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The low energy theory of the heterotic string is ten dimensional supergravity coupled to

Yang-Mills gauge theory.

Easy to obtain four-dimensional supersymmetric grand unified theories from

compactifications on Calabi-Yau manifolds [Candelas etal 85, ..].
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The low energy theory of the heterotic string is ten dimensional supergravity coupled to

Yang-Mills gauge theory.

Easy to obtain four-dimensional supersymmetric grand unified theories from

compactifications on Calabi-Yau manifolds [Candelas etal 85, ..].

Complications:

� Higher curvature corrections induce torsional (non Ricci-flat) geometries [Hull 86,

Strominger 86].

� Harder to understand geometries. Often loose toolbox of algebraic geometry and

Kähler geometry.

� Harder to understand moduli (the deformation space).
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The low energy theory of the heterotic string is ten dimensional supergravity coupled to

Yang-Mills gauge theory.

Easy to obtain four-dimensional supersymmetric grand unified theories from

compactifications on Calabi-Yau manifolds [Candelas etal 85, ..].

Complications:

� Higher curvature corrections induce torsional (non Ricci-flat) geometries [Hull 86,

Strominger 86].

� Harder to understand geometries. Often loose toolbox of algebraic geometry and

Kähler geometry.

� Harder to understand moduli (the deformation space).

This talk: Heterotic string on manifolds with reduced SU(3)-structure group.

� Review of string compactifications in the context of heterotic string.

� Finite deformations of heterotic SU(3) system, heterotic deformation complex.

� Review cohomology counting infinitesimal moduli.

� Comments on work in progress..
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Low-energy limit of string theory is ten-dimensional. Common vacuum ansatz:

M10 = Md ×X10−d ,

where Md is the d-dimensional (usually maximally symmetric) external spacetime, and X
is the internal (compact) geometry.

Phenomenology: d = 4, require X to admit spinors ⇒X is Calabi-Yau to lowest order.

Formal Geometry: Supersymmetric geometries are often easier to study as they admit

extra structure (Complex, Kähler, etc). String theory often leads to new groundbreaking

insights: Mirror symmetry, topological string theory, geometric invariants, etc.



General String Compactifications

Introduction

Motivation and Overview

General String

Compactifications

Why Heterotic?

Some Deformation Theory

SU(3)-geometries

Deformation Algebra

Infinitesimal Moduli

Conclusions

Moduli and Effective Theories – 4

Low-energy limit of string theory is ten-dimensional. Common vacuum ansatz:

M10 = Md ×X10−d ,

where Md is the d-dimensional (usually maximally symmetric) external spacetime, and X
is the internal (compact) geometry.

Phenomenology: d = 4, require X to admit spinors ⇒X is Calabi-Yau to lowest order.

Formal Geometry: Supersymmetric geometries are often easier to study as they admit

extra structure (Complex, Kähler, etc). String theory often leads to new groundbreaking

insights: Mirror symmetry, topological string theory, geometric invariants, etc.

Deformations (moduli):

� Deformations δX preserving supersymmetry ⇔ moduli fields in external spacetime.

� String Phenomenology: Compact geometries whose moduli contains the Standard

Model.

� At this point we have a very good understanding of (type II) Calabi-Yau moduli space.

� Heterotic String: We do not yet understand moduli of generic compactifications.

Special cases known (e.g. Standard Embedding [Candelas etal 85]).
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Heterotic supergravity is a ten dimensional supergravity coupled to a Yang-Mills theory.
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Heterotic supergravity is a ten dimensional supergravity coupled to a Yang-Mills theory.

� Good for particle physics. Easy to obtain Standard Model-like physics.

� Often useful for describing geometries with some fibration structure.

� Mathematically interesting: Generalisation of torsion free geometry with bundles, with

a non-trivial interplay between geometry and bundle.
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Heterotic supergravity is a ten dimensional supergravity coupled to a Yang-Mills theory.

� Good for particle physics. Easy to obtain Standard Model-like physics.

� Often useful for describing geometries with some fibration structure.

� Mathematically interesting: Generalisation of torsion free geometry with bundles, with

a non-trivial interplay between geometry and bundle.

Complications:

� Torsional geometries not well understood.

� Few “non-trivial” examples [Dasgupta etal. 99, Becker etal 06, Halmagyi-Israel-EES

16,..].

� Complicated equations to deal with, e.g. heterotic Bianchi Identity:

dH = α′

4
tr F ∧ F .
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Heterotic supergravity is a ten dimensional supergravity coupled to a Yang-Mills theory.

� Good for particle physics. Easy to obtain Standard Model-like physics.

� Often useful for describing geometries with some fibration structure.

� Mathematically interesting: Generalisation of torsion free geometry with bundles, with

a non-trivial interplay between geometry and bundle.

Complications:

� Torsional geometries not well understood.

� Few “non-trivial” examples [Dasgupta etal. 99, Becker etal 06, Halmagyi-Israel-EES

16,..].

� Complicated equations to deal with, e.g. heterotic Bianchi Identity:

dH = α′

4
tr F ∧ F .

Need a “nicer” description to deal with moduli:

Supergravity: [Anderson etal 10;11;14, delaOssa etal 14;15;18, Garcia-Fernandez etal 13;15;18,

Candelas etal 16;18, ..].

Worldsheet (0, 2)-models: [Melnikov-Sharpe 11, Bertolini etal 13;14;17;18, Fiset etal 17;18, ..]
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Given a set of geometric conditions: What the allowed deformations?

Do they obey any structure?

Physical intuition is often helpful in this regard:

Input from Physics Mathematical Structure

Finite Spectrum Elliptic system

N = 1 supersymmetry Complex Kähler moduli space

N = 2 supersymmetry Special Kähler moduli space
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Given a set of geometric conditions: What the allowed deformations?

Do they obey any structure?

Physical intuition is often helpful in this regard:

Input from Physics Mathematical Structure

Finite Spectrum Elliptic system

N = 1 supersymmetry Complex Kähler moduli space

N = 2 supersymmetry Special Kähler moduli space

Steps in understanding moduli:

� Step 1: Start with infinitesimal deformation (linear approximation). Moduli fields X
usually one-forms with values in a bundle Q (or sheaf), naturally associated to the

given moduli problem. ⇒ Infinitesimal massless spectrum

TM = H1
D(Q) ,

cohomology of natural differential D (D2 = 0) acting on Q. Infinitesimal deformations

are closed

DX = 0 ,

while exact one-forms, Dǫ for ǫ ∈ Γ(Q), correspond to trivial deformations generated

by an infinitesimal symmetry transformation ǫ of the system.
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� Step 2: Understand geometry of M: Complex structure, Kähler metric, etc? Higher

order deformations: Can infinitesimal moduli be integrated: Is the moduli space

smooth? Obstructions correspond to Yukawa couplings in effective physics.

Higher order deformations introduce couplings between moduli. A generic deformation

problem is described by an L∞-algebra. In principle an infinite tower of couplings.
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� Step 2: Understand geometry of M: Complex structure, Kähler metric, etc? Higher

order deformations: Can infinitesimal moduli be integrated: Is the moduli space

smooth? Obstructions correspond to Yukawa couplings in effective physics.

Higher order deformations introduce couplings between moduli. A generic deformation

problem is described by an L∞-algebra. In principle an infinite tower of couplings.

Physics: Expect a parametrisation of moduli where only a finite number of couplings

play a role, as only a finite number of couplings are relevant/marginal in physics.

E.g. L2-algebra: Differentially graded Lie Algebra (DGLA). Finite deformations solve

Maurer-Cartan equation,

DX + 1
2
[X ,X ] = 0 .

Only second order couplings survive.

Example: Moduli of complex structure of complex manifold. Tian-Todorov: The

complex structure moduli space of Calabi-Yau manifolds is smooth.

Ashmore etal 18: The deformation algebra of the heterotic SU(3)-system is an

L3-algebra.
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� Step 2: Understand geometry of M: Complex structure, Kähler metric, etc? Higher

order deformations: Can infinitesimal moduli be integrated: Is the moduli space

smooth? Obstructions correspond to Yukawa couplings in effective physics.

Higher order deformations introduce couplings between moduli. A generic deformation

problem is described by an L∞-algebra. In principle an infinite tower of couplings.

Physics: Expect a parametrisation of moduli where only a finite number of couplings

play a role, as only a finite number of couplings are relevant/marginal in physics.

E.g. L2-algebra: Differentially graded Lie Algebra (DGLA). Finite deformations solve

Maurer-Cartan equation,

DX + 1
2
[X ,X ] = 0 .

Only second order couplings survive.

Example: Moduli of complex structure of complex manifold. Tian-Todorov: The

complex structure moduli space of Calabi-Yau manifolds is smooth.

Ashmore etal 18: The deformation algebra of the heterotic SU(3)-system is an

L3-algebra.

� Step 3: Understand quantum cohomology ring. Include non perturbative effects

such as world-sheet instantons, and quantum corrections (higher genus effects).

Topological theory: Witten’s topological string, Donaldson-Thomas theory, etc.

Compute invariants: Gromov-Witten invariants, Donaldson-Thomas invariants, etc.
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Physics: Want geometry to preserve supersymmetry ⇒ require existence of global spinor

⇒ structure group reduces from SO(6) to SU(3), and we have an SU(3)-structure:

� Ω ∈ Ω3
C(X) nowhere vanishing and locally decomposable (defines almost complex

structure J ).

� ω ∈ Ω2(X) is of maximal rank (ω3
nowhere vanishing).

� The forms satisfy the SU(3)-structure relations:

ω ∧ Ω = 0 , i
8
Ω ∧ Ω = 1

6
ω3 .

Note that Ω ∈ Ω(3,0)(X) and ω ∈ Ω(1,1)(X) with respect to J .
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Physics: Want geometry to preserve supersymmetry ⇒ require existence of global spinor

⇒ structure group reduces from SO(6) to SU(3), and we have an SU(3)-structure:

� Ω ∈ Ω3
C(X) nowhere vanishing and locally decomposable (defines almost complex

structure J ).

� ω ∈ Ω2(X) is of maximal rank (ω3
nowhere vanishing).

� The forms satisfy the SU(3)-structure relations:

ω ∧ Ω = 0 , i
8
Ω ∧ Ω = 1

6
ω3 .

Note that Ω ∈ Ω(3,0)(X) and ω ∈ Ω(1,1)(X) with respect to J .

Ω and ω are in general non-closed ⇒ intrinsic torsion Wi:

dω = 3i
4
(W1Ω−W1Ω) +W3 + ω ∧W4

dΩ = W1ω ∧ ω + ω ∧W2 +W5 ∧ Ω.

Intrinsic torsion measures failure of structure to be covariant with respect to the Levi-Civita

connection of the metric defined by the structure (SU(3)-holonomy). Decomposed into

irreducible representations of of SU(3).

Note: Wi = 0 ∀ i implies dΩ = dω = 0 and X is Calabi-Yau.
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Compactification on six dimensional compact SU(3)-structure manifold X results in a 4d

N = 1 supergravity coupled to a Yang-Mills field A with curvature F .
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Compactification on six dimensional compact SU(3)-structure manifold X results in a 4d

N = 1 supergravity coupled to a Yang-Mills field A with curvature F .

This theory has a superpotential given by [Becker etal 03, Cardoso etal 03, Lukas etal 05, McOrist 16, ..]

W =

∫

X

(H + idω) ∧ Ω ,

where the flux is given by

H = dB + α′

4
ωCS(A) ,

often referred to as anomaly cancellation. We require the flux H to be gauge invariant ⇒
impose a transformation on B through the Green-Schwarz mechanism [Green-Schwarz 84].
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Compactification on six dimensional compact SU(3)-structure manifold X results in a 4d

N = 1 supergravity coupled to a Yang-Mills field A with curvature F .

This theory has a superpotential given by [Becker etal 03, Cardoso etal 03, Lukas etal 05, McOrist 16, ..]

W =

∫

X

(H + idω) ∧ Ω ,

where the flux is given by

H = dB + α′

4
ωCS(A) ,

often referred to as anomaly cancellation. We require the flux H to be gauge invariant ⇒
impose a transformation on B through the Green-Schwarz mechanism [Green-Schwarz 84].

A four-dimensional N = 1 Minkowski vacuum requires that:

δW = W = 0 .

This implies the “F-term” conditions

dΩ = 0 , F ∧ Ω = 0 , H = i(∂ − ∂)ω .

There are also “D-term” conditions (less relevant for moduli considerations):

d

(

e−2φω ∧ ω
)

= 0 , ω ∧ ω ∧ F = 0 .
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Higher order deformation problems are difficult, and highly dependent on how we

parametrise the deformations.

Examples:

� Ex1: Linear finite deformation δg ⇒ deformation of g−1
is an infinite expansion in δg.

� Ex2: The space of almost complex structures J is a complex manifold, with complex

parameters given in terms of µ ∈ Ω(0,1)(T (1,0)X) (Beltrami differential).

� A generic deformation of J is a complicated expression in µ and µ. A holomorphic

deformation ∆ of J is however given by ∆J = −2i µ.

� Holomorphic deformations corresponding to integrable complex structures satisfy the

Maurer-Cartan equation

∂µ+ 1
2
[µ, µ] = 0 ,

where [ , ] is the Lie-bracket on the holomorphic tangent bundle.

Similarly, considering a generic finite deformation of the heterotic SU(3)-system is in

general a very hard problem. Get some complicated L∞-algebra.

Clues from physics: Superpotential is holomorphic in deformations: ∆W = 0.
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A finite and holomorphic deformation of the heterotic SU(3)-system can be represented

as a (0, 1)-form

y = (x, α, µ) ∈ Ω(0,1)(Q) , Q = T ∗(1,0)X ⊕ End(V )⊕ T (1,0)X

where µ ∈ Ω(0,1)(T (1,0)X), α ∈ Ω(0,1)(End(V )) and x ∈ Ω(0,1)(T ∗(1,0)X) now

correspond to finite deformations of the structure.
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A finite and holomorphic deformation of the heterotic SU(3)-system can be represented

as a (0, 1)-form

y = (x, α, µ) ∈ Ω(0,1)(Q) , Q = T ∗(1,0)X ⊕ End(V )⊕ T (1,0)X

where µ ∈ Ω(0,1)(T (1,0)X), α ∈ Ω(0,1)(End(V )) and x ∈ Ω(0,1)(T ∗(1,0)X) now

correspond to finite deformations of the structure.

Deforming the superpotential away from supersymmetric locus, one finds

∆W =

∫

X

(

〈y,Dy〉 − 1
3
〈y, [y, y]〉 − µa∂ab

)

∧ Ω ,

where D is the heterotic differential, the pairing for y1, y2 ∈ Ω(0,∗)(Q) is given by

〈y1, y2〉 = µa
1x2 a + µa

2x1 a + tr (α1α2) ,

b ∈ Ω(0,2)(X) is some auxiliary field, and the bracket

[ , ] : Ω(0,p)(Q)× Ω(0,q)(Q) → Ω(0,p+q)(Q)

satisfies Leibniz rule w.r.t. D and Jacobi identity modulo ∂a-exact terms. Holomorphic

generalisation of Dorfman bracket including bundles.

Note the close similarity to holomorphic Chern-Simons theory.
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Supersymmetric solutions ⇒ δ∆W = ∆W = 0. We derive the following equations

∂Ω(µ) = 0

Dy − 1
2
[y, y]− 1

2
∂b = 0

∂b− 1
2
ya∂ab+

1
3!
〈y, [y, y]〉 = 0 .
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Supersymmetric solutions ⇒ δ∆W = ∆W = 0. We derive the following equations

∂Ω(µ) = 0

Dy − 1
2
[y, y]− 1

2
∂b = 0

∂b− 1
2
ya∂ab+

1
3!
〈y, [y, y]〉 = 0 .

The last two equations can be rephrased as the Maurer-Cartan equation of a heterotic L3

algebra (Y∗, ℓ1, ℓ2, ℓ3), where

Yn = Ω(0,n)(Q)⊕ Ω(0,n+1)(X) ,

and where the L3 multilinear products are given by

ℓ1(Y ) = (Dy − 1
2
∂b, ∂b) , ℓ2(Y, Y ) = ([y, y], 〈y, ∂b〉) , ℓ3(Y, Y, Y ) = (0,−〈y, [y, y]〉) ,

for Y = (y, b). Higher products vanish.
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Supersymmetric solutions ⇒ δ∆W = ∆W = 0. We derive the following equations

∂Ω(µ) = 0

Dy − 1
2
[y, y]− 1

2
∂b = 0

∂b− 1
2
ya∂ab+

1
3!
〈y, [y, y]〉 = 0 .

The last two equations can be rephrased as the Maurer-Cartan equation of a heterotic L3

algebra (Y∗, ℓ1, ℓ2, ℓ3), where

Yn = Ω(0,n)(Q)⊕ Ω(0,n+1)(X) ,

and where the L3 multilinear products are given by

ℓ1(Y ) = (Dy − 1
2
∂b, ∂b) , ℓ2(Y, Y ) = ([y, y], 〈y, ∂b〉) , ℓ3(Y, Y, Y ) = (0,−〈y, [y, y]〉) ,

for Y = (y, b). Higher products vanish. The Maurer-Cartan equation is then given by

F(Y ) = ℓ1(Y )− 1
2
ℓ2(Y )− 1

3!
ℓ3(Y ) = 0 ,

which is invariant under symmetry transformations, for Λ ∈ Y0

δΛY = ℓ1(Λ) + ℓ2(Λ, Y )− 1
2
ℓ3(Λ, Y, Y ) .
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Integrating out the auxiliary field b from the action ∆W gives the condition ∂Ω(µ) = 0,

similar to Kodaira-Spencer gravity [Bershadsky etal 93].

The action becomes

∆W → ∆W =

∫

X

(

〈y,Dy〉 − 1
3
〈y, [y, y]〉

)

∧ Ω .
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Integrating out the auxiliary field b from the action ∆W gives the condition ∂Ω(µ) = 0,

similar to Kodaira-Spencer gravity [Bershadsky etal 93].

The action becomes

∆W → ∆W =

∫

X

(

〈y,Dy〉 − 1
3
〈y, [y, y]〉

)

∧ Ω .

This action is invariant under gauge transformations

δya = ∂aκ

δy = Dǫ− [y, ǫ] ,

for κ ∈ Ω0(X), and ǫ ∈ Ω0(Q) satisfying ∂Ω(ǫ) = 0, where

Ω(ǫ) = 1
2
Ωabc ǫ

a
dzbc .

This is an interesting generalisation of holomorphic Chern-Simons theory.
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Integrating out the auxiliary field b from the action ∆W gives the condition ∂Ω(µ) = 0,

similar to Kodaira-Spencer gravity [Bershadsky etal 93].

The action becomes

∆W → ∆W =

∫

X

(

〈y,Dy〉 − 1
3
〈y, [y, y]〉

)

∧ Ω .

This action is invariant under gauge transformations

δya = ∂aκ

δy = Dǫ− [y, ǫ] ,

for κ ∈ Ω0(X), and ǫ ∈ Ω0(Q) satisfying ∂Ω(ǫ) = 0, where

Ω(ǫ) = 1
2
Ωabc ǫ

a
dzbc .

This is an interesting generalisation of holomorphic Chern-Simons theory.

Question: Can we use this theory to define generalisations of Donaldson-Thomas

invariants for heterotic geometries and holomorphic Courant algebroids?
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This talk: “Technical assumptions”: either ∂∂-lemma or h(0,1) = 0, and stable bundles

(so h(0,1)(End(V )) = 0).
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This talk: “Technical assumptions”: either ∂∂-lemma or h(0,1) = 0, and stable bundles

(so h(0,1)(End(V )) = 0).

Infinitesimal moduli

preserving SUSY conditions
⇔ Massless fields in 4d theory

Preserving a holomorphic top-form dΩ = 0 gives

dδΩ = 0 ⇒ δΩ ∈ H
(2,1)

∂
(X) ⇔ µ ∈ H

(0,1)

∂
(T (1,0)X) ,

where µ is defined as

δΩ = Ω(µ) = 1
2
µa Ωabcdzbc .

Here µ can be thought of as the deformation of the complex structure, often called the

Beltrami differential.
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This talk: “Technical assumptions”: either ∂∂-lemma or h(0,1) = 0, and stable bundles

(so h(0,1)(End(V )) = 0).

Infinitesimal moduli

preserving SUSY conditions
⇔ Massless fields in 4d theory

Preserving a holomorphic top-form dΩ = 0 gives

dδΩ = 0 ⇒ δΩ ∈ H
(2,1)

∂
(X) ⇔ µ ∈ H

(0,1)

∂
(T (1,0)X) ,

where µ is defined as

δΩ = Ω(µ) = 1
2
µa Ωabcdzbc .

Here µ can be thought of as the deformation of the complex structure, often called the

Beltrami differential.

The deformations of the holomorphic bundle gives

δ(F ∧ Ω) = 0 ⇔ Fab dzb ∧ µa = F(µ) = −∂Aα ,

where α = δA(0,1) ∈ Ω(0,1)(End(V )) are deformations of the bundle.
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It follows that µ is in the kernel of Atiyah map [Atiyah 57, Anderson etal 10]

F : H
(0,1)

∂
(T (1,0)X) → H

(0,2)

∂A
(End(V )) .

We thus see that the infinitesimal moduli of a complex manifold with holomorphic bundle is

TM1 = H(0,1)(End(V ))⊕ ker(F) .
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It follows that µ is in the kernel of Atiyah map [Atiyah 57, Anderson etal 10]

F : H
(0,1)

∂
(T (1,0)X) → H

(0,2)

∂A
(End(V )) .

We thus see that the infinitesimal moduli of a complex manifold with holomorphic bundle is

TM1 = H(0,1)(End(V ))⊕ ker(F) .

From general arguments, this should correspond to the first cohomology of some

differential.

Indeed, consider the (0, 1)-differential

∂1 =

(

∂A F

0 ∂

)

: Ω(q,p)

(

End(V )

T (1,0)X

)

→ Ω(q,p+1)

(

End(V )

T (1,0)X

)

,

on the bundle Q1 = End(V )⊕ T (1,0)X . Note that ∂
2
1 = 0 due to the Bianchi identity

∂AF = 0.

One then finds

TM1 = H
(0,1)

∂1
(Q1) = .. = H(0,1)(End(V ))⊕ ker(F) .

Hunag 93: The finite deformations are described by a DGLA.
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From a variation of the condition H = i(∂ − ∂)ω we find

H(µ,α)bdzb = 2µa ∧ i∂[aωb]cdzbc − α′

2
tr α ∧ F = ∂x(1,1) .

Can think of x(1,1)
as complexified α′

-corrected Kähler deformations.
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From a variation of the condition H = i(∂ − ∂)ω we find

H(µ,α)bdzb = 2µa ∧ i∂[aωb]cdzbc − α′

2
tr α ∧ F = ∂x(1,1) .

Can think of x(1,1)
as complexified α′

-corrected Kähler deformations.

⇒ (µ,α) ∈ H(0,1)(Q1) is in the kernel of

H : H
(0,1)

∂1
(Q1) → H

(0,2)

∂
(T ∗(1,0)X) .

H is a map between cohomologies by the heterotic Bianchi Identity

dH = −2i∂∂ω = α′

4
tr F ∧ F .
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From a variation of the condition H = i(∂ − ∂)ω we find

H(µ,α)bdzb = 2µa ∧ i∂[aωb]cdzbc − α′

2
tr α ∧ F = ∂x(1,1) .

Can think of x(1,1)
as complexified α′

-corrected Kähler deformations.

⇒ (µ,α) ∈ H(0,1)(Q1) is in the kernel of

H : H
(0,1)

∂1
(Q1) → H

(0,2)

∂
(T ∗(1,0)X) .

H is a map between cohomologies by the heterotic Bianchi Identity

dH = −2i∂∂ω = α′

4
tr F ∧ F .

The massless moduli are then given by

TM = H(0,1)(T ∗(1,0)X)⊕ ker(H) , ker(H) ⊆ H(0,1)(Q1) ,

where H(0,1)(T ∗(1,0)X) ∼= H(1,1)(X) are hermitian moduli.
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What differential computes the massless moduli?

Let Q = T ∗(1,0)X ⊕ End(V )⊕ T (1,0)X . Can define holomorphic structure on the

differential complex Ω(q,p)(Q)

D =

(

∂ H

0 ∂1

)

: Ω(q,p)

(

T ∗(1,0)X
Q1

)

→ Ω(q,p+1)

(

T ∗(1,0)X
Q1

)

,

Note that D
2
= 0 iff the heterotic Bianchi Indentity is satisfied. This is the heterotic

differential appearing in ∆W .
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What differential computes the massless moduli?

Let Q = T ∗(1,0)X ⊕ End(V )⊕ T (1,0)X . Can define holomorphic structure on the

differential complex Ω(q,p)(Q)

D =

(

∂ H

0 ∂1

)

: Ω(q,p)

(

T ∗(1,0)X
Q1

)

→ Ω(q,p+1)

(

T ∗(1,0)X
Q1

)

,

Note that D
2
= 0 iff the heterotic Bianchi Indentity is satisfied. This is the heterotic

differential appearing in ∆W .

Compute first cohomology [Anderson etal 14, delaOssa-EES 14]

TM = H
(0,1)

D
(Q) = H(1,1)(X)⊕ ker(H) ,

Computed from long exact sequence

0 → H(0,1)(T ∗(1,0)X) → H(0,1)(Q) → H(0,1)(Q1)

H
−→ H(0,2)(T ∗(1,0)X) → ..
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Let αh ∈ H(0,1)(End(V )) correspond to the closed part of α, i.e. a bundle modulus.

Then there is an effective super-potential coupling generated

∫

X

tr(F ∧ αh) ∧ Ω(µ) ∈ ∆W .

There is an F-term generated for αh in the effective theory provided there exists a µ such

that

F ∧ Ω(µ) 6= 0

in cohomology. This is precisely the Atiyah constraint.
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Let αh ∈ H(0,1)(End(V )) correspond to the closed part of α, i.e. a bundle modulus.

Then there is an effective super-potential coupling generated

∫

X

tr(F ∧ αh) ∧ Ω(µ) ∈ ∆W .

There is an F-term generated for αh in the effective theory provided there exists a µ such

that

F ∧ Ω(µ) 6= 0

in cohomology. This is precisely the Atiyah constraint.

Similarly, there is then an F-term generated for µ in the effective theory provided there

exists an αh such that

tr(F ∧ αh) 6= 0

in cohomology.

This relation is symmetric in µ and αh, and we can conclude that for every µ lifted by the

Atiyah constraint, there is a corresponding lifted bundle modulus. We conclude

h(0,1)(Q) ≤ h(1,1) + h2,1 + h(0,1)(End(V ))− 2 Im(F) .
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.

We note that the structure D corresponds to a complex structure on the total space of Q.

Complex structures tend to be size independent, while α′
-corrections correspond to

1/V olume corrections.

Makes it plausable that most of the first order system survives to higher orders in α′
.
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.

We note that the structure D corresponds to a complex structure on the total space of Q.

Complex structures tend to be size independent, while α′
-corrections correspond to

1/V olume corrections.

Makes it plausable that most of the first order system survives to higher orders in α′
.

For ∂∂-manifolds one can also show that [delaOssa-Hardy-EES]

dim(M) ≥ {Number of massless Kähler amd complex structure moduli} .

That is, the number of unobstructed directions is bounded from below by the infinitesimal

geometric moduli.
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.

We note that the structure D corresponds to a complex structure on the total space of Q.

Complex structures tend to be size independent, while α′
-corrections correspond to

1/V olume corrections.

Makes it plausable that most of the first order system survives to higher orders in α′
.

For ∂∂-manifolds one can also show that [delaOssa-Hardy-EES]

dim(M) ≥ {Number of massless Kähler amd complex structure moduli} .

That is, the number of unobstructed directions is bounded from below by the infinitesimal

geometric moduli.

A Kähler metric on the moduli space can be obtained from dimensional reduction. It is

given by the Kähler potential [Candelas etal 16;18, McOrist 16]

K = − log

(

i

∫

X

Ω ∧ Ω

)

− log

(

3
4

∫

X

ω3

)

.

Note: Hidden dependence on bundle moduli through ω and Bianchi Identity.
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Conclusions:

� Heterotic geometries give nice generalisations of torsion-free geometries when

bundles are included, but the moduli problem gets harder.

� We discussed higher order deformations of the heterotic SU(3)-system and the

heterotic deformation algebra (an L3-algebra).

� We have reviewed the cohomology describing the infinitesimal moduli of the heterotic

SU(3)-system.
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� So far mostly a mathematical investigation into the structures. Interesting to look for

applications in particle physics, AdS/CFT, black hole entropy, and other areas of string

theory and differential geometry?

� Further investigation into higher order deformations and obstructions. What are the

integrable deformations? Is there an analog of Tian-Todorov?

� What about non-perturbative effects, world sheet instantons, NS5-branes? Correct the

Bianchi Identity

dH +W5 = α′

4
(tr F 2 − tr R2) , [W5] ∈ H(2,2)(X) .

⇒ Spoils integrability of differential D
2
6= 0.

� Connect with developments of (0, 2) moduli from the world-sheet point of view

[Melnikov-Sharpe 11, Bertolini etal 13;14;17;18, Fiset etal 17;18, ..].

� Quantum corrections: Quantise quasi-topological action ∆W? Is there a

corresponding topological world-sheet theory (e.g. ala Witten’s topological string for

Chern-Simons, or βγ-systems)? Compute invariants for heterotic geometries such as

generalisations of Gromov-Witten and Donaldson-Thomas invariants?
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Thank you for your attention!
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