## Representations of quivers over Frobenius algebras

joint work with Emmanuel Letellier and Fernando R. Villegas arxiv:1810.01818

Tamás Hausel

Institute of Science and Technology Austria http://hausel.ist.ac.at

Mathematics - String Theory seminar Kavli IPMU, Tokyo<br>February 2019

- $\mathbb{k}$ field, $\mathbb{k}=\overline{\mathbb{k}}$ or $|\mathbb{k}|<\infty$
- $Q=(V, E)$ quiver $E \subset V \times V \alpha: V \rightarrow \mathbb{N}$ dimension vector
- $\rho \in \operatorname{Rep}^{\alpha}(Q, \mathbb{k}):=\bigoplus_{(i, j) \in E} \operatorname{Hom}_{\mathbb{k}}\left(\mathbb{k}^{\alpha_{i}}, \mathbb{k}^{\alpha_{j}}\right)$
- Problem: classify $\amalg_{\alpha \in \mathbb{N}^{V}} \operatorname{Rep}^{\alpha}(Q, \mathbb{k}) / G_{\alpha}$ !
- building blocks: $\rho$ (abs.) indecomposable representations, i.e. $\rho=\rho_{1} \oplus \rho_{2} \leadsto \rho_{1}=0$ or $\rho_{2}=0$ (over $\overline{\mathrm{k}}$ )
- Problem: classify (abs.) indecomposable representations, and their dimension vectors!


## Theorem (Kac 1982)

There exists $\rho \in \operatorname{Rep}_{\text {a.i }}^{\alpha}\left(Q, \mathbb{k}_{k}\right) / G_{\alpha} \Leftrightarrow \alpha \in \mathbb{N}^{V}$ is a root of $\mathfrak{g}_{Q}$

- $\left|\coprod_{\alpha} \operatorname{Rep}_{\mathrm{a} . i}^{\alpha}(Q, \mathbb{k}) / G_{\alpha}\right|<\infty$ i.e. $Q$ is finite $\Leftrightarrow Q$ is $A D E$ type (Gabriel 1971), when $\mathfrak{g}_{Q}$ is finite dimensional simple Lie algebra


## Representations of quivers over finite fields

- $a_{\alpha}\left(Q, \mathbb{F}_{q}\right):=\left|\operatorname{Rep}{ }_{a, i}^{\alpha}\left(Q, \mathbb{F}_{q}\right) / G_{\alpha}\right|$ Kac polynomial
- e.g. for Jordan quiver $a_{n}\left(J, \mathbb{F}_{q}\right)=q$


## Theorem (Kac 1982)

- $\mathrm{a}_{\alpha}\left(Q, \mathbb{F}_{q}\right) \in \mathbb{Z}[q]$
- $a_{\alpha}\left(Q, \mathbb{F}_{q}\right)$ independent of orientation of $Q$
- $\mathrm{a}_{\alpha}\left(Q, \mathbb{F}_{q}\right) \neq 0 \Leftrightarrow \alpha \in \mathbb{N}^{V}$ is a root of $\mathfrak{g}_{Q}$


## Conjecture (Kac 1982)

(1) $\left.\mathrm{a}_{\alpha}\left(Q, \mathbb{F}_{q}\right)\right|_{q=0}=m_{\alpha}$ multiplicity of $\alpha$ in $\mathfrak{g}_{Q}=\oplus_{\alpha} \mathfrak{g}_{\alpha} \oplus \mathfrak{h}$
(2) $a_{\alpha}\left(Q, \mathbb{F}_{q}\right) \in \mathbb{N}[q]$

- Conjecture 1 completed by (Hausel 2010)
- Conjecture 2 completed by (Hausel, Letellier, Villegas 2013)


## Fourier transform over $\mathbb{k}$

- $\mathbb{k}=\mathbb{F}_{q}$ and $\Psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$non-trivial additive character
- $\mathbb{V}$ finite dimensional vector space over $\mathbb{F}_{q} ; \mathbb{C}[\mathbb{V}]:=\{f: \mathbb{V} \rightarrow \mathbb{C}\}$
$\mathcal{F}: \mathbb{C}[\mathbb{V}] \rightarrow \mathbb{C}\left[\mathbb{V}^{*}\right]$

$$
\mathcal{F}(f)(w) \quad \mapsto \quad \sum_{v \in V} f(v) \Psi(\langle v, w\rangle)
$$

- Fourier inversion formula: $\mathcal{F}(\mathcal{F}(f))(x)=|V| f(-x) \Rightarrow \mathcal{F}$ is iso
- finite group $G \rightarrow \mathrm{GL}(\mathbb{V}) \leadsto \mathcal{F}$ is $G$ equivariant $\leadsto$ $|\mathbb{V} / G|=\operatorname{dim}\left(\mathbb{C}[\mathbb{V}]^{G}\right)=\operatorname{dim}\left(\mathbb{C}\left[\mathbb{V}^{*}\right]^{G}\right)=\left|\mathbb{V}^{*} / G\right|$
- $\sim\left|\operatorname{Rep}^{\alpha}\left(Q, \mathbb{F}_{q}\right) / \mathrm{G}_{\alpha}\right|=\left|\operatorname{Rep}^{\alpha}\left(Q^{\prime}, \mathbb{F}_{q}\right) / G_{\alpha}\right|$ where $Q^{\prime}$ is $Q$ with one arrow reversed $\leadsto$ independence of orientation
- G algebraic $/ \mathbb{F}_{q}$ and $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathbb{V}) \sim \varrho: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathbb{V})$
- $\begin{array}{rllc}\mu: ~ & \mathbb{V} \times \mathbb{V}^{*} & \rightarrow & \mathfrak{g}^{*} \\ (v, w) & \mapsto & \mapsto \mapsto\langle\varrho(x) v, w\rangle\end{array} \quad$ moment map
- $\#_{\mu}(\xi):=\left|\mu^{-1}(\xi)\right|$ count function $a_{\varrho}(x):=|\operatorname{ker}(\varrho(x))|$


## Theorem (Hausel 2010)

$\#_{\mu}=\mathcal{F}\left(a_{\varrho}\right) \frac{|\mathbb{V}|}{|g|}$

- $\varrho: \mathfrak{g l}_{1} \rightarrow \mathfrak{g l}\left(\mathbb{k}^{2}\right)$ by $(\alpha) \mapsto\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right)$
$\mathrm{a}_{\varrho}: \mathbb{F}_{q} \rightarrow \mathbb{C}$ is $\mathrm{a}_{\varrho}(\alpha)=1$ unless $\alpha=0$ when $\mathrm{a}_{\varrho}(0)=q^{2}$
$\mathrm{a}_{\varrho}=1+\left(q^{2}-1\right) \delta_{0}$ and so
$\mathcal{F}\left(a_{\rho}\right)=q \delta_{0}+\left(q^{2}-1\right)$.
Now $\mu: \mathbb{k}^{2} \times \mathbb{k}^{2} \rightarrow \mathfrak{g l}_{1}^{*}$ is given by $x_{1} y_{1}+x_{2} y_{2}$.
let $\mathcal{U}:=\mu^{-1}(1)$. Indeed
$\# \mathcal{U}\left(\mathbb{F}_{q}\right)=\#_{\mu}(1)=\frac{q^{2}}{q} \hat{a}_{\rho}(1)=q\left(q^{2}-1\right)=(q-1)\left(q^{2}+q\right)$
$\bullet \sim\left|\mu^{-1}(1) / \mathrm{GL}_{1}\left(\mathbb{F}_{q}\right)\right|=q^{2}+q \stackrel{\text { Katz }}{\sim} b_{i}\left(\mu^{-1}(1) / \mathrm{GL}_{1}(\mathbb{C})\right)=1$ for $i=0,2$ and 0 ow
- $\mu^{-1}(1) / \mathrm{GL}_{1}(\mathbb{C})$ is the Eguchi-Hanson gravitational instanton; the $A_{1}$ ALE space


## Theorem (Hausel 2006)

For any quiver $Q$, and $\mathbf{w} \in \mathbb{N}^{\prime}$ the Betti numbers of Nakajima quiver varieties $\mathcal{M}(\mathbf{v}, \mathbf{w})$ are:

$$
\begin{aligned}
& \sum_{\mathbf{v} \in \mathbb{N}^{\prime}} \sum_{i} \operatorname{dim}\left(b_{2 i}(\mathcal{M}(\mathbf{v}, \mathbf{w}))\right) q^{d(\mathbf{v}, \mathbf{w})-i} X^{\mathbf{v}}=
\end{aligned}
$$

- combinining (Nakajima 1998) with Weyl-Kac character formula and Kac-Stanley-Hua formula for $a_{v}\left(Q, \mathbb{F}_{q}\right) \Rightarrow$ Kac's Conjecture 1
- $R$ Frobenius $\mathbb{k}$-algebra i.e. commutative unital finite dimensional $\mathfrak{k}$-algebra with a Frobenius 1 -form $\lambda: R \rightarrow \mathbb{k}$ which is not zero on any non-trivial ideal in $R$
- examples: $\mathbb{k}_{d}=\mathbb{k}[t] /\left(t^{d}\right)$ more generally local algebras with unique minimal ideal
- when $R$ is Frobenius so is $R[\epsilon]:=R[\epsilon] /\left(\epsilon^{2}\right)$
- a locally free representation of quiver $Q$ over $R$ of rank $\alpha \in \mathbb{N}^{V}$ is $\in \operatorname{Rep}^{\alpha}(Q, R):=\bigoplus_{(i, j) \in E} \operatorname{Hom}_{R}\left(R^{\alpha_{i}}, R^{\alpha_{j}}\right)$
- Is there an interesting theory for $\mathrm{a}_{\alpha}(Q, R)$ for $|\mathbb{k}|=\mathbb{F}_{q}$ ?
- $\left|M_{n \times n}(R) / \mathrm{GL}_{n}(R)\right|$ have been studied for $R=\mathbb{k}_{d}$ computed for $n \leq 3$ and all $d$ and for $n=4$ and $d=2$ (Avni, Prasad, Vaserstein 2009)
- Conjecture: $\left|M_{n \times n}\left(\mathbb{k}_{d}\right) / \mathrm{GL}_{n}\left(\mathbb{k}_{d}\right)\right| \in \mathbb{Z}[q] \sim a_{\alpha}\left(J, \mathbb{k}_{d}\right) \in \mathbb{Z}[q]$
- (Geiss, Leclerc, Schröer 2017) studied $\operatorname{Rep}\left(Q, \mathbb{k}_{d}\right)$ including non-locally free ones, but found that representation type can vary when one is changing orientation of quiver
- there is a nice theory for $R$ Frobenius algebra and locally free representations


## Finite representation type quivers / $R$

## Theorem (Hausel, Lettelier, Villegas 2018)

Let $R / \mathbb{k}$ Frobenius, $Q$ connected quiver. There are finitely many (abs.) indecomposable locally-free representations of $Q / R \Leftrightarrow$
(1) $Q=A D E R=\mathbb{k}$
(2) $Q=A_{1} R$ arbitrary
(3) $Q=A_{2} R=\mathbb{k}_{d}$
(4) $Q=A_{3} R=\mathbb{k}_{2}$ or $\mathbb{k}_{3}$
(5) $Q=A_{4} R=\mathbb{k}_{2}$

- (3) follows from Schmitt normal form for $\mathbb{k}_{d}$
- (4) and (5) follow from (GLS 2017) + independence of orientation for $\left|\operatorname{Rep}_{\mathrm{a} . i}^{\alpha}(Q, R) / \mathrm{G}_{\alpha}(R)\right|$
- (GLS 2017) $\sim$ for $A_{3} / \mathbb{k}_{2}$ the number of all indecomposable representations could differ when changing orientation
- for $R=\mathbb{k}_{2}$ finite quivers are exactly the same as for preprojective algebra $\Pi_{\mathbb{k}}(Q)$ by (GLS 2005)
- $\mathbb{k}=\mathbb{F}_{q}, \lambda: R \rightarrow \mathbb{k}$ Frobenius, $1 \neq \Psi: \mathbb{k} \rightarrow \mathbb{C}^{\times}$additive
- $\mathbb{M} \cong R^{n}$ finite rank free $R$-module, $X$ finite set
- $\mathcal{F}: \mathbb{C}[X \times \mathbb{M}] \rightarrow \mathbb{C}\left[X \times \mathbb{M}^{V}\right]$
$\mathcal{F}(f)(w) \quad \mapsto \quad \sum_{v \in M} f(v) \Psi \lambda(\langle v, w\rangle)$
- Fourier inversion holds, thus $\mathcal{F}$ is iso (in fact $\Leftrightarrow \lambda$ Frobenius)
- finite group $G \subset X \times \mathbb{M} \leadsto \mathcal{F}$ is $G$ equivariant $\leadsto$ $|(X \times \mathbb{M}) / G|=\left|\left(X \times \mathbb{M}^{\vee}\right) / G\right|$
- $\sim\left|\operatorname{Rep}^{\alpha}(Q, R) / \mathrm{G}_{\alpha}(R)\right|=\left|\operatorname{Rep}^{\alpha}\left(Q^{\prime}, R\right) / \mathrm{G}_{\alpha}(R)\right|$ where $Q^{\prime}$ is $Q$ with one arrow reversed $\sim$


## Theorem (HLV 2018)

The number of (abs.) indecomposable locally-free representations of $Q$ over Frobenius algebra $R$ is independent of the orientation.

## Representations of $\Pi_{\mathbb{k}}(Q)$ vs. $\mathbb{k}[\epsilon] Q$

- G algebraic $/ \mathbb{F}_{q}$ and $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathbb{V})$ finite dim. rep.
- let $X:=\mathbb{V}(R)$ and $\mathbb{M}:=\mathbb{V}(R)$ then $G(R) C X$ and $G(R) C \mathbb{M}$
- $\sim \mathcal{F}: \mathbb{C}[\mathbb{V}(R) \times \mathbb{V}(R)] \rightarrow \mathbb{C}\left[\mathbb{V}(R) \times \mathbb{V}(R)^{\vee}\right]$ is
$G(R)$-equivariant $\leadsto$
$|(\mathbb{V}(R) \times \mathbb{V}(R)) / \mathrm{G}(R)|=\left|\left(\mathbb{V}(R) \times \mathbb{V}(R)^{\vee}\right) / \mathrm{G}(R)\right|$
- $\mathbb{V}(R) \times \mathbb{V}(R) \cong \mathbb{V}(R[\epsilon])$ and so acted on by $G(R[\epsilon]) \rightarrow G(R)$
- $\mathrm{G}(R[\epsilon]) \cong \mathfrak{g}(R) \rtimes \mathrm{G}(R)$
- define $\mathrm{G}(R[\epsilon]) \subset \mathbb{C}\left[\mathbb{V}(R) \times \mathbb{V}(R)^{\vee}\right]$ by $\left((x, g)^{-1} \cdot f\right)(v, w):=\Psi \lambda\left(-\mu_{R}(v, w)\left(\operatorname{Ad}\left(g^{-1}\right)(x)\right)\right) f(g \cdot v, g \cdot w)$
- $\mathcal{F}$ is $\mathrm{G}(R[\epsilon])$ equivariant $\leadsto$


## Theorem (HLV 2018)

$|\mathbb{V}(R[\epsilon]) / \mathrm{G}(R[\epsilon])|=\left|\mu_{R}^{-1}(0) / \mathrm{G}(R)\right|$

## Corollary

Q quiver then $\left|\operatorname{Rep}^{\alpha}(\mathbb{k}[\epsilon]) / \mathrm{G}_{\alpha}(\mathbb{k}[\epsilon])\right|=\left|\mu^{-1}(0) / \mathrm{G}(\mathbb{k})\right|$

- $Q=J$ the Jordan quiver, then Corollary says $\left|M_{n}\left(\mathbb{k}_{2}\right) / \mathrm{GL}_{n}\left(\mathbb{k}_{2}\right)\right|=\left|\left\{A, B \in M_{n}\left(\mathbb{k}^{2}\right) \mid A B=B A\right\} / G(\mathbb{k})\right|$
- due to (Jambor Plesken 2012) used it to compute $\left|\mathrm{GL}_{6}(\mathbb{Z} / 4 \mathbb{Z}) / \mathrm{GL}_{6}(\mathbb{Z} / 4 \mathbb{Z})\right|$
- by assuming $a_{n}\left(J, \mathbb{F}_{q}[\epsilon]\right)$ is a polynomial of degree $(n-1)$ one can interpolate for $4<n<9$ to get conjecture

| $n$ | $a_{n}\left(J, \mathbb{F}_{q}[\epsilon]\right)$ |
| :--- | ---: |
| 1 | 1 |
| 2 | $q+1$ |
| 3 | $q^{2}+q+2$ |
| 4 | $q^{3}+2 q^{2}+3 q+3$ |
| 5 | $q^{4}+2 q^{3}+5 q^{2}+6 q+6$ |
| 6 | $q^{5}+3 q^{4}+9 q^{3}+14 q^{2}+14 q+9$ |
| 7 | $q^{6}+3 q^{5}+12 q^{4}+25 q^{3}+35 q^{2}+29 q+18$ |
| 8 | $q^{7}+4 q^{6}+18 q^{5}+47 q^{4}+77 q^{3}+85 q^{2}+63 q+30$ |

## Conjecture (HLV 2018)

$a_{n}\left(J, \mathbb{F}_{q}[\epsilon]\right) \in \mathbb{N}[q]$ and $\left.a_{n}\left(J, \mathbb{F}_{q}[\epsilon]\right)\right|_{q=0}=m_{n}$, where $m_{n}=\operatorname{dim}\left(\operatorname{FreeLie}\left(x_{1}, x_{2}, \ldots\right)_{n}\right)$

- $\mathbb{k}:=\mathbb{F}_{q}, Q=(V, E)$ quiver $\alpha=\mathbf{1}$ dimension vector
- define generating function $A(Q, q, T):=\sum_{d=1}^{\infty} a_{1}\left(Q, \mathbb{k}_{d}\right) T^{d}$
- example for $C_{3}$ triangle of type $\hat{A}_{2}$ we have

$$
A\left(C_{3}, q, T\right)=\frac{T(2 q T+T+q+2)}{(1-T)^{2}(1-q T)}
$$

## Theorem (HLV 2018)

(1) $a_{1}\left(Q, \mathbb{k}_{d}\right) \in \mathbb{Z}[q]$ polynomiality
(2) $A(Q, q, T) \in \mathbb{Z}(q, T)$ rationality
(3) $A\left(Q, q^{-1}, T^{-1}\right)=(-1)^{|V|} A(Q, q, T)$ functional equation
(4) $a_{1}\left(Q, \mathbb{k}_{d}\right) \in \mathbb{N}[q]$ positivity

- (1) is straightforward
- (2) by combinatorial recursive formula
- (3) from graph Hopf algebra $(\sim A(Q, q, T)$ is like Igusa zeta)
- (4) from higher depth version of main theorem
- G algebraic $/ \mathbb{k}=\mathbb{F}_{q}$ and $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathbb{V})$ finite dim. rep.
- from $\mathbb{k} \hookrightarrow \mathbb{k}_{d} \rightarrow \mathbb{k}$ we get $\mathrm{G}\left(\mathbb{k}_{d}\right) \cong \mathrm{G}_{d}^{1}(\mathbb{k}) \rtimes \mathrm{G}(\mathbb{k})$

$$
\mathbb{V}\left(\mathbb{k}_{d}\right)=\mathbb{V}(\mathbb{k}) \times \mathbb{V}_{d}^{1}(\mathbb{k})
$$

- $\mu_{d}: \mathbb{V}(\mathbb{k}) \times \mathbb{V}_{d}^{1}(\mathbb{k})^{*} \rightarrow \quad \mathfrak{g}_{d}^{1}(\mathbb{k})^{\vee}$

$$
(v, w) \quad \mapsto \quad x \mapsto\langle\varrho(x) v, w\rangle
$$

multi-moment map

## Theorem (2018)

$$
\#\left(\mathbb{V}\left(\mathbb{k}_{d}\right) / \mathrm{G}\left(\mathbb{k}_{d}\right)\right)=\#\binom{\left\{(v, w) \in \mathbb{V} \times \mathbb{V}_{d}^{1}(\mathbb{k})^{\vee} \mid \mu_{d}(v, w)(x)=0\right.}{\text { for all } \left.x \in \mathfrak{g}_{d}^{1}(\mathbb{k}) \text { s.t. }[x \cdot w]_{1}=0\right\} / G\left(\mathbb{k}_{d}\right)}
$$

- in the toric case this implies the recursion:

$$
a_{1}\left(Q, \mathbb{k}_{d}\right)=\sum_{\mathcal{P}_{\in \operatorname{Part}}^{Q}} q^{(d-1) b_{1}\left(Q_{\mathcal{P}}\right)} a_{1}\left(Q_{\mathcal{P}}, \mathbb{k}_{k}\right) a_{1}\left(Q_{/ \mathcal{P}}, \mathbb{k}_{d-1}\right)
$$

- example: $\mathrm{GL}_{n} \rightarrow \mathrm{GL}\left(M_{n \times n}(\mathbb{k})\right)$ Jordan quiver; $d=3$
- $(v, w)=\left(A_{0}, t^{-1} B_{1}+t^{-2} B_{2}\right) \in M_{n \times n}(\mathbb{k}) \times\left(M_{n \times n}\right)_{3}^{1}(\mathbb{k})^{\vee}$ for all $x=\left(t X_{1}+t^{2} X_{2}\right) \in g_{3}^{1}(\mathbb{k})$ we have $[x \cdot w]_{1}=t^{-1}\left[X_{1}, B_{2}\right]$
- thus RHS becomes $\left[A_{0}, B_{2}\right]=0$ and if $\left[X_{1}, B_{2}\right]=0$ then $\operatorname{tr}\left(X_{1}\left[A_{0}, B_{1}\right]\right)=0$

