\alpha\beta} G^{\alpha} \wedge *G^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge *dj^{\beta} + \text{fermions}$$

...in 6d F-theory compactification

$$\Omega_{\alpha\beta} = \eta_{\alpha\beta} = \int_{B_2} \omega_\alpha \wedge \omega_\beta$$

Type IIB origin

$$J_{B_2} = j^{\alpha} \omega_{\alpha}$$

$$C_4^+ = B^\alpha \wedge \omega_\alpha$$

- lacktriangle kinetic terms of two forms and scalars $g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$
- lacktriangle (anti-)self-duality constraint $g_{lphaeta}*G^eta=\Omega_{lphaeta}G^eta$

$$S_{\text{tensor}} = \int_{M_6} -\frac{1}{4} g_{\alpha\beta} G^{\alpha} \wedge *G^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge *dj^{\beta} + \text{fermions}$$

...in 6d F-theory compactification

$$\Omega_{\alpha\beta} = \eta_{\alpha\beta} = \int_{B_2} \omega_\alpha \wedge \omega_\beta$$

M-theory origin

$$J_{\rm CY_3} = v^0 \omega_0 + v^\alpha \pi^*(\omega_\alpha)$$

 $C_3 = A^{\alpha} \wedge \pi^*(\omega_{\alpha}) + \dots$

$$K_{\alpha\beta 0} = \int_{\text{CY}_3} \omega_\alpha \wedge \omega_\beta \wedge \omega_0 = \eta_{\alpha\beta}$$

Type IIB origin

$$J_{B_2} = j^{\alpha} \omega_{\alpha}$$
$$C_4^+ = B^{\alpha} \wedge \omega_{\alpha}$$

- lacktriangle kinetic terms of two forms and scalars $g_{lphaeta}=2j_{lpha}j_{eta}-\Omega_{lphaeta}$
- lacktriangle (anti-)self-duality constraint $g_{lphaeta}*G^eta=\Omega_{lphaeta}G^eta$

$$S_{\text{tensor}} = \int_{M_6} -\frac{1}{4} g_{\alpha\beta} G^{\alpha} \wedge *G^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge *dj^{\beta} + \text{fermions}$$

...in 6d F-theory compactification

$$\Omega_{\alpha\beta} = \eta_{\alpha\beta} = \int_{B_2} \omega_\alpha \wedge \omega_\beta$$

M-theory origin

$$J_{\text{CY}_3} = v^0 \omega_0 + v^\alpha \pi^*(\omega_\alpha)$$
$$C_3 = A^\alpha \wedge \pi^*(\omega_\alpha) + \dots$$
$$K_{\alpha\beta 0} = \int_{\text{CY}_3} \omega_\alpha \wedge \omega_\beta \wedge \omega_0 = \eta_{\alpha\beta}$$

Type IIB origin

$$J_{B_2} = j^{\alpha} \omega_{\alpha}$$
$$C_4^+ = B^{\alpha} \wedge \omega_{\alpha}$$

ullet number of multiplets determined by top. data $\ n_T = h^{1,1}(B_2) - 1$

hypermultiplets in supergravity

lacktriangledown hypermultiplet scalars $q^U\,, \qquad U=1,\ldots,4n_H$

parametrize quaternionic manifold

play no further role in supergravity analysis, later more....

always assume in the following anomaly cancellation $n_H - n_V = 273 - 29n_T$

total 6d N=(1,0) action (two derivatives)

$$S_{6d} = \frac{1}{(2\pi)^3} \int_{M_6} \frac{1}{2} R * 1 - \frac{1}{4} g_{\alpha\beta} G^{\alpha} \wedge * G^{\beta} - \frac{1}{2} g_{\alpha\beta} dj^{\alpha} \wedge * dj^{\beta} - \frac{1}{2} h_{UV} dq^U \wedge * dq^V$$

equations of motion have black string solution

$$AdS_3 \times S^3/\mathbb{Z}_m \to \mathbb{R}^{1,1} \times TN_m$$

near horizon ———— asymptotics

black string solution: some properties [het Lam, Vandoren `18]

$$\mathrm{d}s_{\mathrm{6d}}^2 = 2H^{-1}\mathrm{d}u\big(\mathrm{d}v - \frac{1}{2}H_5\mathrm{d}u\big) + H\mathrm{d}s^2(\mathrm{TN}_m)$$

$$r \to 0$$
 near horizon (IR) limit
$$H_1^\alpha = \mu_\infty^\alpha + \frac{Q^\alpha}{4r}$$

$$\mathrm{AdS}_3 \times S^3/\mathbb{Z}_m$$
 with $R^2(S^3/\mathbb{Z}_m) = m\sqrt{\boldsymbol{Q} \cdot \boldsymbol{Q}}$

- \rightarrow in addition: non-trivial profile of $~j^{\alpha}$ and G^{α} ~ 6d tensor branch attractor flow
- $lacktriangledown Q^lpha$ is macro charge of the string under $\,B^lpha$

$$\int_{\partial TN_m} G^{\alpha} = (2\pi)^3 Q^{\alpha}$$

How to relate the macro charges Q^{α} to the micro data $(q^{\alpha}, m) \Leftrightarrow (C, m)$?

Connecting micro and macro data

- ullet consider D3-brane wrapped around $\ C \subset B_2$, extended along Σ in 6d
- string couples to a two-form $S_{\rm string} = -\mathcal{Q} \int_{\Sigma} B = -\mathcal{Q} \int_{\mathcal{M}} B \wedge \delta(\Sigma)$
- total action $S_{\rm tot} = S_{\rm 6d} + S_{\rm string}$

reduce CS action of D3-branes on C

$$S_{\text{string}} = -\frac{N}{2\pi} \int_{\Sigma \times C} C_4^+ = -\frac{N}{2\pi} \int_{\Sigma \times C} B^\alpha \wedge \omega_\alpha = -\frac{N}{2\pi} \int_{\Sigma} B^\alpha \int_C \omega_\alpha = -\frac{N}{2\pi} \int_{\Sigma} q^\alpha \eta_{\alpha\beta} B^\beta$$

equation of motion of tensors

$$d(g_{\alpha\beta} * G^{\beta}) = (2\pi)^2 \eta_{\alpha\beta} N q^{\beta} \delta(\Sigma)$$

$$\downarrow \text{ integrate}$$

$$\int_{\mathrm{TN}_m} \mathrm{d}(g_{\alpha\beta} * G^{\beta}) = \eta_{\alpha\beta} \int_{\partial \mathrm{TN}_m} G^{\beta} = (2\pi)^2 \eta_{\alpha\beta} Q^{\beta} = (2\pi)^2 N \eta_{\alpha\beta} q^{\beta} \qquad \longrightarrow \qquad Q^{\alpha} = Q^{\alpha} = Q^{\alpha}$$

$$Q^{\alpha} = Nq^{\alpha}$$

6d effective action obtains higher-derivative corrections

$$S_{\rm hd} \sim \int_{M_6} \eta_{\alpha\beta} c^{\alpha} B^{\beta} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

→ relevant for gen. Green-Schwarz mechanism [Sagnotti '92; Sadov '96]

6d effective action obtains higher-derivative corrections

$$S_{\rm hd} \sim \int_{M_6} \eta_{\alpha\beta} c^{\alpha} B^{\beta} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

→ relevant for gen. Green-Schwarz mechanism [Sagnotti '92; Sadov '96]

Where does this come from in M-theory/Type IIB picture?

M-theory

11d supergravity contains higher derivative correction

$$S_{11d} = \int_{M_{11}} C_3 \wedge \left[\operatorname{tr} \mathcal{R}^4 - \frac{1}{4} (\operatorname{tr} \mathcal{R}^2)^2 \right]$$

compactify on
$$\mathrm{CY}_3$$
 \longrightarrow $S_{\mathrm{5d}} = \int_{M_5} c_{2\,\alpha} A^{\alpha} \wedge \mathrm{tr}\, \mathcal{R} \wedge \mathcal{R}$

6d effective action obtains higher-derivative corrections

$$S_{\rm hd} \sim \int_{M_6} \eta_{\alpha\beta} c^{\alpha} B^{\beta} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

→ relevant for gen. Green-Schwarz mechanism [Sagnotti '92; Sadov '96]

Where does this come from in M-theory/Type IIB picture?

M-theory

11d supergravity contains higher derivative correction

$$S_{11\mathrm{d}} = \int_{M_{11}} C_3 \wedge \left[\operatorname{tr} \mathcal{R}^4 - \frac{1}{4} (\operatorname{tr} \mathcal{R}^2)^2 \right] \qquad c_{2\,\alpha} = \int_{\mathrm{CY}_3} c_2(\mathrm{CY}_3) \wedge \omega_\alpha$$
 compactify on $\mathrm{CY}_3 \qquad \longrightarrow \qquad S_{5\mathrm{d}} = \int_{M_5} c_{2\,\alpha} A^\alpha \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$

6d effective action obtains higher-derivative corrections

$$S_{\rm hd} \sim \int_{M_6} \eta_{\alpha\beta} c^{\alpha} B^{\beta} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

→ relevant for gen. Green-Schwarz mechanism [Sagnotti '92; Sadov '96]

Where does this come from in M-theory/Type IIB picture?

M-theory

11d supergravity contains higher derivative correction

$$S_{11\mathrm{d}} = \int_{M_{11}} C_3 \wedge \left[\operatorname{tr} \mathcal{R}^4 - \frac{1}{4} (\operatorname{tr} \mathcal{R}^2)^2 \right] \qquad c_{2\,\alpha} = \int_{\mathrm{CY}_3} c_2(\mathrm{CY}_3) \wedge \omega_\alpha$$
 compactify on $\mathrm{CY}_3 \qquad \longrightarrow \qquad S_{5\mathrm{d}} = \int_{M_5} c_{2\,\alpha} A^\alpha \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$

F-theory uplift
$$S_{6\mathrm{d}} \sim \int_{M_6} \eta_{\alpha\beta} c^{\alpha} B^{\beta} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

- $\rightarrow \tau$ is varying: localized sources embedded in 10d space-time
- → look at higher curvature corrections of D7/O7

- $\rightarrow \tau$ is varying: localized sources embedded in 10d space-time
- look at higher curvature corrections of D7/O7

$$S_{\rm D7} \supset \frac{1}{(2\pi)^3} \frac{1}{96} \int_{\rm D7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} , \qquad S_{\rm O7} \supset \frac{1}{(2\pi)^3} \frac{1}{48} \int_{\rm O7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

$$C_4^+ = B^\alpha \wedge \omega_\alpha$$

$$C_4^+ = B^\alpha \wedge \omega_\alpha$$
• $S_{R^2} = \frac{1}{(2\pi)^3} \frac{1}{96} \int_{M_6} B^\alpha \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} \left(\int_{D7} \omega_\alpha + 2 \int_{O7} \omega_\alpha \right)$

- ightharpoonup au is varying: localized sources embedded in 10d space-time
- → look at higher curvature corrections of D7/O7

$$S_{\rm D7} \supset \frac{1}{(2\pi)^3} \frac{1}{96} \int_{\rm D7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} , \qquad S_{\rm O7} \supset \frac{1}{(2\pi)^3} \frac{1}{48} \int_{\rm O7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

•
$$S_{R^2} = \frac{1}{(2\pi)^3} \frac{1}{96} \int_{M_6} B^{\alpha} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} \left(\int_{D7} \omega_{\alpha} + 2 \int_{O7} \omega_{\alpha} \right)$$

- ightharpoonup au is varying: localized sources embedded in 10d space-time
- → look at higher curvature corrections of D7/O7

$$S_{\rm D7} \supset \frac{1}{(2\pi)^3} \frac{1}{96} \int_{\rm D7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} , \qquad S_{\rm O7} \supset \frac{1}{(2\pi)^3} \frac{1}{48} \int_{\rm O7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

•
$$S_{R^2} = \frac{1}{(2\pi)^3} \frac{1}{96} \int_{M_6} B^{\alpha} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} \left(\int_{D7} \omega_{\alpha} + 2 \int_{O7} \omega_{\alpha} \right)$$

10d bulk effective action does **not** contain such a correction

- ightharpoonup au is varying: localized sources embedded in 10d space-time
- → look at higher curvature corrections of D7/O7

$$S_{\rm D7} \supset \frac{1}{(2\pi)^3} \frac{1}{96} \int_{\rm D7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} , \qquad S_{\rm O7} \supset \frac{1}{(2\pi)^3} \frac{1}{48} \int_{\rm O7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

•
$$S_{R^2} = \frac{1}{(2\pi)^3} \frac{1}{96} \int_{M_6} B^{\alpha} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} \left(\int_{D7} \omega_{\alpha} + 2 \int_{O7} \omega_{\alpha} \right)$$

•
$$\int_{D7} \omega_{\alpha} + 2 \int_{O7} \omega_{\alpha} = \int_{B_2} \omega_{\alpha} \wedge ([D7] + 2[O7])$$

• elliptic fibration is Calabi-Yau ightharpoonup $[\Delta] = [D7] + 2[O7] = 12c_1(B_2)$

10d bulk effective action does **not** contain such a correction

- $\rightarrow \tau$ is varying: localized sources embedded in 10d space-time
- look at higher curvature corrections of D7/O7

$$S_{\rm D7} \supset \frac{1}{(2\pi)^3} \frac{1}{96} \int_{\rm D7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} , \qquad S_{\rm O7} \supset \frac{1}{(2\pi)^3} \frac{1}{48} \int_{\rm O7} C_4^+ \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

•
$$S_{R^2} = \frac{1}{(2\pi)^3} \frac{1}{96} \int_{M_6} B^{\alpha} \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R} \left(\int_{D7} \omega_{\alpha} + 2 \int_{O7} \omega_{\alpha} \right)$$

•
$$\int_{\mathrm{D7}} \omega_{\alpha} + 2 \int_{\mathrm{O7}} \omega_{\alpha} = \int_{B_{2}} \omega_{\alpha} \wedge \left([\mathrm{D7}] + 2[\mathrm{O7}] \right) = 12 \int_{B_{2}} \omega_{\alpha} \wedge c_{1}(B_{2}) = 12 \eta_{\alpha\beta} c^{\beta}$$
• elliptic fibration is Calabi-Yau \rightarrow
$$[\Delta] = [\mathrm{D7}] + 2[\mathrm{O7}] = 12 c_{1}(B_{2})$$

("D7 tadpole cancellation")

$$d(g_{\alpha\beta} * G^{\beta}) = (2\pi)^2 \eta_{\alpha\beta} N q^{\beta} \delta(\Sigma) + \frac{1}{8} \eta_{\alpha\beta} c^{\beta} \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

integrate

• micro-macro charge relation $Q^{lpha}=Nq^{lpha}+rac{1}{8}rac{1}{(2\pi)^2}c^{lpha}\int_{{
m TN}_m}{
m tr}\,{\cal R}\wedge{\cal R}$

$$d(g_{\alpha\beta} * G^{\beta}) = (2\pi)^2 \eta_{\alpha\beta} N q^{\beta} \delta(\Sigma) + \frac{1}{8} \eta_{\alpha\beta} c^{\beta} \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

integrate

• micro-macro charge relation $Q^{lpha}=Nq^{lpha}+rac{1}{8}rac{1}{(2\pi)^2}c^{lpha}\int_{{
m TN}_m}{
m tr}\,{\cal R}\wedge{\cal R}$

• use first Pontryagin number of TN_m $p_1(\mathrm{TN}_m) = -\frac{1}{2}\frac{1}{(2\pi)^2}\int_{\mathrm{TN}_m}\mathrm{tr}\,\mathcal{R}\wedge\mathcal{R} = 2m$

$$d(g_{\alpha\beta} * G^{\beta}) = (2\pi)^2 \eta_{\alpha\beta} N q^{\beta} \delta(\Sigma) + \frac{1}{8} \eta_{\alpha\beta} c^{\beta} \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

integrate

- micro-macro charge relation $Q^lpha = Nq^lpha + rac{1}{8}rac{1}{(2\pi)^2}c^lpha \int_{{
 m TN}_m} {
 m tr}\, {\cal R}\wedge {\cal R}$
- use first Pontryagin number of TN_m $p_1(\mathrm{TN}_m) = -\frac{1}{2} \frac{1}{(2\pi)^2} \int_{\mathrm{TN}_m} \mathrm{tr}\, \mathcal{R} \wedge \mathcal{R} = 2m$

$$d(g_{\alpha\beta} * G^{\beta}) = (2\pi)^2 \eta_{\alpha\beta} N q^{\beta} \delta(\Sigma) + \frac{1}{8} \eta_{\alpha\beta} c^{\beta} \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

integrate

- micro-macro charge relation $Q^lpha = Nq^lpha + rac{1}{8}rac{1}{(2\pi)^2}c^lpha \int_{{
 m TN}_m} {
 m tr}\, {\cal R}\wedge {\cal R}$
- use first Pontryagin number of TN_m $p_1(\mathrm{TN}_m) = -\frac{1}{2}\frac{1}{(2\pi)^2}\int_{\mathrm{TN}_m}\mathrm{tr}\,\mathcal{R}\wedge\mathcal{R} = 2m$

charge shift due to non-trivial topology of Taub-NUT space

ullet in the following: set N=1

(i) "classical" contribution

HOW TO COMPUTE LEVELS & CENTRAL CHARGES?

central charges and levels are related to anomalies on the 2d CFT side

- compactify to 3d, e.g. $\mathrm{AdS}_3 \times S^3/\mathbb{Z}_m$
- gauge isometries of space you reduce on $\mathrm{U}(1)_L imes \mathrm{SU}(2)_R$
 - ightharpoonup produces gauge fields in Kaluza-Klein ansatz $\,A_L,A_R\,$
- from compactified action read off $k_{L,R},\,c_L-c_R$

HOW TO COMPUTE LEVELS & CENTRAL CHARGES?

Concretely: look for Chern-Simons terms in the 3d action and read off

[Witten '98; Kraus, Larsen '05, Hansen, Kraus '06; ...]

• read off
$$k_R$$
 $\xrightarrow{\text{use }\mathcal{N}=(0,4)}$ $c_R=6k_R$ $c_L=c_R+(c_L-c_R)$

ullet read off k_L

central charges and levels of the N=(0,4) SCFTs fully encoded in Chern-Simons terms

,CLASSICAL' LEVELS & CENTRAL CHARGES

reduce two-derivative supergravity action & collect Chern–Simons terms

$$S_{2-\text{der}} = \frac{1}{2} m \eta_{\alpha\beta} Q^{\alpha} Q^{\beta} \left[\frac{1}{8\pi} \int \omega_{\text{CS}}(A_L) + \frac{1}{4\pi} \int \omega_{\text{CS}}(A_R) \right]$$

$$k_L^{2-\text{der}} = k_R^{2-\text{der}} = \frac{1}{6} c_R^{2-\text{der}} = \frac{1}{2} m \eta_{\alpha\beta} Q^{\alpha} Q^{\beta} = \frac{1}{2} m \left(q^{\alpha} - \frac{m}{2} c^{\alpha} \right) \left(q^{\beta} - \frac{m}{2} c^{\beta} \right)$$

$$(c_L - c_R)^{2-\text{der}} = 0$$

- subleading contributions: higher-derivative corrections
- ightharpoonup want to produce CS-terms for the KK-gauge fields $\sim \int r$

efields
$$\sim \int \eta_{lphaeta}c^{lpha}B^{eta}\wedge {
m tr}\,\mathcal{R}\wedge\mathcal{R}$$
 contains $\omega_{{
m CS}}^{{
m grav}}$ $lacktriangledown$ $c_L-c_R
eq 0$

CLASSICAL' LEVELS & CENTRAL CHARGES

reduce four-derivative supergravity action & collect Chern–Simons terms

$$S_{4\text{-der}} = \frac{1}{16\pi} \eta_{\alpha\beta} c^{\alpha} \left(q^{\beta} - \frac{1}{2} m c^{\beta} \right) \left[\int \omega_{\text{CS}}^{\text{grav}} + 4\omega_{\text{CS}}(A_R) \right]$$

$$k_L^{4\text{-der}} = 0$$

$$k_R^{4\text{-der}} = \eta_{\alpha\beta} c^{\alpha} \left(q^{\beta} - \frac{m}{2} c^{\beta} \right)$$

$$(c_L - c_R)^{4\text{-der}} = 6\eta_{\alpha\beta} c^{\alpha} \left(q^{\beta} - \frac{m}{2} c^{\beta} \right)$$

adding up two– and four–derivative contributions

$$c_L^{\text{class}} = 3mC^2 - 3m^2c_1(B) \cdot C + \frac{3}{4}m^3c_1(B)^2 + 12c_1(B) \cdot C - 6mc_1(B)^2,$$

$$c_R^{\text{class}} = 6k_R^{\text{class}} = 3mC^2 - 3m^2c_1(B) \cdot C + \frac{3}{4}m^3c_1(B)^2 + 6c_1(B) \cdot C - 3mc_1(B)^2,$$

$$k_L^{\text{class}} = \frac{1}{2}mC^2 - \frac{1}{2}m^2c_1(B) \cdot C + \frac{1}{8}m^3c_1(B)^2.$$

CLASSICAL' LEVELS & CENTRAL CHARGES

reduce four-derivative supergravity action & collect Chern-Simons terms

$$S_{4\text{-der}} = \frac{1}{16\pi} \eta_{\alpha\beta} c^{\alpha} \left(q^{\beta} - \frac{1}{2} m c^{\beta} \right) \left[\int \omega_{\text{CS}}^{\text{grav}} + 4\omega_{\text{CS}}(A_R) \right]$$

$$k_L^{4\text{-der}} = 0$$

$$k_R^{4\text{-der}} = \eta_{\alpha\beta} c^{\alpha} \left(q^{\beta} - \frac{m}{2} c^{\beta} \right)$$

$$(c_L - c_R)^{4\text{-der}} = 6\eta_{\alpha\beta} c^{\alpha} \left(q^{\beta} - \frac{m}{2} c^{\beta} \right)$$

adding up two— and four—derivative contributions

$$c_L^{\text{class}} = 3mC^2 - 3m^2c_1(B) \cdot C + \frac{3}{4}m^3c_1(B)^2 + 12c_1(B) \cdot C - 6mc_1(B)^2,$$

$$c_R^{\text{class}} = 6k_R^{\text{class}} = 3mC^2 - 3m^2c_1(B) \cdot C + \frac{3}{4}m^3c_1(B)^2 + 6c_1(B) \cdot C - 3mc_1(B)^2,$$

$$k_L^{\text{class}} = \frac{1}{2}mC^2 - \frac{1}{2}m^2c_1(B) \cdot C + \frac{1}{8}m^3c_1(B)^2.$$

Do we recover the micro result?

Not even close... what did we miss?

(ii) "quantum" contribution

• fact: Chern-Simons terms can be loop induced

• fact: Chern-Simons terms can be loop induced

• loop induced Chern-Simons terms give corrections to $k_{L,R},\,c_L-c_R$

• fact: Chern-Simons terms can be loop induced

• loop induced Chern-Simons terms give corrections to $k_{L,R}, c_L - c_R$

Three-step plan to success

(1) determine (relevant) Kaluza-Klein spectrum on S^3/\mathbb{Z}_m

- ightharpoonup use known spectrum of $\mathcal{N}=(2,0)$ on S^3 charged under $\mathrm{SO}(4)=\mathrm{SU}(2)_L\times\mathrm{SU}(2)_R$
- \rightarrow truncate to $\mathcal{N}=(1,0)$ spectrum

fact: Chern-Simons terms can be loop induced

• loop induced Chern-Simons terms give corrections to $k_{L,R}, c_L - c_R$

Three-step plan to success

- (1) determine (relevant) Kaluza-Klein spectrum on S^3/\mathbb{Z}_m
 - lacktriangle use known spectrum of $\mathcal{N}=(2,0)$ on S^3 charged under $\mathrm{SO}(4)=\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R$
 - \rightarrow truncate to $\mathcal{N}=(1,0)$ spectrum
- (2) compute loop contribution to Chern-Simons terms for a single field

fact: Chern-Simons terms can be loop induced

• loop induced Chern-Simons terms give corrections to $k_{L,R}, c_L - c_R$

Three-step plan to success

- (1) determine (relevant) Kaluza-Klein spectrum on S^3/\mathbb{Z}_m
 - ightharpoonup use known spectrum of $\mathcal{N}=(2,0)$ on S^3 charged under $\mathrm{SO}(4)=\mathrm{SU}(2)_L imes \mathrm{SU}(2)_R$
 - \rightarrow truncate to $\mathcal{N}=(1,0)$ spectrum
- (2) compute loop contribution to Chern-Simons terms for a single field
- (3) sum over Kaluza-Klein tower projected on \mathbb{Z}_m invariant states (ζ function reg.)

(1) Kaluza-Klein spectrum

- Kaluza-Klein spectrum of (2,0) theory worked out by [Deger, Kaya, Sezgin, Sundell `98; de Boer `98]

(1) Kaluza-Klein spectrum

- Kaluza-Klein spectrum of (2,0) theory worked out by [Deger, Kaya, Sezgin, Sundell `98; de Boer `98]
- Kaluza-Klein tower transforms under $\,{
 m SO}(4)={
 m SU}(2)_L imes {
 m SU}(2)_R$ $j_L \qquad j_R$
- ullet additional information: sign of the mass matrix eigenvalue $\operatorname{sgn}(M)$

notation
$$(j_L,j_R)^{\mathrm{sgn}(M)}$$

(1) Kaluza-Klein spectrum

- Kaluza-Klein spectrum of (2,0) theory worked out by [Deger, Kaya, Sezgin, Sundell `98; de Boer `98]
- Kaluza-Klein tower transforms under $\,{
 m SO}(4)={
 m SU}(2)_L imes {
 m SU}(2)_R$ $j_L \qquad j_R$
- ullet additional information: sign of the mass matrix eigenvalue $\,{
 m sgn}(M)$

notation
$$(j_L, j_R)^{\operatorname{sgn}(M)}$$

• truncation of $\mathcal{N}=(2,0)$ spectrum to $\mathcal{N}=(1,0)$

spin 3/2
$$2\bigoplus_{j_L=\frac{1}{2},\frac{3}{2},\dots}^{\infty}\left(j_L,j_L\pm\frac{1}{2}\right)^{\mp}$$

(1) Kaluza-Klein spectrum

- Kaluza-Klein spectrum of (2,0) theory worked out by [Deger, Kaya, Sezgin, Sundell `98; de Boer `98]
- Kaluza-Klein tower transforms under $\,{
 m SO}(4)={
 m SU}(2)_L imes {
 m SU}(2)_R$ $j_L \qquad j_R$
- ullet additional information: sign of the mass matrix eigenvalue $\,{
 m sgn}(M)$

notation
$$(j_L, j_R)^{\operatorname{sgn}(M)}$$

• truncation of $\mathcal{N}=(2,0)$ spectrum to $\mathcal{N}=(1,0)$

spin 3/2
$$2\bigoplus_{j_L=\frac{1}{2},\frac{3}{2},\dots}^{\infty}\left(j_L,j_L\pm\frac{1}{2}\right)^{\mp}$$

spin 1/2
$$2 \bigoplus_{j_L = \frac{3}{2}, \frac{5}{2}, \dots}^{\infty} \left(j_L, j_L \pm \frac{3}{2} \right)^{\mp} \oplus 2 \bigoplus_{j_L = 1, 2, \dots}^{\infty} \left(j_L, j_L \pm \frac{1}{2} \right)^{\pm} \oplus 2 (n_T + n_H) \bigoplus_{j_L = \frac{1}{2}, \frac{3}{2}, \dots}^{\infty} \left(j_L, j_L \pm \frac{1}{2} \right)^{\pm}$$

(1) Kaluza-Klein spectrum

- Kaluza-Klein spectrum of (2,0) theory worked out by [Deger, Kaya, Sezgin, Sundell `98; de Boer `98]
- Kaluza-Klein tower transforms under $\,{
 m SO}(4)={
 m SU}(2)_L imes {
 m SU}(2)_R$ $j_L \qquad j_R$
- ullet additional information: sign of the mass matrix eigenvalue $\,{
 m sgn}(M)$

notation
$$(j_L, j_R)^{\operatorname{sgn}(M)}$$

• truncation of $\mathcal{N}=(2,0)$ spectrum to $\mathcal{N}=(1,0)$

vectors
$$igg(j_L,j_L\pm 1igg)^\mp\oplus n_Tigg(j_L,j_L\pm 1igg)^\pm j_L=1,2,...$$

(1) Kaluza-Klein spectrum

- Kaluza-Klein spectrum of (2,0) theory worked out by [Deger, Kaya, Sezgin, Sundell `98; de Boer `98]
- Kaluza-Klein tower transforms under $\,{
 m SO}(4)={
 m SU}(2)_L imes {
 m SU}(2)_R$ $j_L \qquad j_R$
- ullet additional information: sign of the mass matrix eigenvalue $\,{
 m sgn}(M)$

notation
$$(j_L, j_R)^{\operatorname{sgn}(M)}$$

• truncation of $\mathcal{N}=(2,0)$ spectrum to $\mathcal{N}=(1,0)$

spin 3/2
$$2\bigoplus_{j_L=\frac{1}{2},\frac{3}{2},\dots}^{\infty}\left(j_L,j_L\pm\frac{1}{2}\right)^{\mp}$$

vectors
$$\bigoplus_{j_L=1,2,...}^{\infty} \left(j_L,j_L\pm 1\right)^{\mp} \oplus n_T \bigoplus_{j_L=1,2,...}^{\infty} \left(j_L,j_L\pm 1\right)^{\pm}$$

• need to consider three species of fields spin 1/2 spin 3/2 chiral vectors

- need to consider three species of fields spin 1/2 spin 3/2 chiral vectors
- chiral vectors: "square root" of Proca field [Townsend, Pilch, van Nieuwenhuizen `83]
- loop corrections studied by [Bonetti, Grimm, Hohenegger `12]

- need to consider three species of fields spin 1/2 spin 3/2 chiral vectors
- chiral vectors: "square root" of Proca field [Townsend, Pilch, van Nieuwenhuizen `83]
- loop corrections studied by [Bonetti, Grimm, Hohenegger `12]

- (a) index theorems
- (b) brute force loop calculation

- need to consider three species of fields spin 1/2 spin 3/2 chiral vectors
- chiral vectors: "square root" of Proca field [Townsend, Pilch, van Nieuwenhuizen `83]
- loop corrections studied by [Bonetti, Grimm, Hohenegger `12]

- (a) index theorems
- (b) brute force loop calculation
- → field field transforming under $U(1)_L \times SU(2)_R \subset SU(2)_L \times SU(2)_R$ in the irrep (j_L, j_R) contributes to $U(1)_L$, $SU(2)_R$ and grav. Chern-Simons terms as

	spin $1/2$	spin $3/2$	vectors
$\overline{}$	$sgn(M)(j_L^{(3)})^2(2j_R+1)$	$3\operatorname{sgn}(M)(j_L^{(3)})^2(2j_R+1)$	$-2(j_L^{(3)})^2(2j_R+1)$
k_R			
$c_L - c_R$			

- need to consider three species of fields spin 1/2 spin 3/2 chiral vectors
- chiral vectors: "square root" of Proca field [Townsend, Pilch, van Nieuwenhuizen `83]
- loop corrections studied by [Bonetti, Grimm, Hohenegger `12]

- (a) index theorems
- (b) brute force loop calculation
- → field field transforming under $U(1)_L \times SU(2)_R \subset SU(2)_L \times SU(2)_R$ in the irrep (j_L, j_R) contributes to $U(1)_L$, $SU(2)_R$ and grav. Chern-Simons terms as

	spin 1/2	spin 3/2	vectors
k_L	$sgn(M)(j_L^{(3)})^2(2j_R+1)$	$3\operatorname{sgn}(M)(j_L^{(3)})^2(2j_R+1)$	$-2(j_L^{(3)})^2(2j_R+1)$
k_R	$-\frac{1}{3}\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$	$-\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$	$\frac{2}{3}$ sgn $(M)j_R(j_R+1)(2j_R+1)$
$c_L - c_R$			

- need to consider three species of fields spin 1/2 spin 3/2 chiral vectors
- chiral vectors: "square root" of Proca field [Townsend, Pilch, van Nieuwenhuizen `83]
- loop corrections studied by [Bonetti, Grimm, Hohenegger `12]

- (a) index theorems
- (b) brute force loop calculation
- lacktriangledown field field transforming under $\mathrm{U}(1)_L imes \mathrm{SU}(2)_R \subset \mathrm{SU}(2)_L imes \mathrm{SU}(2)_R$ in the irrep (j_L,j_R) contributes to $\mathrm{U}(1)_L$, $\mathrm{SU}(2)_R$ and grav. Chern-Simons terms as

	spin 1/2	spin 3/2	vectors
k_L	$sgn(M)(j_L^{(3)})^2(2j_R+1)$	$3\operatorname{sgn}(M)(j_L^{(3)})^2(2j_R+1)$	$-2(j_L^{(3)})^2(2j_R+1)$
k_R	$-\frac{1}{3}\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$	$-\text{sgn}(M)j_R(j_R+1)(2j_R+1)$	$\frac{2}{3}$ sgn $(M)j_R(j_R+1)(2j_R+1)$
$c_L - c_R$	$\frac{1}{2}\mathrm{sgn}(M)(2j_R+1)$	$-\frac{21}{2}\operatorname{sgn}(M)(2j_R+1)$	$2(2j_R+1)$

- need to consider three species of fields spin 1/2 spin 3/2 chiral vectors
- chiral vectors: "square root" of Proca field [Townsend, Pilch, van Nieuwenhuizen `83]
- loop corrections studied by [Bonetti, Grimm, Hohenegger `12]

- (a) index theorems
- (b) brute force loop calculation
- → field field transforming under $U(1)_L \times SU(2)_R \subset SU(2)_L \times SU(2)_R$ in the irrep (j_L, j_R) contributes to $U(1)_L$, $SU(2)_R$ and grav. Chern-Simons terms as

	spin $1/2$	spin $3/2$	vectors
k_L	$sgn(M)(j_L^{(3)})^2(2j_R+1)$	$3\operatorname{sgn}(M)(j_L^{(3)})^2(2j_R+1)$	$-2(j_L^{(3)})^2(2j_R+1)$
k_R	$-\frac{1}{3}\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$	$-\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$	$\frac{2}{3}$ sgn $(M)j_R(j_R+1)(2j_R+1)$
$c_L - c_R$	$\frac{1}{2}\operatorname{sgn}(M)(2j_R+1)$	$-\frac{21}{2}\operatorname{sgn}(M)(2j_R+1)$	$2(2j_R+1)$

(3) Sum over invariant states

- main question: how does the \mathbb{Z}_m quotient act on the Kaluza-Klein states?
 - lacktriangle check how \mathbb{Z}_m acts on spherical harmonics on S^3
 - group theory exercise...
- quotient is generated by $\mathbb{Z}_m \subset \mathrm{U}(1)_L \subset \mathrm{SU}(2)_L$
 - $(2j_L+1)$ dimensional irrep of $\mathrm{SU}(2)_L$ $igoplus 2j_L$ fold sym. tensor product of ${f 2}$
- $ullet \mathbb{Z}_m$ acts on $oldsymbol{2}$ as $egin{pmatrix} z_1 \ z_2 \end{pmatrix}
 ightarrow egin{pmatrix} \mathrm{e}^{rac{2\pi i}{m}} & 0 \ 0 & \mathrm{e}^{-rac{2\pi i}{m}} \end{pmatrix} egin{pmatrix} z_1 \ z_2 \end{pmatrix}$
 - → induces action on symmetric tensor representation
- projection condition can be easily calculated

$$\left[j_L^{(3)} = \frac{1}{2}mk, \qquad k \in \mathbb{Z}\right]$$

Summary

Kaluza-Klein spectrum

spin 3/2
$$2 \bigoplus_{j_L = \frac{1}{2}, \frac{3}{2}, \dots}^{\infty} \left(j_L, j_L \pm \frac{1}{2} \right)^{\mp}$$

spin 1/2
$$2 \bigoplus_{j_L = \frac{3}{2}, \frac{5}{2}, \dots}^{\infty} \left(j_L, j_L \pm \frac{3}{2} \right)^{\mp} \oplus 2 \bigoplus_{j_L = 1, 2, \dots}^{\infty} \left(j_L, j_L \pm \frac{1}{2} \right)^{\pm} \oplus 2 (n_T + n_H) \bigoplus_{j_L = \frac{1}{2}, \frac{3}{2}, \dots}^{\infty} \left(j_L, j_L \pm \frac{1}{2} \right)^{\pm}$$

vectors
$$\bigoplus_{j_L=1,2,...}^{\infty} \left(j_L,j_L\pm 1\right)^{\mp} \oplus n_T \bigoplus_{j_L=1,2,...}^{\infty} \left(j_L,j_L\pm 1\right)^{\pm}$$

Loop corrections

	spin 1/2	spin 3/2	vectors
k_L	$sgn(M)(j_L^{(3)})^2(2j_R+1)$	$3\mathrm{sgn}(M)(j_L^{(3)})^2(2j_R+1)$	$-2(j_L^{(3)})^2(2j_R+1)$
k_R	$-\frac{1}{3}\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$	$-\text{sgn}(M)j_R(j_R+1)(2j_R+1)$	$\frac{2}{3}\operatorname{sgn}(M)j_R(j_R+1)(2j_R+1)$
$c_L - c_R$	$\frac{1}{2}\mathrm{sgn}(M)(2j_R+1)$	$-\frac{21}{2}\mathrm{sgn}(M)(2j_R+1)$	$2(2j_R+1)$

$$j_L^{(3)} = \frac{1}{2}mk \qquad k \in \mathbb{Z}$$

left level k_L

$$k_L^{\text{sugra}} = \frac{1}{2} mC \cdot C - \frac{1}{2} m^2 c_1(B_2) \cdot C + \frac{1}{8} m^3 c_1(B_2) \cdot c_1(B_2)$$

$$k_L^{\text{quantum}} = -\frac{1}{8} m^3 c_1(B_2) \cdot c_1(B_2)$$

$$\star k_L^{\text{total}} = \frac{1}{2} mC \cdot C - \frac{1}{2} m^2 c_1(B_2) \cdot C = k_L^{\text{micro}}$$

right level k_R

$$k_R^{\text{sugra}} = \frac{1}{2}mC \cdot C - \frac{1}{2}m^2c_1(B_2) \cdot C + \frac{1}{8}m^3c_1(B_2)^2 + c_1(B_2) \cdot C - \frac{1}{2}mc_1(B_2)^2$$

$$k_R^{\text{quantum}} = \frac{m^3}{24}c_1(B_2)^2 + \frac{m}{3}c_1(B_2)^2 + m$$

$$c_R^{\text{total}} = 6k_R^{\text{total}} = 3mC \cdot C - 3m^2c_1(B_2) \cdot C + m^3c_1(B_2)^2$$

$$+ 6c_1(B_2) \cdot C + 6m - mc_1(B_2)^2$$

gravitational Chern-Simons level $c_L - c_R$

$$(c_L - c_R)^{\text{sugra}} = 6c_1(B_2) \cdot C - 3mc_1(B_2) \cdot c_1(B_2)$$

 $(c_L - c_R)^{\text{quantum}} = 6m + 2mc_1(B_2) \cdot c_1(B_2)$

$$c_L^{\text{total}} = c_R^{\text{total}} + (c_L - c_R)^{\text{total}}$$

$$= 3mC \cdot C - 3m^2 c_1(B_2) \cdot C + m^3 c_1(B_2)^2 + 12c_1(B_2) \cdot C + 12m - 2mc_1(B_2)^2$$

final result

$$c_L = 3mC \cdot C - 3m^2 c_1(B_2) \cdot C + m^3 c_1(B_2)^2 + 12c_1(B_2) \cdot C + 12m - 2mc_1(B_2)^2$$

$$c_R = 6k_R = 3mC \cdot C - 3m^2 c_1(B_2) \cdot C + m^3 c_1(B_2)^2 + 6c_1(B_2) \cdot C + 6m - mc_1(B_2)^2$$

$$k_L = \frac{1}{2}mC \cdot C - \frac{1}{2}m^2 c_1(B_2) \cdot C$$

- matches microscopic prediction!

E. Other families: ADE Black Holes

D. Other families: ADE Black holes

- up to now restricted to Taub-NUT space \longrightarrow $\mathbb{C}^2/\mathbb{Z}_m$ singularity close to center
- recall: F-theory AdS_3 solutions preserving $\mathcal{N}=(0,4)$ SUSY have ADE classification

$$\mathrm{AdS}_3 imes S^3/\Gamma_{\mathrm{ADE}} imes (\mathrm{CY}_3 oup B_2)$$

$$\Gamma_{\mathrm{A}} = \mathbb{Z}_m \subset \mathrm{SU}(2) \quad \text{cyclic group}$$

$$\Gamma_D = \mathbb{D}_m^* \subset \mathrm{SU}(2) \quad \text{bin. dihedral group}$$

$$\Gamma_E = \mathbb{T}^*, \mathbb{O}^*, \mathbb{I}^* \subset \mathrm{SU}(2)$$

microscopic interpretation: D3-brane with transverse ALF space

hyperkähler manifold with $\mathbb{C}^2/\Gamma_{
m ADE}$ singularity

- no (straightforward) dual M5-brane picture in M-theory
 - MSW techniques for micro don't apply

However: macroscopic computation can be done!

F. Summary

- → studied IR CFT of wrapped D3-branes in F-theory
- → computed central charges and levels of 2d N=(0,4) IR SCFT
 - determine entropy
- \rightarrow $c_{L,R}$ and $k_{L,R}$ are determined by geometric/topological data in the setup
 - ullet first Pontryagin number of Taub-NUT space ${oldsymbol{m}}$
 - first Chern class of the base of the fibration $c_1(B_2)$
- obtained matching of micro and macro result (for a fairly involved expression)
- → one-loop Chern-Simons terms crucial for the matching

F. Outlook

→ study the remaining possible quotients in the ADE classification

→ look at D3-branes in Type IIB on K3 \times T² with ADE quotients

does **not** follow by $c_1(B_2 = K3) = 0$

both macroscopics and microscopics under good control, yet non-trivial