Axion Limit from the Cooling Neutron Star in Cassiopeia A

Jiaming Zheng University of Tokyo, Hongo

Base on K. Hamaguchi, N. Nagata, K. Yanagi, J. Zheng, 1806.07151

> Seminar at IPMU Feb 6, 2019

Axion

- Axion is the pseudo-Goldstone boson of PQ symmetry
- Solves strong CP problem

Astrophysical constraints:

What about neutron star

Summary

- The cooling can be explained in the standard cooling model
- Axion enhances the cooling and get constrained

The rapid cooling of CAS A NS was observed

Outline

- Neutron star cooling, theory
- CAS A NS cooling, obs. vs theory
- Axion emission from CAS A NS, constraint
- Summary

Neutron Star Cooling, theory

Neutron star interior is almost isothermal after relaxation time scale $\sim 100 \ yr$

$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$

Photon is emitted only from the surface:

$$L_{\gamma} = 4\pi R^2 \sigma_{SB} T_e^4$$
 $L_{\gamma} \ll L_{\nu}$ for $t \lesssim 10^6$ yr $t \approx 300$ yr for CAS A

Internal T is determined from T_e by envelope model

For a review, c.f. 1302.6626

Envelope model

Major uncertainty:

The composition of envelope, and thus η is unknown . .

• Direct URCA process(fast)

$$\begin{split} n &\to p + e^- + \bar{\nu} & \int \mathrm{d}^3 p_n \int \mathrm{d}^3 p_p \int \mathrm{d}^3 p_e \int \mathrm{d}^3 p_\nu E_\nu \delta^{(4)} \\ p + e^- &\to n + \nu & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T}^3 \, \mathrm{T} \, \mathrm{T}^{-1} \\ & & L \sim T^6 \end{split}$$
 Highly suppressed for $M \lesssim 2 M_\odot$

Emission take place near Fermi surfaces:

$$p^{p,n,e} \approx p_F^{p,n,e}$$

Charge neutrality: $E_F^p = E_F^e$ Chemical equilibrium: $E_F^n = E_F^p + E_F^e$

 $\label{eq:contradicts} \begin{array}{l} {\rm Contradicts\ energy-momentum\ conservation} \\ M\gtrsim 2M_\odot\ : {\rm muon\ is\ produced\ in\ higher\ density\ medium} \end{array}$

• Modified URCA process(slow)

$$N + n \to N' + p + e^- + \bar{\nu}$$
$$N + p + e^- \to N' + n + \nu$$

 $N n N' p e \nu \delta E$ T T T T T T³T⁻¹T $L \sim T^8$

Power law cooling:

$$L_{\nu} = hT^{\alpha}, \ C = cT$$
$$\frac{1}{T^{\alpha-2}} = \frac{1}{T_i^{\alpha-2}} + \frac{(\alpha-2)h\Delta t}{c}$$

• Larger α : slower cooling • For T<<T_i, T_i doesn't matter

•
$$T \sim \Delta t^{-\frac{1}{\alpha-2}}, \quad T_e \sim \Delta t^{-\frac{1}{2\alpha-4}}$$

• Nucleon form cooper-pairs at low ${\cal T}$

 $T_c \sim \Delta(T=0) \sim \mathcal{O}(1 \text{ MeV})$

- Suppress emission from nucleon $\sim \exp(-N\Delta/T)$
- Reduces specific heat for $T < T_c$

 ${}^{1}S_{0}$ is repulsive at high density:

- Neutron ${}^{1}S_{0}$ in crust
- Proton ${}^{1}S_{0}$ in core

HUGE theoretical uncertainty

The CAS A NS (OBS)

- Remnant expansion: SN exploded in 1681 \pm 19
- NS x-ray found by Chandra in 1999

The Cooling of CAS A NS (OBS)

Heinke & Ho, Nature 2010: Cooling by $2\sim 4\%/10$ yrs $M=1.4\pm0.3~M_{\odot}$

Can we explain it with standard cooling?

The Cooling of CAS A NS (TH)

$$C\frac{dT}{dt} = -L_{\nu}$$

D. URCA is irrelevant: $M = 1.4 \pm 0.3 \ M_{\odot} < 2M_{\odot}$ Even if it is, T would be too low M. URCA is too slow: $L \sim T^8, \ C \sim T \longrightarrow \left(\frac{\Delta T_e}{T_e}\right)_{10 \text{yrs}} \sim -\frac{1}{12} \frac{\Delta t}{t} \sim 0.3\%$ $T_e \sim T^{\frac{1}{2}} < (2 \sim 4)\%$

A rapid process is needed to explain the fast cooling of the CAS A NS

The Cooling of CAS A NS (TH)

Page, Prakash, Lattimer, Steiner, PRL 2011 Shternin, Yakovlev, Heinke, Ho, Patnaude, 2012 MNRAS :

CAS A NS rapid cooling can be explained by PBF

Viewed as direct evidence of phase transition in NS

Axion emission in NS

Axion emitted mainly by nucleon

Axion-nucleon coupling:

$$\mathcal{L}_{\text{int}} = \sum_{N=p,n} \frac{C_N}{2f_a} \bar{N} \gamma^{\mu} \gamma_5 N \partial_{\mu} a$$

• KSVZ: $C_p = -0.47(3)$, $C_n = -0.02(3)$ (This talk)

• DFSZ: $C_p = -0.182(25) - 0.435 \sin^2 \beta$, $C_n = -0.160(25) + 0.414 \sin^2 \beta$

Axion emission in NS

$$C\frac{dT}{dt} = -L_{\nu} - L_{a}$$

Dominant processes

PBF

Bremsstrahlung

Some technical detail:

We used the public code NSCool for simulation and added extra cooling by axion emission $_{\circ PBF}$

• Bremsstrahlung

To be conservative on axion limit:

Proton ${}^{1}S_{0}$: CCDK (Highest T_{c})

- Suppress axion emission
- Prevent over cooling by MURCA

Neutron ${}^{3}P_{2}$: Gaussian with free parameter

Choice of convenience: (doesn't matter)

- APR EOS
- Neutron ¹S₀:SFB(only relevant to relaxation)
- $M = 1.4 \pm M_{\odot}$

Axion luminosity in KSVZ:

Proton PBF emission dominates L_a

 $T_{\rm core}$ from cooling model at $t_{\rm obs}=2001~{\rm vs}~f_a$ ${\rm n}^3P_2$ pairing turned off

More on envelope uncertainty

We can do better for KSVZ! $C_n \sim 0$, $n^3 P_2$ PBF emits u not a

The axion mean free path

Determined by the inverse proton PBF:

$$\mathbf{a} \rightarrow \tilde{p} + \tilde{p}$$

$$\mathbf{A} \qquad \mathbf{A} \qquad$$

For simplicity, take $l_a = 1/\Gamma_{a \to \tilde{p} + \tilde{p}} \gtrsim 10 \text{km}$ For $p_F \sim 100 \text{ MeV}$, $m_p^* \sim 1 \text{ GeV}$, $T \sim \Delta_p \sim 1 \text{ MeV}$, $f_a \gtrsim \left(\frac{C_p}{2}\right) \times 10^6 \text{ GeV}$

otherwise, the axion is reabsorbed back to the NS

Summary

- The rapid cooling of CAS A NS is observed and explained by the standard model;
- Axion emission enhances the cooling and get constrained
- We obtained a tight bound for KSVZ, $f_a \gtrsim 5 \times 10^8 \text{ GeV}$ For DFSZ the bound is weakened, $f_a \gtrsim 1 \times 10^8 \text{ GeV}$, due to the uncertainty of the NS envelope.
- For comparison, these are comparable to the SN1987A bound: $f_a\gtrsim 4 imes 10^8~{
 m GeV}$
- Mean free path of the axion requires $f_a\gtrsim \left(rac{C_p}{2}
 ight) imes 10^6~{
 m GeV}$ for the bound to be valid.

Uncertainty?

• Envelope: Major uncertainty. We estimated it.

- Data: Mostly on the cooling part by contamination of camera. We only rely on this for KSVZ. The average temperature give us a weeker bound. Future experiment?
- Relaxation time scale: The relaxation is already simulated by NSCOOL. There were proposals of longer relaxation after the discovery of the rapid cooling of CAS A NS. Need better understanding or analyze an older neutron star

Thank You !

BACKUP SLIDES

