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RCW 114, an old supernova remnant with
an estimated diameter of 100 lightyears.



CORE COLLAPSE SUPERNOVAE - WHY
DO WE CARE?

Understanding core collapse supernova explosions
is crucial to many difterent problems of astronomy.

* Galactic Chemical Evolution
* Massive Star Transients

* Compact object formation
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CREDIT: LARSSON, J. ET AL. (2011).




CORE COLLAPSE SUPERNOVAE AND
GALACTIC CHEMICAL EVOLUTION

* Core-collapse supernovae
are a key component of
GCE and solar abundance.

* Help enrich tuture
generation of stars.
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Relative abundance ratios as a
function of initial mass. (KOBAYASHI + 2016)



CORE COLLAPSE SUPERNOVAE -
MASSIVE STAR TRANSIENTS
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metallicity (roughly log scale)

Initial mass (solar masses)

SN Populations from Heger+ 2003 models (Smartt + 2013)



CORE COLLAPSE SU
COMPACT OBJECT

Likelihood

HMXBs +
slow PSRs

NS and stellar BH mass distributions computed from fits to Bayesian simulations. (Ozel + 2012)
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CORE-COLLAPSE SUPERNOVAE
ARE IMPORTANT



THE CORE-COLLAPSE "PROBLEM’

How do we (try) to model stellar explosions?
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1D Stellar Evolution Codes 290
for pre-supernova evolution.

Evolve explosion in 2/3D

using multi-D hydro codes.

Explosions fail...?

200 km

Failed explosion using spherically symmetric
1D model from Couch + 2013a.



SOLUTION(S) TO THE CORE-
COLLAPSE "PROBLEM"?

So, whats the deal? What are we missing?

* General Relativity - Maybe, though
only small effect. couch + 2013)

e Complete Neutrino Transport -
High resolution + Full Transport +
GR can result in explosion. But is
this the answer? (roberts + 2016)

* |nitial models - Pre-SN models are

not spherical and can vary due to

Input phySiCS. (Couch + 2015) Volume rendering of the entropy
distribution from Roberts + 2016.



PART 1: NUCLEAR REACTION
RATE UNCERTAINTIES AND THEIR
ROLE IN MODELS OF CORE-
COLLAPSE SUPERNOVA
PROGENITORS



PROGENITORS O

* Models subject to
uncertainties in
resolution, network
size, mass loss,
rotation, reaction
rates, etc.

* These uncertainties
lead to variations in the
structure at collapse.
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Iron Core Mass as a function of initial
mass for a large set of models. (Sukhbold + ApJ, 2018)

10




REACTION RATE UNCERTAINTIES
AND MASSIVE STARS

* Previous studies have
considered T-independent
variations for key He

burning reaction rates
(West + 2013).

* Studies like these use
multiplicative factors
on reaction rates.

* Large variation found
in baryonic mass of
remnant.
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Baryonic mass of remnant. (West + ApJ, 2013)



KEY NUCLEAR REACTION RATES

* STARLIB provides reaction
rates along PDFs as a
function of temperature.

* More accurate estimate for
variation in models due to

rates.

* These distributions provide
the basis for our modeling

framework.

Reaction rate PDF for Na proton capture. (Sallaska + ApJ, 2013)



REACTION RATE SAMPLING IN
MASSIVE STARS
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Factor uncertainty for key reaction rates. (Fields + ApJ, 2018)



REACTION RATE SAMPLING IN
MASSIVE STARS
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Each model gets 665 random
Gaussian deviates used to
generate a sample rate.

Reaction Rate Ratio

The sample uses the factor
uncertainty to construct a new
rate within the limits.
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Each model is then evolved to O-

o1 10
dep. using the sampled rates. Temperature (GK)

Sampled nuclear reaction rate. (lliadis + JPhG, 2015)



EVOLUTION TO TERMINAL AGE
MAIN SEQUENCE
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Rate Identifier

We performed analysis on our models at five epochs, each fuel
depletion stage and computed Spearman Rank Order Correlation
Coefficient to identify key reaction rates.



EVOLUTION TO CORE HELIUM
DEPLETION
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Carbon production almost single handedly determined by 12C(a,g)
reaction rate. Triple-alpha initiates the burning but is then overtaken.



EVOLUTION TO CORE HELIUM

DEPLETION

Carbon production can
range from 0-0.6 due to
uncertainties from rates.

West + 2013 find correlation
with carbon mass fraction
and remnant mass.

Anti-correlation of carbon
and remnant mass due to
energetics of carbon shell
burning episodes.
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Carbon-12 mass fraction as a function of helium burning reactions. (Fields + ApJ, 2018)
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ADVANCED BURNING STAGES
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In general, most properties show variations comparable to
uncertainties in mass and network resolution.

Post He-depletion, uncertainties in the rates begin to dominate.



KEY REACTIONS IN CORE-COLLAPS
SUPERNOVA PROGENITORS
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Kunz et al. 2002

Angulo et al. (NACRE) 1999

* In general, the He- and C- 2
burning reactions dominated
the subsequent evolution of
the model.
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triple-alpha reactions can
determine the fate of the
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12C(alpha,gamma)160 reaction rate relative to the NACRE rate. (deBoer + RMP, 2017)



PART 2: MULTI-DIMENSIONAL
SIMULATIONS OF CORE-
COLLAPSE SUPERNOVA

PROGENITORS



PERTURBATIONS IN THE PRE-
SUPERNOVA MODEL
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Multi-D progenitors provide a solution to the core-collapse problem.



MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS

Silicon-28 Radial Velocity
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4pi simulations of oxygen shell burning find bipolar flow near
collapse in simulation of 18 solar mass star. (Muller +2016)



IMPACT OF PROG
EXPLOSION M

Favorable impact found
on the explosion
mechanism.

Reduced convection
velocities results in later
explosion.

Impact partly due to
accretion evolution.
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IMPACT OF
EXPLOSION M

200
2.0
100
& o
=

-2 00

400
-£00 -300 -200 -100 ©
z (km)

3D initial progenitor

PRO G

-ENITORS ON

100 200 3200

ECHANISM

30.
23. |150
lé '.
9.0 I100
2.0
50
i
S

-150

-150

-100 -50 0

z (km)

5¢ 1e¢ 150
1D initial progenitor

(Muller + 2017)



MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS

3D Hydrodynamic
simulations using FLASH.

Evolved ~90 seconds
from collapse using
approximate network.

Large convective plumes,
oerturbations.

Enhanced electron
capture rate.

(Fields +, in prep.)



MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS
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2D model dominated by eddies and stronger mixing
in SI/O interface.



MULTI-DIMENSIONAL
SIMULATIONS OF MASSIVE STARS

Evolved ~420 seconds
before collapse.

Core follows MESA
structure using table
interpolation.

No enhancements to
electron capture rate.

2000 km

(Fields +, in prep.)



CONCLUSIONS

Reaction rates are a key source
of uncertainty in stellar models.

Pre-collapse perturbations are
possible solution to ‘problem’.

We plan to further these models
to include MHD and rotation.

Next generation, multi-D models

of progenitors are upon us
(Couch + 2015, Muller +
2016,2017, Jones + 2017/).

Velocity field volume rendering. (Fields + in prep., 2018)



THANK YOU

Questions’”

Web: carlnotsagan.github.io

Email: fieldsc9@msu.edu

’ OGitHub @carlnotsagan
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