A tale of four extremizations

Alberto Zaffaroni
University of Milano-Bicocca

IPMU
16 April 2019

Introduction

In supersymmetric gauge theories the $U(1)$ R-symmetry current is not necessarily unique and mixes with the global symmetry currents.

If R_{0} is a $U(1)$ R-symmetry

$$
R=R_{0}+\sum_{a} \Delta_{a} J_{a}
$$

also is, for all $U(1)$ global symmetries J_{a}.
On the other hand, a SCFT has an exact R-symmetry sitting in the superconformal algebra.

Introduction

There are many interesting extremization principles to find the exact R -symmetry in the space of all symmetries:

- a-maximization for $\mathcal{N}=1$ in 4 d : extremize the trial central charge $a\left(\Delta_{a}\right)$ [Wecht-Intriligator '03]
- F-maximization for $\mathcal{N}=2$ in 3d: extremize the free energy on $S^{3}, F_{S^{3}}\left(\Delta_{a}\right)$ [Jafferis '10]
- c-extremization for $(0,2)$ in 2 d : extremize the right-moving trial central charge $c_{r}\left(\Delta_{a}\right)$ [Benini-Bobev '12]
- I-extremization for some superconformal $\mathcal{N}=2 \mathrm{QM}$ in 1d: extremize the equivariant Witten index? [Benini-Hristov-Zaffaroni '15]

Introduction

There are many interesting holographic duals that are obtained by considering near-horizon geometries of a set of N D3-branes or M2-branes:

- 4d SCFT: dual to $\mathrm{AdS}_{5} \times H_{5}$ in type IIB and $a=\frac{\pi^{3} N^{2}}{4 \operatorname{Vol}\left(H_{5}\right)}$
- 3d SCFT: dual to $\operatorname{AdS}_{4} \times H_{7}$ in M-theory and $F_{S^{3}}=N^{3 / 2} \sqrt{\frac{2 \pi^{6}}{\left.27 \operatorname{Vol}^{(} H_{7}\right)}}$ and their twisted compactifications on Riemann surfaces $\Sigma_{\mathfrak{g}}$:
- $(0,2)$ 2d SCFT: dual to fibrations AdS $_{3} \times \Sigma_{\mathfrak{g}} \times H_{5}$ in type IIB
- 1d SCFT: dual to fibrations $\operatorname{AdS}_{2} \times \Sigma_{\mathfrak{g}} \times H_{7}$ in M theory and a gravitational dual for the four extremization principles based on the geometry of Sasaki-Einstein manifolds [Martelli-Sparks-Yau '05; Couzens-Gauntlett-Martelli-Sparks '18]

Based on

S. M. Hosseini-AZ; arXiv 1901.05977
S. M. Hosseini-AZ; arXiv 1904.04269
but see also
A. Butti-AZ; arXiv 0506232
F. Benini-K.Hristov-AZ; arXiv 1511.04085 and 1608.07294
S. M. Hosseini-AZ; arXiv 1604.03122

Part I

D3-branes in type IIB

Superconformal Field Theories Zoo

D3 branes probing a conical Calabi-Yau with base a Sasaki-Einstein H_{5} :

- Near horizon geometry $\mathrm{AdS}_{5} \times \mathrm{H}_{5}$
- Superconformal field theory on the world-volume
- Complete correspondence between CY and CFT in the toric case
[Franco-Hanany-Kennaway-Vegh-Wecht; Feng-He-Kennaway-Vafa, 2005]

Symmetries come from bulk massless gauge fields:

- isometries of H_{5} - mesonic symmetries
- reduction of $A_{(4)}$ on non-trivial three cycles in H_{5} - baryonic symmetries the exact R-symmetry mixes with all

Superconformal Field Theories Zoo

Everyone favorite is the conifold $C\left(T^{1,1}\right): T^{1,1}=S U(2) \times S U(2) / U(1)$

Symmetries:
mesonic: $U(1)_{R} \times S U(2) \times S U(2)$
baryonic: +1 for A_{i} and -1 for B_{i}

$$
W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right)
$$

Parameterize general R -symmetry with four numbers Δ_{a} subject to

$$
\sum_{a=1}^{4} \Delta_{a}=2 \quad \text { exact } R-\operatorname{symmetry}: \Delta_{a}=\frac{1}{2}
$$

R-charge Parameterization for Toric Calabi-Yau

Toric Calabi-Yau are specified by a set of d integer vectors v_{a} in \mathbb{R}^{3}

- Toric $=U(1)^{3}$ isometry
- Every v_{a} associated with $U(1)^{3}$-invariant three cycles in H : only $d-3$ independent in homology
d symmetries: 3 mesonic $+d-3$ baryonic parameterized by d numbers Δ_{a} subject to

$$
\sum_{a=1}^{d} \Delta_{a}=2
$$

R-charge Parameterization for Toric Calabi-Yau

Chiral fields in the quiver have R-charges of the form $\Delta_{a}+\Delta_{a+1}+\ldots+\Delta_{b}$ for some pairs (a, b)

Example: $Y^{p, q}$ with $2 p \operatorname{SU}(N)$ gauge groups and $4 p+2 q$ chiral fields

$$
\boldsymbol{v}_{1}=(0,0), \quad \boldsymbol{v}_{2}=(1,0), \quad \boldsymbol{v}_{3}=(0, p), \quad \boldsymbol{v}_{4}=(-1, p+q)
$$

| (a, b) in $\Phi_{a b}$ | multiplicity | $U(1)_{R}$ | fielc |
| :---: | :---: | :---: | :---: | :---: |
| $(4,1)$ | $p+q$ | Δ_{1} | Y |
| $(1,2)$ | p | Δ_{2} | U^{1} |
| $(2,3)$ | $p-q$ | Δ_{3} | Z |
| $(3,4)$ | p | Δ_{4} | U^{2} |
| $(1,3)$ | q | $\Delta_{2}+\Delta_{3}$ | V^{1} |
| $(2,4)$ | q | $\Delta_{3}+\Delta_{4}$ | V^{2} |
| $\sum_{a=1}^{4} \Delta_{a}=2 \quad \operatorname{mult} \Phi_{a b}=\operatorname{det}\left(\boldsymbol{v}_{a}, \boldsymbol{v}_{b}\right)$ | | | |

Holographic dictionary

Holography teaches us [Gubser,Klebanov 98] :

- The value of the central charge of the CFT is given by

$$
a=\frac{\pi^{3} N^{2}}{4 \operatorname{Vol}\left(H_{5}\right)}
$$

- Wrapping a D3-branes on the three-cycle S_{a} we obtain a baryon det $\Phi_{a-1, a}$. This allows to compute the exact R -charge

$$
\Delta_{a}=\frac{\pi \operatorname{Vol}\left(S_{a}\right)}{3 \operatorname{Vol}\left(H_{5}\right)}
$$

Principle I

a-maximization

a-maximixation

The central charge a and the exact R-charges Δ_{a} in the large N limit can be obtained by extremizing [Wecht-Intriligator '03]

$$
a\left(\Delta_{a}\right)=\frac{9}{32} \operatorname{Tr} R\left(\Delta_{a}\right)^{3}
$$

where the trace runs over all the fermions of the theory. Explicitly,

$$
\begin{aligned}
a\left(\Delta_{a}\right) & =\frac{9}{32} N^{2}\left(|G|+\sum_{\Phi_{a b}} \operatorname{mult}\left(\Phi_{a b}\right)\left(\Delta_{\Phi_{a b}}-1\right)^{3}\right) \\
& =\frac{9 N^{2}}{64} \sum_{a, b, c=1}^{d}\left|\operatorname{det}\left(v_{a}, v_{b}, v_{c}\right)\right| \Delta_{a} \Delta_{b} \Delta_{c}
\end{aligned}
$$

[Benvenuti,Pando-Zayas, Tachikawa 05]

Volume Minimization

The gravitational dual is volume minimization: impose supersymmetry but relax equations of motions [Martelli-Sparks-Yau '05]

$$
\text { Sasaki - Einstein } H \Longrightarrow \text { Sasaki } H\left(b_{i}\right)
$$

Volumes functions of the Reeb vector $\zeta=\sum_{i=1}^{3} b_{i} \partial_{\phi_{i}}$ with $b_{1}=3$ that specify the direction of R-symmetry inside the isometries of H.

$$
\begin{aligned}
& \operatorname{Vol}(H)=\frac{\pi^{3}}{b_{1}} \sum_{a=1}^{d} \frac{\left(v_{a-1}, v_{a}, v_{a}+1\right)}{\left(v_{a-1}, v_{a}, b\right)\left(v_{a}, v_{a+1}, b\right)} \\
& \operatorname{Vol}\left(S_{a}\right)=2 \pi^{2} \frac{\left(v_{a-1}, v_{a}, v_{a}+1\right)}{\left(v_{a-1}, v_{a}, b\right)\left(v_{a}, v_{a+1}, b\right)}
\end{aligned}
$$

Extremization of

$$
a\left(b_{i}\right)=\frac{\pi^{3} N^{2}}{4 \operatorname{Vol}(H)}
$$

gives Reeb vector $\bar{b}=\left(3, \bar{b}_{2}, \bar{b}_{3}\right)$ and volumes of the Sasaki-Einstein manifold.

a-maximization $=$ Volume Minimization

Parameterizing $\Delta_{a}\left(b_{i}\right)=\frac{\pi \operatorname{Vol}\left(S_{a}\right)}{b_{1} \operatorname{Vol}(H)}$

$$
\left.\left.a\left(b_{i}\right) \equiv a\left(\Delta_{a}\right)\right|_{\Delta_{a}\left(b_{i}\right)} \equiv \frac{9 N^{2}}{64} \sum_{a, b, c}\left|\operatorname{det}\left(v_{a}, v_{b}, v_{c}\right)\right| \Delta_{a} \Delta_{b} \Delta_{c}\right|_{\Delta_{a}\left(b_{i}\right)}
$$

However

- a-extremization is over $d-1$ independent parameters (mesonic+baryonic)
- volume minimization is over b_{2}, b_{3} (mesonic only)
$a\left(\Delta_{a}\right)$ is automatically extremized with respect to the baryonic directions

$$
\left.\sum_{a} B_{a} \frac{\partial a\left(\Delta_{a}\right)}{\partial \Delta_{a}}\right|_{\Delta_{a}(b)} \equiv 0
$$

Proof simplified in [Lee-Rey; 05] and generalized to other quivers [Eager 10]

Principle II

c-extremization

Two-dimensional $(0,2)$ CFTs

We can obtain a two-dimensional $(0,2)$ CFT by compactifying the D3-brane theory on a Riemann surface $\Sigma_{\mathfrak{g}}$ with a topological A-twist.

- We obtain a family of twisted compactifications by turning turn on magnetic fluxes for all symmetries:

$$
\int_{\Sigma_{\mathfrak{g}}} F_{l}=\mathfrak{n}_{l}
$$

- We can parameterize the inequivalent twists using integers

$$
\begin{array}{ccc}
\text { vertex } v_{a} & \Longrightarrow & \mathfrak{n}_{a} \\
\left(\nabla_{\mu}-i A_{\mu}^{R}\right) \epsilon \equiv \partial_{\mu} \epsilon=0 & \Longrightarrow & \sum_{a=1}^{d} \mathfrak{n}_{a}=2-2 \mathfrak{g} .
\end{array}
$$

The dual is a fibration $\operatorname{AdS}_{3} \times \Sigma_{\mathfrak{g}} \times H$ [Benini-Bobev 12]

c-extremization

The exact R -symmetry and the right-moving central charge can be found by extremizing [Benini-Bobev 12]

$$
c_{r}\left(\Delta_{\mathrm{a}}, \mathfrak{n}_{\mathrm{a}}\right)=3 \operatorname{Tr} \gamma_{3} R\left(\Delta_{\mathrm{a}}\right)^{2}
$$

where the trace runs over all the two-dimensional fermions.
There is a simple formula valid at large N

$$
c_{r}(\Delta, \mathfrak{n})=-\frac{32}{9} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial a(\Delta)}{\partial \Delta_{a}}
$$

Explicitly,

$$
c_{r}(\Delta, \mathfrak{n})=\frac{N^{2}}{2} \sum_{a, b, c}\left|\operatorname{det}\left(v_{a}, v_{b}, v_{c}\right)\right|\left(\mathfrak{n}_{a} \Delta_{b} \Delta_{c}+\mathfrak{n}_{b} \Delta_{a} \Delta_{c}+\mathfrak{n}_{c} \Delta_{a} \Delta_{b}\right)
$$

CGMS-extremization

The gravitational dual of c-extremization can be obtained by imposing susy but relaxing the equation of motion [Couzens,Gauntlett,Martelli,Sparks, 18]

$$
\begin{aligned}
& d s_{10}^{2}=L^{2} e^{-B / 2}\left(d s_{A d S_{3}}^{2}+d s_{H \rightarrow \Sigma_{\mathfrak{g}}}^{2}\right) \\
& F_{5}=-L^{4}\left(\operatorname{Vol}_{\mathrm{AdS}_{3}} \wedge F+\star F\right)
\end{aligned}
$$

depending on:

- the Reeb vector $\left(b_{1}, b_{2}, b_{3}\right)$ inside the $U(1)^{3}$ isometry with $b_{1}=2$
- parameters A, λ_{a} specifying the Kähler class of $\Sigma_{\mathfrak{g}}$ and H and entering in F
- 2 mesonic fluxes specifying the fibration of H over $\Sigma_{\mathfrak{g}}$
- $d-3$ baryonic fluxes coming from F_{5}

Fluxes can be all combined into d integers

$$
\int_{\Sigma_{\mathfrak{g}} \times S_{a}} F_{5}=\mathfrak{n}_{a} \quad \sum_{a=1}^{d} \mathfrak{n}_{a}=2-2 \mathfrak{g}
$$

GMS-extremization

Supersymmetry and flux quantization conditions for the off-shell background

$$
\begin{array}{lr}
N=-\sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}} \\
\mathfrak{n}_{a} N=-\frac{A}{2 \pi} \sum_{b=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial \lambda_{b}}-b_{1} \sum_{i=1}^{3} n^{i} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial b_{i}}, & n^{i}=\sum_{a=1}^{d} v_{a}^{i} \mathfrak{n}_{a} \\
A \sum_{a, b=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial \lambda_{b}}=2 \pi n^{1} \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}-2 \pi b_{1} \sum_{i=1}^{3} n^{i} \sum_{a=1}^{d} \frac{\partial^{2} \mathcal{V}}{\partial \lambda_{a} \partial b_{i}} &
\end{array}
$$

with the master volume [Gauntlett,Martelli,Sparks, 18]

$$
\mathcal{V}=4 \pi^{3} \sum_{a=1}^{d} \lambda_{a} \frac{\lambda_{a-1}\left(v_{a}, v_{a+1}, b\right)-\lambda_{a}\left(v_{a-1}, v_{a+1}, b\right)+\lambda_{a+1}\left(v_{a-1}, v_{a}, b\right)}{\left(v_{a-1}, v_{a}, b\right)\left(v_{a}, v_{a+1}, b\right)}
$$

c is obtained by extremizing

$$
c\left(b_{i}, \mathfrak{n}_{a}\right)=-\left.48 \pi^{2}\left(A \sum_{a=1}^{d} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}+2 \pi b_{1} \sum_{i=1}^{3} n^{i} \frac{\partial \mathcal{V}}{\partial b_{i}}\right)\right|_{\lambda_{a}(b, \mathfrak{n}), A(b, \mathfrak{n})}
$$

c-extremization $=$ GMS extremization

Parameterizing $\Delta_{a}\left(b_{i}, \mathfrak{n}_{a}\right)=-\frac{2}{N} \frac{\partial \mathcal{V}}{\partial \lambda_{a}}$

$$
\left.c\left(b_{i}, \mathfrak{n}_{a}\right) \equiv c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)\right|_{\Delta_{a}(b, \mathfrak{n})} \equiv-\left.\frac{32}{9} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial a\left(\Delta_{a}\right)}{\partial \Delta_{a}}\right|_{\Delta_{a}(b, \mathfrak{n})}
$$

[Hosseini, A.Z; 19]
However, as before,

- c-extremization is over $d-1$ independent parameters (mesonic + baryonic)
- volume minimization is over b_{2}, b_{3} (mesonic only)
$c\left(\Delta_{a}, \mathfrak{n}_{a}\right)$ is automatically extremized with respect to the baryonic directions

$$
\left.\sum_{a} B_{a} \frac{\partial c_{r}(\Delta, \mathfrak{n})}{\partial \Delta_{a}}\right|_{\Delta_{a}(b, \mathfrak{n})}=\left.\sum_{a, b} B_{a} \mathfrak{n}_{b} \frac{\partial^{2} a\left(\Delta_{a}\right)}{\partial \Delta_{a} \partial \Delta_{b}}\right|_{\Delta_{a}(b, \mathfrak{n})} \equiv 0
$$

Part II

M2-branes in M theory

Superconformal Field Theories Zoo

M2 branes probing a conical Calabi-Yau with base a Sasaki-Einstein H_{7} :

- Near horizon geometry $\mathrm{AdS}_{4} \times H_{7}$
- Superconformal field theory on the world-volume
- Correspondence between CY and CFT still missing even in the toric case

Most examples are obtained by reducing dimensionally D3-branes and adding Chern-Simons couplings and/or flavoring with fundamentals.

Superconformal Field Theories Zoo

Everyone favorite is the ABJM theory:

$$
C\left(H_{7}\right)=\mathbb{C}^{4} / \mathbb{Z}_{k}
$$

Symmetries:
mesonic: $U(1)_{R} \times S U(2) \times S U(2) \times U(1)$

$$
W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right)
$$

Parameterize general R-symmetry with four numbers Δ_{a} subject to

$$
\sum_{a=1}^{4} \Delta_{a}=2 \quad \text { exact } \mathrm{R}-\text { symmetry }: \Delta_{a}=\frac{1}{2}
$$

Principle III

F-maximization

F-maximixation $=$ Volume Minimization

The exact R-charges Δ_{a} of a three-dimensional $\mathcal{N}=2$ CFT can be obtained by extremizing the free energy on $S^{3}, F_{S^{3}}\left(\Delta_{a}\right)$, that depends on a trial R-charge

- The large N limit $F_{S^{3}}\left(\Delta_{a}\right)$ has been computed only for a subclass of theories and curiously depends only on mesonic symmetries
- In all examples

$$
\left.F_{S^{3}}\left(\Delta_{l}\right)\right|_{\Delta_{a}\left(b_{i}\right)}=N^{3 / 2} \sqrt{\frac{2 \pi^{6}}{27 \operatorname{Vol}_{S}\left(H_{7}\left(b_{i}\right)\right)}} \quad \Delta_{a}\left(b_{i}\right)=\frac{2 \pi}{3 b_{1}} \frac{\operatorname{Vol}_{S}\left(S_{a}\left(b_{i}\right)\right)}{\operatorname{Vol}_{S}\left(H_{7}\left(b_{i}\right)\right)}
$$

where Δ_{l} are linear combinations of the toric Δ_{a} found case by case.

Principle IV

\mathcal{I}-extremization

Quantum mechanics BH horizon

We can obtain a quantum mechanics by compactifying the M2-brane theory on a Riemann surface $\Sigma_{\mathfrak{g}}$ with a topological A-twist

- Again we obtain a family of twisted compactifications by turning turn on magnetic fluxes for all symmetries:

$$
\int_{\Sigma_{\mathfrak{g}}} F_{a}=\mathfrak{n}_{a} \quad \sum_{a=1}^{d} \mathfrak{n}_{a}=2-2 \mathfrak{g} .
$$

The dual is a fibration $\mathrm{AdS}_{2} \times \Sigma_{\mathfrak{g}} \times H_{7}$ that can be interpreted as the horizon of four-dimensional magnetically charged black holes in $\mathrm{AdS}_{4} \times \mathrm{H}_{7}$ and the quantum mechanics describes their microstates.

\mathcal{I}-extremization

The entropy of such black holes can be found by extremizing

$$
\mathcal{I}\left(\Delta_{l}, \mathfrak{n}_{l}\right)=\log Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{a}, \mathfrak{n}_{a}\right)
$$

where the topologically twisted index of the M2 theory [Benini-Hristov-AZ 15]

$$
Z_{\Sigma_{\mathfrak{g}} \times S^{1}}\left(\Delta_{l}, \mathfrak{n}_{l}\right)=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} e^{i J_{l} \Delta_{l}} e^{-\beta H}=\operatorname{Tr}_{\mathcal{H}}(-1)^{R\left(\Delta_{l}\right)}
$$

computes the equivariant Witten index of the IR quantum mechanics. It is also argued that this selects the exact R -symmetry.

Even here there is is a simple formula valid at large N [Hossein-AZ 16]

$$
\mathcal{I}\left(\Delta_{l}, \mathfrak{n}_{l}\right)=-\frac{1}{2} \sum_{l} \mathfrak{n}_{l} \frac{\partial F_{S^{3}}\left(\Delta_{l}\right)}{\partial \Delta_{l}}
$$

puzzling enough, all baryonic symmetries are invisible at large N.

CGMS-extremization

The gravitational dual of \mathcal{I}-extremization can be obtained by imposing susy but relaxing the equation of motion [Couzens,Gauntlett,Martelli,Sparks, 18]

$$
\begin{aligned}
& d s_{11}^{2}=L^{2} e^{-2 B / 3}\left(d s_{A d S_{2}}^{2}+d s_{H_{7} \rightarrow \Sigma_{\mathfrak{g}}}^{2}\right) \\
& G=L^{3} \mathrm{Vol}_{\mathrm{AdS}_{2}} \wedge F
\end{aligned}
$$

depending on:

- the Reeb vector $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ inside the $U(1)^{4}$ isometry with $b_{1}=1$
- parameters A, λ_{a} specifying the Kähler class of $\Sigma_{\mathfrak{g}}$ and H_{7} and entering in G
- 3 mesonic fluxes specifying the fibration of H_{7} over $\Sigma_{\mathfrak{g}}$
- $d-4$ baryonic fluxes coming from G

This times the functional $S\left(b_{i}, \mathfrak{n}_{a}\right)$ proposed by CGMS on-shell computes the entropy of the black hole.

\mathcal{I}-extremization $=$ GMS extremization ?

Partial answer. Large N computations exists only for few theories and are blind to baryonic symmetries ...

However,

- equivalence holds for all theories without baryonic symmetries, $S^{7}, V^{5,2}, \ldots$
- for all toric Calabi-Yau one can identify a twist along the mesonic directions only where the two principles are again equivalent

$$
\left.S\left(b_{i}, \mathfrak{n}_{a}\right) \equiv \mathcal{I}\left(\Delta_{a}, \mathfrak{n}_{a}\right)\right|_{\Delta_{a}(b)} \equiv-\left.\frac{1}{2} \sum_{a=1}^{d} \mathfrak{n}_{a} \frac{\partial F_{S^{3}}\left(\Delta_{a}\right)}{\partial \Delta_{a}}\right|_{\Delta_{a}(b)}
$$

[Hosseini, A.Z; see also Gauntlett, Martelli, Sparks; Kim, Kim 19]
where $\Delta_{a}\left(b_{i}\right)=-\frac{2}{N} \frac{\partial \mathcal{V}}{\partial \lambda_{a}} \equiv \frac{2 \pi}{3 b_{1}} \frac{\operatorname{Vols}_{\left(S S_{a}\right)} \operatorname{Vos}_{5}\left(H_{7}\right)}{}$

Conclusions

Rich geometrical structure of Sasaki-Einstein manifolds and interplay with QFT extremization principles.

- Still many geometrical relations to uncover
- Constructions are based on complex geometry: compute stuff even when the metric on H is not known or the black hole solution has not be found

In three dimensions we only have partial answers and puzzles

- why the known large N limit works only for few quivers?
- why in the large N limit baryonic symmetries disappear?
- black holes with only baryonic symmetries exist ...

Other saddle points to be discovered? Or not all solutions in CGMS really correspond to black hole horizons?

