

Understanding AGN evolution with large X-ray surveys: current constraints and prospects for eROSITA

Andrea Merloni (MPE)

Outline

- Active Galactic Nuclei and the history of accretion
- AGN vs. galaxies: feedback and accretion modes
- The future: eROSITA and its all-sky survey

Accreting black holes

MPE

Accreting black holes

Chandra Deep Field South: The deepest X-ray image of the sky ever taken (Xue et al. 2011)

> Every dot is a (supermassive) black hole! Merloni, IPMU, Tokyo, 11/2018

\mathscr{P} BH census, matter of contamination

Composite AGN and galaxy SEDs and images for varying AGN dominance and obscuration Hickox & Alexander (2018) "Obscured Active Galactic Nuclei" ARA&A, Volume 56

AGN selection basics: contrasts

	Critical Edd [M*= 3*1	"visible fraction	
	z=0	z=1	
X-ray	≈ 2*10 ⁻⁵	≈ 2*10 ⁻⁴	~ 80%
Radio (η _j =ε)	≈ 3*10 ⁻⁵	≈ 2*10 ⁻⁴	ALL? 10%?
MIR	≈ 0.015	≈ 0.13	ALL
Opt/UV	≈ 0.025	≈ 0.2	<50%

Eddington Rate = Ratio of AGN bolometric to Eddington luminosities Approx. Scales with ratio of AGN light to galaxy stellar mass

X-ray luminosity function

Explore a wide range in Luminosity AND redshift Understand selection function and absorbing column distribution Combine different surveys

Aird et al. 2015

See also Ueda et al. 2014; Buchner et al. 2015; Myiaji et al. 2015

Merloni, IPMU, Tokyo, 11/2018

Aird et al 2015; Ueda+ 2003; Marconi+ 2004; Merloni & Heinz 2008; Ueda+ 2014; Delvecchio+ 2014; Buchner+ 2015; Myiaji+ 2015, Merloni 2016, etc.

Integral constraint: the Soltan argument

Soltan (1982) first proposed that the mass in black holes today is simply related to the AGN population integrated over luminosity and redshift

$$\begin{split} L_{\rm bol} &= \epsilon_{\rm rad} M c^2 \\ {\rm BHAR}(z) \equiv \Psi_{\rm BH} = \int_0^\infty \frac{(1 - \epsilon_{\rm rad}) L_{\rm bol}}{\epsilon_{\rm rad} c^2} \phi(L_{\rm bol}, z) dL_{\rm bol} \\ \frac{\rho_{\rm BH}(z)}{\rho_{\rm BH,0}} &= 1 - \int_0^z \frac{\Psi_{\rm BH}(z')}{\rho_{\rm BH,0}} \frac{dt}{dz'} dz' \end{split}$$

Fabian and Iwasawa (1999) ε~0.1; Elvis, Risaliti and Zamorani (2002) ε >0.15; Yu and Tremaine (2002) ε>0.1; Marconi et al. (2004) 0.16> ε >0.04; Merloni, Rudnick, Di Matteo (2004) 0.12> ε >0.04; Shankar et al. (2007) ε ~0.07

Most (~3/4) of SMBH growth is "obscured"

12

Relationship with host galaxies?

- Statistically robust assessment of AGN demographics:
 - Which galaxies host (which) AGN?
 - AGN triggering: under which conditions do SMBH grow
 - Relationship between AGN and Star Formatio, morphology, mergers, LSS (clustering)
- Does AGN activity affect galaxies' properties (at the population level)
 - Location of AGN in color-magnitude plots, etc.
 - Smoking guns of AGN feedback?

Coil, Juneau, Trakhtenbrot, Hickox, Netzer, Duras, Goulding

OSM XMM-COSMOS AGN

- 1555 X-ray selected AGN (XMM; f_{lim}~ **5×10**⁻¹⁶[0.5-2]; **3×10**⁻¹⁵[2-10])
- 100% redshift complete (54% specz; 46% photoz)
- 602 Unobscured (71% specz); 953 Obscured (42% specz)
- Parent sample ~200k IRAC galaxies (photoz, M_{*}; Ilbert et al. 2010)

 Uniquely rich multiwavelength photometry used to decompose AGN and host galaxy light in SED fitting

Bongiorno et al. 2012; Brusa+ 2010; Salvato+ 2009; Lusso+ 2011, 2012; Merloni+ 2014

Eddington rate functions

Georgakakis et al. 2017; Aird et al. 2017, see also Bongiorno et al. 2016

AGN mocks in LSS

Georgakakis et al. 2018, submitted

AGN mocks and LSS

High-power AGN and their relevance for feedback

- Feedback from powerful QSOs ('radiative' mode) is needed to:
 - Maintain the observed close connection between the growth of SMBH and the growth of galaxies
 - Ensure a tight relation between black hole mass and galaxy mass/ velocity dispersion
 - Help establishing the color-bimodality of galaxies
- Massive outflows are expected/observed from luminous QSOs, and their effect on the Narrow Line Regions can be studied in detail
- Sample selection is critical to move from sporadic events to an assessment of the population
- Present here a study of X-ray selected AGN in XMM-XXL, with uniform optical (SDSS/BOSS) spectroscopic follow- up (~3000 SDSS/BOSS spectra of X-ray selected AGN in ~20 deg²); [Menzel+'16,'19, Liu+'17]

X-ray AGN: optical spectra

~1500 **BLAGN** (0<z<4) ~150 **X-ray obscured BLAGN** (0<z<3) [Also split in Red and Blue QSOs]

~550 NLAGN2 (0<z<1) ~80 'elusive' AGN in SFG (0<z<0.8) ~90 'elusive' AGN in ALG (0<z<0.8)

Menzel et al.m2016; Liu et al. 2018

Merloni, IPMU, Tokyo, 11/2018

NLR Kinematics: AGN impact

Table 4.2.: Fraction of ionized $\left[\text{OIII} \right]$ outflows/inflows in BLAGN1 and NLAGN2.

		0 <z<1< th=""><th>complet</th><th colspan="2">complete sample</th></z<1<>		complet	complete sample	
	ELG	BLAGN1	NLAGN2	BLAGN1	NLAGN2	
	[per cent]	[per cent]	[per cent]	[per cent]	[per cent]	
$SN_{\rm med} > 1$	1.0 ± 0.3	24 ± 3	16 ± 2	41 ± 6	28 ± 5	
$SN_{\rm med}>3$	1.8 ± 0.1	30 ± 3	19 ± 3	43 ± 6	31 ± 5	
$SN_{ m med} > 10$	-	55 ± 9	29 ± 6	60 ± 11	40 ± 10	

Menzel et al. 2018, submitt.; PhD thesis

ıvıerioni, IPMU, Tokyo, 11/2018

Ionized outflow are AGN driven

Menzel et al. 2018, submitt.; PhD thesis

lonized outflows energetics

Menzel et al. 2018, submitt.; PhD thesis

High Power AGN: "QSO mode"

Merloni, IPMU, Tokyo, 11/2018

SMBH growth: weighting modes

Kinetic to radiative energy density ratio

Log L_{kin} = 45.2 x 0.8 Log(P_{core} /10²⁵) (Merloni & Heinz 2007)

Log L_{kin} = 44.6 x 0.7 Log (P_{1.4} /10²⁵) (Cavagnolo 2010, "cavity power")

Heinz, Merloni and Schwaab (2007); Körding, Jester and Fender (2007); Merloni & Heinz (2008); Cattaneo and Best (2009)

Summary of Part I: History of Accretion

- X-ray surveys provide the least biased view of AGN (against obscuration/extinction and galaxy dilution)
- We have probed most of the accretion history in the Universe (at least in mass-averaged terms). Most of SMBH mass accumulated in radiatively efficient phases of accretion
- Accretion rate distributions are key diagnostics of AGN evolution and connection to triggering
- Little evidence of 'typical' AGN being different that overall galaxy population
- A stochastic phenomenon; some particular condition may enhance this probability: mergers, central vs. satellite, etc., but evidence is tantalizing

Summary of Part I: The need for larger samples

- Existing X-ray surveys are limited by the sample size (~a few 10³), mainly because of the limited field of view of sensitive, focusing, X-ray telescopes.
- Larger samples are mandatory to accurately study DISTRIBUTIONS of AGN vs. L, z, λ , N_H, SFR, M* (stochasticity of AGN phenomenon)
- The next step forward will be to bring the study of AGN evolution to the level of statistical significance that galaxy evolution studies enjoyed since the advent of SDSS (-> 10⁶)

Mapping the Universe

"Constrained" Hydro simulations e.g. J. Sorce+2016

Copyright SAO 1998

Courtesy of K. Dolag (LMU)

Merloni, IPMU, Tokyo, 11/2018

28

universitätbonn

eROSITA: the Project

PI: Peter Predehl; PS: A. Merloni (MPE) Core Institutes (DLR funding):

MPE, Garching/D Universität Erlangen-Nürnberg/D IAAT (Universät Tübingen)/D SB (Universität Hamburg)/D Astrophysikalisches Institut Potsdam/D

Associated Institutes:

MPA, Garching/D IKI, Moscow/Ru USM (Universität München)/D AIA (Universität Bonn)/D

Industry:

Media Lario/I [®]Mirrors, Mandrels **Mirror Structures** Kayser-Threde/D Carl Zeiss/D **ABRIXAS-Mandrels** Invent/D Telescope Structure pnSensor/D CCDs IberEspacio/E Heatpipes RUAG/A Mechanisms HPS/D,P MLI + many small companies

COSTS: ~90 M€ (eROSITA) ~250-300 M€ (SRG)

MPE: Scientific Lead Institute, Project Managment Instrument Design, Manufacturing, Integration & Test Data Handling & Processing, Archive etc.

SRG: Mission Profile

- Launch: From Baykonour, Proton–Block-DM
- 3 Months: flight to L2, PV and calibration phase
- 4 years: 8 all sky surveys (eRASS:1-8; scanning mode: 6 rotations/day)
 - Re-visit LMC & SMC every ~month (to L_{0.5-2 keV} ~10³⁴ erg/s)
- 2.5 years: pointed observations, including ~20% GTO. 1 AO per year

- **Ground Segment**: 2 x 70m antennas (Bear Lakes and Ussirisk), daily contact (up to ~4 hours); telemetry transfer directly to MPE via Moscow NPOL/IKI Control Center

7 Mirrors + pnCCDs

- Focal length: 1.6 m, Field of view: 1 degree (diameter)
- Half-Energy width (HEW) ~18" (on-axis); 27" (FoV avg.)
- Source location accuracy ~3-10"
- X-ray baffle (10µm precision alignment): 92% stray light reduction
- Spectral resolution at all measured energies within specs (R~20@1.5keV)
- Extremely good uniformity, no chip gaps

Effective Area: ~1700 cm² (FoV avg. @1keV)

- Effective area at 1keV comparable with XMM-Newton
- Factor ~7-8 larger surveying speed (and 4 years dedicated to all sky survey)
- Survey FoM \approx A_{eff}*FoV/(θ *Bkgn) (courtesy of Wik & Horsheimer)

eROSITA surveys in context

X-ray Large Scale Structure

ALL Massive Clusters

- eROSITA will detect ~110k clusters with more than 50 net counts; 2k with more than 1000 counts
- ~20k clusters with good redshift determination, up to z~0.45
- ~2k clusters with precise Temperature (to <10%)
- eROSITA PSF is good enough to resolve ~ $0.3R_{500}$ regions at z=1 for $10^{14}M_{\odot}$ clusters
- For cosmology, M_{gas} and coreexcised L_X are excellent mass proxies with very low scatter (~10%)

3 Million AGN: physics and cosmology

- The most luminous AGN, tracers of large scale structure: the "quasar" mode of AGN feedback
- (Obscured and Unobscured) accretion history
- High-z AGN
- Huge effective volume,
 BAO with biased tracers
- SED vs. L, L/L_{EDD}
- Soft spectral response
- Uninterrupted view!

3 Million AGN: physics and cosmology

- The most luminous AGN, tracers of large scale structure: the "quasar" mode of AGN feedback
- (Obscured and Unobscured) accretion history
- High-z AGN
- Huge effective volume,
 BAO with biased tracers
- SED vs. L, L/L_{EDD}
- Soft spectral response
- Uninterrupted view!

'AGN Follow-up requirements

ID r_{AB} limit i_{AB} limit K_{AB} limit fraction $[5\sigma]$ $[5\sigma]$ $[5\sigma]$ 0.9 22.8 22.5 20.4 0.95 23.5 232 20.7 0.99 24.5 24.2 21.3

 $\begin{array}{l} \textbf{SDSS: } r_{AB} < 22.2; \ 13,000 \ deg^2 \\ \textbf{PS1: } r_{AB} < 22; \ 32,000 \ deg^2 \\ \textbf{VST/ATLAS: } r_{AB} < 22.5; \ 4,500 \ deg^2 \\ \textbf{DES: } r_{AB} < 24.3; \ 5,000 \ deg^2 \\ \textbf{HSC WIDE: } r_{AB} < 25.2; \ 1,500 \ deg^2 \\ \textbf{DECaLS: } r_{AB} < 23.2; \ 6,000 \ deg^2 \\ \textbf{DeROSITAS/BLISS: } r_{AB} < 23.2; \ \sim 3,000 \ deg^2 \\ \textbf{LSST: } r_{AB} < 25.8; \ 18,000 \ deg^2 \end{array}$

- Type 1 (un-obscured, Broad line) ~66%
- Type 2 (obscured, Narrow line) ~20%
- "Elusive" AGN ~6%
- Stars ~8%

NOTE: **WISE** has detected ~65% of all AGN that eROSITA will see

Spectroscopic follow-up

- TAIPAN (2019-2023) taipan-survey.org
 - 1.2m UK Schmidt Telescope at Siding Spring Observatory, 2.5π
 - Limited to i<17: 0.6-1 AGN/deg² mostly RASS sources, 20k redshifts
- SDSS-V (2020-2024) www.sdss.org/future/
 - SDSS + LCO full-sky coverage complete follow-up of eRASS:2 over ~10,000 deg² (250k AGN spectra to i~21.5, 80k galaxies in 10k clusters)

- VISTA/4MOST (2023-2027) www.4most.eu

- Complete, systematic follow-up of both Clusters and AGN from eROSITA:8 reach >90% completeness for eRASS:8 (down to r~23)
- ~700k AGN spectra 0<z<6
- ~1M galaxies in ~50k X-ray selected clusters (Clusters clustering, RSD, velocity dispersion, gravitational redshift)

eROSITA Cadence Map

"Legacy science"

 Provide a detailed view of the compact objects (NS, BH) population of the Milky Way

- Survey of 600k active (young, magnetic) stars
- Map the diffuse X-ray emission and the hot ISM in the Milky Way and in the Solar neighborhood
- Study nearby star-forming galaxies and galaxy groups
- Provide a dynamical view of the X-ray sky and identify transients and variable sources, including 1000's TDEs
- Serendipity...

[eROSITA Science Book: Merloni et al. 2012, arXiv:1209.3114]

Working with eROSITA

• eROSITA is a PI instrument

- Scientific exploitation of data shared between the partners: 50% MPE and 50% IKI, West/East (gal. coord.)
- German data public after 2 yrs, 3 releases ('20, '22, '24; TBC)
- Proprietary access via eROSITA_DE (/RU) consortium
- Projects/papers regulated by working groups
- Working Groups:
 - Science: Clusters/Cosmology, AGN, Normal galaxies, Compact objects, Diffuse emission/SNR, Stars, Solar System, Time Domain Astrophysics
 - Infrastructure: Data analysis and catalogues, Multiwavelength follow-up, Calibration, Background
- Collaboration policy (German Consortium):
 - Individual External Collaborations (proposal to WGs)
 - Group External Collaborations (team-to-team MoUs)

Conclusions

- X-ray (and radio) surveys provide the least biased view of the AGN evolution
- Current samples reveal AGN as stochastic phenomena occurring in all kind of galaxies
- Sample size are still small to unambiguously reveal trends with galaxy properties and large scales
- Not clear the overall global impact of AGN feedback at high Edd. Ratio (winds and outflows)
- eROSITA is ready for launch in 2019!
- Future of AGN studies with eROSITA and multiwavelength large surveys (WISE, LOFAR, ASKAP, DESI, 4MOST, HSC) is bright: larger sample will allow new phenomena to be discovered

Thank you

Image courtesy of K. Dolag