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Outline of the talk
 Review of universal electron-nucleus coalescence behavior of atomic wave function     
 Brief introduction to EFT and OPE – modern tools of QFT
 Non-relativistic Coulomb-Schrödinger EFT – Standard QFT for atomic physics
 Rigorous proof of an OPE relation to all orders in perturbation theory
 90-year puzzle about wave function at the origin for KG and Dirac hydrogen
 Insight from Schrödinger perturbation theory in QM – UV div. and Renormalization
 OPE and RGE in nonrelativistic EFT implementing relativistic corrections 
 Summary
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梦回唐朝—穿越回物理学的黄金年代—英雄辈出的 1920 年代
 Golden age of physics, many young heroes in developing quantum mechanics  
 Non-relativistic wave mechanics, relativistic wave mechanics were invented in almost same time – finally give way to more fundamental framework: Quantum Field Theory                 QFT = Special Relativity + Quantum Mechanics
 Application of single-particle wave mechanics (Schrödinger, Klein-Gordon and Dirac equations ) to hydrogen spectroscopy plays a vital role in shaping the modern physics      Triumph of QM in early days
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Schrödinger equation with Coulomb potential: the standard theory for atomic physics and quantum chemistry 
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Standard Model of atomic physics



Orientation:  electron-nucleus coaelesence behavior [KG equation with a Coulomb potential] (Schrödinger, 1926, unpublished note)
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Wrong fine structure,
 spin-0 electron

Long-standing puzzle: why KG wave function at the origin 
diverges? And so weakly (logarithmically)?

ρ= (2/n) (r /a0), a0 is Bohr radius



Orientation:  electron-nucleus coaelesence behavior: Dirac equation with a Coulomb potential (Darwin and Gordon 1928)
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Long-standing puzzle since 1928: 
why Dirac wave function at the origin diverges? and so weakly 
(logarithmically)? What is the physics behind?



Universal behavior of wave function near the origin in Schrödinger hydrogen (S-wave)
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Expand the radial wave function near the origin ( r<<a0 )

Non-universal



Universal behavior of wave function near the origin in Klein-Gordon hydrogen (S-wave)
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Non-universal
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Universal behavior of wave function near the origin 
in Dirac hydrogen (The nS1/2 state)

Non-universal



Explicit forms of Schrodinger, KG and Dirac radial wave functions for S-wave hydrogen

10

Why various w.f. exhibit universal short-distance behavior for 
a given orbital angular momentum l? What is the physics behind the 
divergence, and the universality?



Thanks to X. D. Ji for very inspiring discussions that lead to this study
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One afternoon in fall of 2011 at Maryland, Xiangdong informed me that the 
wave function near the origin in Dirac equation logarithmically diverges… And 
likely to be related with renormalization effect…

It takes me for seven years to finally figure out how to solve this puzzle



Peter Lepage’s pedagogical 1997 Summer School lecture: How to renormalize Schrödinger equation
-- Lots of inspiration from Lepage’s 1997 Summer School lecture  
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Lots of efforts by two of my students in the past three years
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2016 Y.-S. Huang Bachelor thesis



       Part 1: Schrödinger wave function                    EFT and OPE  
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Coalescence behavior of atomic wave function
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Electron-electron coalescence
 Hamiltonian:

 Kato’s Cusp condition (S-wave) (Kato, 1957): 

  Leads to: 
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Beyond Kato’s cusp condition
 Arbitrary orbital angular momentum (Löwdin, 1954):

 Three-particle coalescence: (Fournais et al. 2005):  
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Two electrons approach the nucleus for an arbitrary atom



How to understand this coalescence behavior of wave function from QFT?
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In the field-theoretical context, the Bethe-Salpeter wave function can be 
viewed as the vacuum-to-atom matrix elements of two nonlocal field 
operator!

This suggests that the coalescence behavior can be inferred from OPE: 
Wilson coefficients are universal!

OPE is operator relation, does not depend on external 
states, thus applies to an arbitrary atom!



Principle of EFT
 Identifying relevant degree of freedom
 Symmetry as building guidance
 Power counting
 Long-range effects is insensitive about short range physics;
 Short-range effects encoded by Wilson coefficients
 Nonrenormalizable theory is renormalizable
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QCD and EFT summer school, 
Shanghai, 2018/informal note
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EFT for atoms (analogue of heavy-quark bound states)
 Effective Lagrangian: NRQED (Caswell & Lepage, 1986)+HNET (similar to 

HQET, E. Eichten, Hill &   H. Georgi, 1990)

where
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EFT for Schrödinger atoms
 Coulomb-Schrödinger EFT for atoms:  

 Coulomb gauge (only retain instantaneous Coulomb poten
tial)

 No dynamic photons (set A=0): so will not see Lamb shift
 No relativistic corrections included
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Field theoretical
realization of 
Schrodinger eq.



Feynman rules in NREFT

40

NRQED electron propagator

Not needed
in this work!

Nucleus HNET propagator

Instantaneous Coulomb photon



Only ladder diagrams survives in NREFT calculation
 All crossed ladder diagrams are zero due to the co

ntour integral. 
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Vanish with single pole!



Operator Product Expansion (Wilson, 1969; Zimmermann, 1971)
   OPE assumes the following form: 
                                                        R

  Applied in various areas of particle physics
    (light-cone expansion,  Minkowski spacetime,     and Euclidean OPE)
    Can be used to defined the renormalized composite local operators.

42



Proof of OPE using path integrals (see Weinberg, QFT Vol. 2)
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B(R)
𝑥1 

𝑥2  𝑦2 

𝑦1 

Locality of action 
is crucial for existence
of OPE



Proof of OPE (QFT, Weinberg)

44



OPE: an important tool in high energy physics
DIS: 
Twist expansion

QCD (SVZ) Sum rule              Shifman et al., 1978

OPE + dispersion relation: useful phenomenological model 
to predict some hadronic nonperturbative quantities. 
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The essential idea of OPE is factorization: momentum flow of Green function: separate hard and soft (lucidly explained by John Collins, text on Renormalization)  
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Hard momentum

Soft momentum

Factorization property of Green function



OPE in moment sum rule
 OPE

 Sum rule
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OPE can be obtained from
asymptotic behavior of Green function 
when large momentum injected  
factorized form

A toy example!



OPE in moment sum rule
 OPE
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q soft; local q hard; Wilson coef.



OPE in moment sum rule
 OPE
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OPE in moment sum rule
 OPE
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Previous application of OPE to atomic physics
Braaten & Platter, PRL (2008)To reproduce the famous Tan relation in cold atoms
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OPE for electron Coulomb gas 
Hofmann, Barth and Zwerger in 2013
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Why starting from HNET+NRQED?
 Necessary for manifesting the OPE operator 

relation!!!

 With external Coulomb potential, it is impo
ssible to write down the OPE.

  Nucleus infinitely heavy. Electron moves sl
owly. Still local QFT
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OPE relation for coalescence 
 Naïve Taylor expansion: 

This is incomplete!!!
 Correct expansion in coordinate space:

 And momentum space:
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Determine Wilson coefficients
 First define 4-point connected Green functions

 There’re only ladder diagrams 

defined as r.h.s.
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Momentum space: Asymptotic behavior of 4-point Green function as the injected momentum q->m gets hard
 Leading diagram is th

e tree diagram. 
 Integrand is expanded 

given q~m.
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Factorized form
 Define a n-ladder diagram

The factorized form is seen. 
 Diagrammatically, the 1st order
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Proof to all orders by method of induction
 Analyse the loop momentum : 
 Hard: ; Soft: 
 Keep leading region: Soft

  
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OPE in coordinate space 
 Coordinate space Green function (additional diagr

am abandoned in momentum space as disconnecte
d gives 1)

 Given Fourier integral:
 Coordinate Wilson coefficient:

Use                                     as n=1, gives: 
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P-wave hydrogen-like atom
 Similar to S-wave

 The only difference is the local operator

 Subtraction to get coordinate Wilson coefficient is 
different: 

gives                .
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Application to hydrogen-like atoms
 Matrix element definition of wave function

gives (               )
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Compare with the old knowledge
 Our results agree with the old QM results:
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(Löwdin, 1954)

(Bethe & Salpeter, 1957)



        Part 2: Klein-Gordon and Dirac                   EFT and OPE  
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Klein-Gordon equation
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Near-the origin behavior of S-wave hydrogen KG wave function
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Expanding the wave function near origin
 Expanding       gives

 Expanding the rest gives Schrödinger results

 Sum up to
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S-wave Klein-Gordon wave functions near the origin
 Wave function near the origin: 
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Perturbation theory in QM
 Hamiltonian:

 Energy
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Wave function correction
 First-order QM perturbation

 Coutinuum spectrum gives UV divergence
 Coutinuum Coulomb wave function

69



Continuum matrix element

Must impose a UV cutoff, yields divergence 
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Scalar QED+HNET and OPE: an unsuccessful attempt!
 Lagrangian:

 OPE relations defined as: 
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Renormalize Local Operators
 Definition: 

 Calculate the following diagrams in both Fe
ynman gauge and Coulomb gauge
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Renormalize Local Operators
 Relation for counterterms

 While       is gauge-invariant with Z=1, what’s rela
ted to OPE is     . 
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OPE (similar to point-splitting, smearng a local composite operator)
 Define
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OPE in coordinate space (Feynman gauge)
 In Feynman gauge, expanding                      gives

 Fourier transform to coordinate space
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OPE in coordinate space (Coulomb gauge)
 In Coulomb gauge, expanding                         give

s

 Fourier transform to coordinate space

 Both gauges give logarithm at order

  
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NREFT
 Scalar QED + HNET won’t work!
 Drop 

 Non-relativistic approximation

 Use with EOM, the following conditions are obtained

  
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NREFT: our working basis
 NREFT Lagrangian:
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Matching of contact interaction

 Matching gives
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OPE result
 Coordinate space

 Momentum space

 Crossed multiplication
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Renormalize local operators
 No need include wave function correction, the ren

ormalization only involves vertex correction:

 Define
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Renormalize local operators
 Calculate diagram b and d won’t give logarithmic divergence. 
 Diagram a and c are finite. 
 Calculate diagram e gives logarithmic divergence                                  
 Diagram f is higher order contribution. 
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Logarithm UV div

Power UV diver



Renormalize local operators
 With MS scheme in dimensional regularization

 The anomalous dimension
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Momentum space Wilson coefficient
 Define

 Scales in the problem: 

 Hard:  m v << q < m,                         v =Zα<<1
 Soft:   p~mv, E~mv^2
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Leading scaling behavior of diagrams: double-layer form of OPE
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OPE relation (momentum space)
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OPE relation (coordinate space)
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Wilson coefficient
 Momentum space

 Coordinate space
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Renormalization Group Equation: Resum the leading logarithm:
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RGE for local composite S-wave operator:

RGE for S-wave Wilson coefficient of OPE:

Choosing             as the Bohr radius

Fully reproduce the near-the origin anomalous scaling 
of KG wf. 



Dirac wave function of hydrogen  
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We focus on the large component
of Dirac wave functions for the 
j=1/2, positive parity hydrogen



Dirac wave function
 Wave function origin behavior of large component

 Expand the large component spinor: 

 Divergence can be reproduced by perturbative QM
 Kinetic correction + Darwin term+ spin orbit 91



Dirac wave function
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Correct OPE formulated in NRQED+HNET
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Summary
 EFT combined with OPE offers new insights for deeper understanding coalesc

ence behavior of atomic wave functions.
 It can be extended to study multi-particle coalescence behaviors.

 Applied in relativistic Klein-Gordon and Dirac equations, solving long-standin
g puzzle about the anomalous scaling behavior of the hydrogen wave function
s near the origin

 Leading logarithms are resummed with the aid of RGE

 Lesson: To succeed, one must start from NREFT, not the UV-completed relati
vistic QED+HNET          

 KG and Dirac equation as r<1/m becomes untrustworthy…         why?

                                              
94



         Thanks for your attention!
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