5d partition functions with A twist

Marcos Crichigno
University of Amsterdam

1808.06744
with D. Jain (Saha) \& B. Willett (Santa Barbara)
April 2, IPMU

Landscape of SCFTs

String theory predicts the existence of interacting local SCFTs in $d=5,6$.

Arise from worldvolume of D- and M-branes. AdS/CFT \Rightarrow conformal

6 d

Most famous example: maximal $6 \mathrm{~d}(2,0)$ theory

Still remain rather mysterious. Known features include

- ADE classification
- Global symmetry: $S O(6) \times S O(5)_{R}$
- 't Hooft anomalies
- AdS_{7} gravity dual

Compactification: $6 \mathrm{~d} \rightarrow 4 \mathrm{~d}_{\text {[Gaiotto] }}$

Our limited knowledge has not stopped us from exploring these theories

Vast space of new $4 \mathrm{~d} \mathcal{N}=2$ and $\mathcal{N}=1$ SCFTs

The power of high dimensions

Number of interesting results and insights:

- Discovery of new theories in 4d [Gaiotto]
- Most theories are non-Lagrangian
- New dualities: $4 \mathrm{~d} / 2 \mathrm{~d}{ }_{\text {[AGT] }}$ and 3d/3d [Dimofte-Gaiotto-Gukov,..]
- Interesting interplay with holography [Gaiotto-Maldacena, BBBW]

Due to lack of Lagrangians results are rather indirect.

> What about 5d?

Outline

I) $5 \mathrm{~d} \mathcal{N}=1$ gauge theories
II) Partition function on $M_{3} \times \Sigma_{\mathfrak{g}}$
III) Two applications

$$
\text { I) } 5 \mathrm{~d} \mathcal{N}=1 \text { gauge theories }
$$

$5 \mathrm{~d} \mathcal{N}=1$ gauge theories (8 SUSYs)

Multiplets of $5 \mathrm{~d} \mathcal{N}=1$ SUSY:

$$
\text { vector: } V=\left(A_{\mu}, \sigma, \lambda^{I}, D^{I J}\right) \quad \text { hyper: } \Phi=\left(q^{I}, \psi\right)
$$

Global symmetry:

$$
S O(6) \times S U(2)_{R} \times G_{F}
$$

We can write Lagrangians, e.g.,
$S_{V}=\frac{1}{g_{5}^{2}} \operatorname{Tr} \int d^{5} x\left(\frac{1}{2} F^{\mu \nu} F_{\mu \nu}+i \lambda_{I} \not D \lambda^{I}-D^{\mu} \sigma D_{\mu} \sigma-\lambda_{I}\left[\sigma, \lambda^{I}\right]-\frac{1}{2} D^{I J} D_{I J}\right)$

- Non-renormalizable: $g_{5}^{2} \sim$ mass $^{-1}$ (always effective theories)
- Coupling decreases at large distances:

$$
g_{5} \rightarrow 0 \quad \text { as } E \rightarrow 0
$$

RG flow

Unlike $d \leq 4$, in $d=5$ strongly-coupled SCFT at UV:

4 IR trivial

Example 1: Seiberg theories

Some 5d gauge theories admit UV completions as CFTs [Seiberg]

$U S p(N) S Y M$ with N_{f} hypers $+A S$

- For $N_{f}<8$, gauge theory is the IR description of an SCFT with enhanced $E_{N_{f}+1}$.
- Number of d.o.f. grows to $N^{5 / 2}$

Example 2: Maximal theory

Some 5d theories admit UV completions as 6d theories! [Douglas, Lambert et al.]

Maximal $5 \mathrm{~d} U(N) S Y M$
Size of "emergent direction"

$$
\beta=\frac{g_{5}^{2}}{2 \pi}
$$

grows at large coupling. (Examples with eight supercharges also exist, e.g., Seiberg theory with $N_{f}=8$.)

" 5 d is the best $\mathrm{d} "$

A (5d) Lagrangian method for (4d) non-Lagrangian theories

Then

Partition function invariant under $\mathrm{RG} \Rightarrow$

Match can be seen as:

- Precision test of $5 d$ maximal $S Y M \Leftrightarrow 6 d(2,0)$ conjecture
- Computational tool for non-Lagrangian theories
(Basic idea considered previously in [Fukuda-Kawano-Matsumiya])

II) Partition function on

(In this talk we will take $M_{3}=S_{b}^{3}$ and $\mathcal{C}_{g, n}=\Sigma_{g}$ for simplicity)

Supersymmetric localization

Basic localization argument [Witten, Pestun]

$$
Z_{M_{d}}=\int[D \Phi] e^{-S[\Phi]} \quad \rightarrow \quad Z_{M_{d}}(t)=\int[D \Phi] e^{-(S[\Phi]+t \mathcal{Q} V[\Phi])}
$$

If $\mathcal{Q} V[\Phi]$ positive semidefinite and \mathcal{Q}-invariant, then

$$
\frac{d}{d t} Z_{M_{d}}(t)=0
$$

For $t \rightarrow \infty$ contributions only from BPS locus, $\left\{\Phi_{0} \mid \mathcal{Q} V\left[\Phi_{0}\right]=0\right\}$,

$$
Z_{M_{d}}=\int d \Phi_{0} e^{-S\left[\Phi_{0}\right]} Z^{1-l o o p}\left(\Phi_{0}\right) Z^{i n s t}\left(\Phi_{0}\right) \quad \text { Exact! }
$$

BPS locus depends on M_{d} (e.g., \mathcal{Q} depends on M_{d})

The 5d background

First thing to check is if SUSY can be preserved on $M_{5}=S_{b}^{3} \times \Sigma_{\mathfrak{g}}$.
However, space has no Killing spinors. Problem is Riemann surface:

$$
\left(\partial_{\mu}+\frac{1}{4} \omega_{\mu}\right) \epsilon^{(2 d)} \neq 0
$$

Problem solved by "topological twist." [witten] If global R-symmetry then:

$$
(\partial_{\mu}+\frac{1}{4} \omega_{\mu}+\underbrace{A_{\mu}^{R, \text { back }}}_{-\frac{1}{4} \omega_{\mu}}) \epsilon^{(2 d)}=\partial_{\mu} \epsilon^{(2 d)}=0
$$

Then, take

$$
\zeta^{(5 d)}=\zeta^{(3 d)} \otimes \epsilon_{0}^{(2 d)}
$$

with $\zeta^{(3 d)}$ Killing spinor of S_{b}^{3} and $\epsilon_{0}^{(2 d)}$ constant. [Kawano-Matsumiya]

Other 5-manifolds possible; classification in
[Alday-Genolini-Fluder-Richmond-Sparks]

The approach

The now standard approach to localization is:

- Couple QFT to supergravity and take rigid limit [Festuccia-Seiberg]
- Solve for background
- Compute 1-loop determinants in background

Approach is systematic and powerful, but every background requires calculation from scratch

Our approach will be instead to "glue" together basic building blocks
(Related results on $M_{4} \times S^{1}$ by [Hosseini-Yaakov-Zaffaroni])

Three perspectives

1) Reduction on S^{3} : A-model on $\Sigma_{\mathfrak{g}}$

$$
Z_{S^{3} \times \Sigma_{\mathfrak{g}}}=Z_{A-\text { model }}
$$

2) Reduction on $\Sigma_{\mathfrak{g}}$: Direct sum of 3d theories

$$
Z_{S^{3} \times \Sigma_{\mathfrak{g}}}=\bigoplus_{\mathfrak{m} \in \Lambda_{G}}\left(Z_{S^{3}}\right)^{\mathfrak{m}}
$$

3) Uplift from 4d: Nekrasov partition function

The final answer

By either method, one finds [MC-Jain-willett]

$$
Z_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}(\nu)_{\mathfrak{n}}=\sum_{\hat{u}: \Pi_{a}(\hat{u})=1} \Pi_{i}(\hat{u}, \nu)^{\mathfrak{n}_{\mathfrak{i}}} \mathcal{H}(\hat{u}, \nu)^{\mathfrak{g}-1}
$$

with

$$
\underbrace{\Pi_{i}=e^{2 \pi i \partial_{\nu_{i}} \mathcal{W}}}_{\text {flavor-flux op. }}, \quad \underbrace{\Pi_{a}=e^{2 \pi i \partial_{u_{a}} \mathcal{W}}}_{\text {gauge-flux op. }}, \quad \underbrace{\mathcal{H}=e^{2 \pi i \Omega} \operatorname{det}_{a, b} \partial_{u_{a}} \partial_{u_{b}} \mathcal{W}}_{\text {handle-gluing op. }},
$$

determined by the two functions:

$$
\underbrace{\mathcal{W}}_{\text {Bethe potential }}=\mathcal{W}_{\text {pert }}+\mathcal{W}_{\text {inst }}, \quad \underbrace{\Omega}_{\text {effective dilaton }}=\Omega_{\text {pert }}+\Omega_{\text {inst }}
$$

$\mathcal{W}_{\text {pert }}, \Omega_{\text {pert }}$ computed by a standard 1-loop calculation

Perturbative contribution

Reducing on $\Sigma_{\mathfrak{g}}$, non-zero modes cancel leaving

$$
Z_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}^{\text {pert }}=\sum_{\mathfrak{m} \in \Lambda_{G}} \oint d u\left(Z_{S_{b}^{33}}^{\text {chiral }}(u, \Delta)\right)^{n_{R}-n_{L}}\left(Z_{S_{b}^{3}}^{\text {vector }}(u)\right)^{n_{R}-n_{L}}
$$

where [Kapustin-Willett-Yaakov] [Hama-Hosomishi-Lee] [Jafferis]

$$
\begin{equation*}
Z_{S_{b}^{3}}^{\text {chiral }}(u)=\prod_{j, k \geq 0} \frac{\left(j+\frac{1}{2}\right) b+\left(k+\frac{1}{2}\right) b^{-1}-Q u}{\left(j+\frac{1}{2}\right) b+\left(k+\frac{1}{2}\right) b^{-1}+Q u} \equiv s_{b}(-i Q u) \tag{0.1}
\end{equation*}
$$

and $Z_{S_{b}^{3}}^{\text {chiral }}(u, \Delta)=Z_{S_{b}^{3}}^{\text {chiral }}\left(u+i\left(\Delta-\frac{1}{2}\right)\right), Q \equiv \frac{1}{2}\left(b+b^{-1}\right)$. By 2 d index theorem:

$$
n_{R}-n_{L}=\frac{1}{2 \pi} \int\left(F_{\text {gauge }}+F_{\text {flavor }}+F_{R}\right)=\mathfrak{m}+\mathfrak{n}+(\mathfrak{g}-1)(r-1)
$$

$\mathfrak{m} \in \Lambda_{G}$ is a gauge magnetic flux on $\Sigma_{\mathfrak{g}}$ one must sum over

Collecting terms

$$
Z_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}^{\text {pert }}=\sum_{\mathfrak{m}} \oint d u \Pi_{a}^{\text {pert }}(u, \nu)^{\mathfrak{m}_{a}} \Pi_{i}^{\text {pert }}(u, \nu)^{\mathfrak{n}_{i}} \mathcal{H}^{\text {pert }}(u, \nu)^{\mathfrak{g}}
$$

where $\nu=1-\Delta$ and

$$
\Pi_{i}^{\text {pert }}=e^{2 \pi i \partial_{\nu_{i}} \mathcal{W}^{\text {pert }}}, \quad \Pi_{a}^{\text {pert }}=e^{2 \pi i \partial_{u_{a}} \mathcal{W}^{\text {pert }}}
$$

with

$$
\begin{aligned}
\mathcal{W}^{\text {pert }}(\mu, \nu) & =\sum_{\rho \in R} g_{b}(\rho(u)+\nu)-\sum_{\alpha \in \operatorname{Ad}(G)} g_{b}(\alpha(u)-1) \\
\Omega^{\text {pert }} & =\sum_{\rho \in R}(r-1) l_{b}(\rho(u)+\nu) \\
g_{b}(u) & =\frac{1}{2 \pi i} \int d u \log s_{b}(-i Q u), \quad l_{b}(u)=\frac{1}{2 \pi i} \log s_{b}(-i Q u)
\end{aligned}
$$

Performing sum over \mathfrak{m} and contour integral gives expression above.

Relation to 5d Nekrasov partition function

The full nonperturbative answer is:

$$
\mathcal{W}=\mathcal{W}_{N S}^{(5 d)}, \quad \Omega=\Omega_{N S}^{(5 d)}
$$

where these are read off from the $5 d$ Nekrasov partition function:
5d Ω-background: $\quad \lim _{\epsilon_{2} \rightarrow 0} Z_{\mathbb{R}_{\epsilon_{1}} \times \mathbb{R}_{\epsilon_{2}} \times S^{1}}=e^{\frac{1}{\epsilon_{2}} \mathcal{W}_{N S}^{(5 d)}\left(u, \epsilon_{1}\right)+\Omega_{N S}^{(5 d)}\left(u, \epsilon_{1}\right)+\mathcal{O}\left(\epsilon_{2}\right)}$ and identification $\epsilon_{1}=\frac{1}{2}\left(b-b^{-1}\right)$. To see this we "glue" four copies:

$$
Z_{S^{2} \times S^{2} \times S^{1}}=\prod_{l=1}^{4} Z_{\mathbb{R}_{(1)}^{(l)} \times \mathbb{R}_{\epsilon_{2}^{(l)}}^{(l)} \times S^{1}}
$$

and finally fiber the S^{1} over one of the S^{2}, s to get S_{b}^{3}. (With no fibration gives exact result for $S^{2} \times S^{2} \times S^{1}$)

Summary

The final result of localization is:

$$
Z_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}(\nu)_{\mathfrak{n}}=\sum_{\hat{u}: \Pi_{a}(\hat{u})=1} \Pi_{i}(\hat{u}, \nu)^{\mathfrak{n}_{\mathfrak{i}}} \mathcal{H}(\hat{u}, \nu)^{\mathfrak{g}-1}
$$

Main features:

- Formula is exact; includes all instanton contributions
- Has the form of an A-twisted 2d TQFT (\mathcal{W}, Ω)
- Determined fully by 5 d Nekrasov partition function; $\mathcal{W}=\mathcal{W}_{N S}^{(5 d)}$ and $\Omega=\Omega_{N S}^{(5 d)}$

Next, I discuss applications of this formula
III) Two Applications

Applications

1) Maximal SYM: Superconformal index of 4 d class \mathcal{S}
2) Seiberg theory and holography

I will mostly focus on 2)

1) Maximal $U(N)$ 5d SYM

First, solve Bethe equations

$$
\Pi_{a}(u)=e^{2 \pi i \partial_{u_{a}}\left(\mathcal{W}^{V}(u)+\mathcal{W}_{A d}^{H}\left(u, \nu_{A d}\right)\right)}=1
$$

1) Maximal $U(N)$ 5d SYM

First, solve Bethe equations

$$
\Pi_{a}(u)=e^{2 \pi i \partial_{u_{a}}\left(\mathcal{W}^{V}(u)+\mathcal{W}_{A d}^{H}\left(u, \nu_{A d}\right)\right)}=1
$$

Difficult but simplified for $\nu_{A d}=\frac{i}{2}\left(b-b^{-1}\right)$ (Schur limit) \Rightarrow

$$
Z_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}^{\mathcal{N}=2 \mathrm{SYM}}=\sum_{\hat{u}: \Pi_{a}(\hat{u})=1} \Pi_{i}\left(\hat{u}, \nu_{A d}\right)^{\mathfrak{n}_{i}} \mathcal{H}\left(\hat{u}, \nu_{A d}\right)^{\mathfrak{g}-1}=e^{-\beta E_{C}} \mathcal{I}(p, q)
$$

with

$$
\begin{aligned}
\mathcal{I}(p, q)= & \left(\frac{p^{\frac{1}{12} N\left(N^{2}-1\right)} V(p)}{(p ; p)^{N-1}}\right)^{-\ell_{1}}\left(\frac{q^{\frac{1}{12} N\left(N^{2}-1\right)} V(q)}{(q ; q)^{N-1}}\right)^{-\ell_{2}} \\
& \times \sum_{\lambda \in \Lambda_{c r}^{+}} \operatorname{dim}_{p}\left(R_{\lambda}\right)^{-\ell_{1}} \operatorname{dim}_{q}\left(R_{\lambda}\right)^{-\ell_{2}}
\end{aligned}
$$

1) Maximal $U(N)$ 5d SYM

First, solve Bethe equations

$$
\Pi_{a}(u)=e^{2 \pi i \partial_{u_{a}}\left(\mathcal{W}^{V}(u)+\mathcal{W}_{A d}^{H}\left(u, \nu_{A d}\right)\right)}=1
$$

Difficult but simplified for $\nu_{A d}=\frac{i}{2}\left(b-b^{-1}\right)$ (Schur limit) \Rightarrow

$$
Z_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}^{\mathcal{N}=2 \mathrm{SYM}}=\sum_{\hat{u}: \Pi_{a}(\hat{u})=1} \Pi_{i}\left(\hat{u}, \nu_{A d}\right)^{\mathfrak{n}_{i}} \mathcal{H}\left(\hat{u}, \nu_{A d}\right)^{\mathfrak{g}-1}=e^{-\beta E_{C}} \mathcal{I}(p, q)
$$

with

$$
\begin{aligned}
\mathcal{I}(p, q)= & \left(\frac{p^{\frac{1}{12} N\left(N^{2}-1\right)} V(p)}{(p ; p)^{N-1}}\right)^{-\ell_{1}}\left(\frac{q^{\frac{1}{12} N\left(N^{2}-1\right)} V(q)}{(q ; q)^{N-1}}\right)^{-\ell_{2}} \\
& \times \sum_{\lambda \in \Lambda_{c r}^{+}} \operatorname{dim}_{p}\left(R_{\lambda}\right)^{-\ell_{1}} \operatorname{dim}_{q}\left(R_{\lambda}\right)^{-\ell_{2}}
\end{aligned}
$$

where $\ell_{1}=\mathfrak{g}-1+\mathfrak{n}, \ell_{2}=\mathfrak{g}-1-\mathfrak{n}$, identifications

$$
p=e^{2 \pi b \gamma^{-1}}, \quad q=e^{2 \pi b^{-1} \gamma^{-1}}, \quad \gamma=-\frac{2 \pi Q}{g_{5}{ }^{2}}
$$

$V(p)$ polynomial and $\operatorname{dim}_{p}\left(R_{\lambda}\right)$ the "quantum dimension" of a representation with highest weight λ. Matches [Rastelli et al.][Beem-Gadde]

Comments

- Perfect match with previous results [Rastelli et al.][Beem-Gadde] in the Schur limit
- Index known only for this and other special limits
- In principle, 5 d partition function gives full answer (might be hard to explicitly solve the Bethe equations in general)

2) Seiberg theory and holography

The Seiberg theory has a 5d UV SCFT completion. Compactifying gives rise to a 3 d theory (instead of 4 d):

New SCFTs in 3d

Compactification from 5d provides a map:

$$
\mathcal{T}^{(5 d)}, \Sigma_{\mathfrak{g}}, \mathfrak{n} \quad \Rightarrow \quad \mathcal{T}_{\mathfrak{g}, \mathfrak{n}}^{(3 d)}
$$

Assuming RG flow ends in a nontrivial fixed point:

$$
\text { Infinite family of } 3 d \text { SCFTs labeled by } \mathfrak{g}, \mathfrak{n}
$$

Their partition function is explictily given by

$$
Z_{S^{3}}\left[\mathcal{T}_{\mathfrak{g}, \mathfrak{n}}^{(3 d)}\right]=Z_{S^{3} \times \Sigma_{\mathfrak{g}}}\left[\mathcal{T}^{(5 d)}\right]_{\mathfrak{n}}
$$

How do we know $R G$ flows end in interacting SCFTs?

Holography of RG flows across dimensions

According to AdS/CFT [Maldacena-Nũñez]

Extremal black p-branes in asymptotically locally AdS are flows across dimensions!

Universal RG flow

Idea: Use holography to construct $5 \mathrm{~d} \rightarrow$ 3d RG flows explicitly
Consider 6d $F(4)$ gauged supergravity (unique theory with AdS_{6} vacuum) [Romans]

$$
\text { Bosonic content: } \quad\left\{g_{\mu \nu}, A_{\mu}^{I}, A_{\mu}, B_{\mu \nu}, \phi\right\}
$$

Extremal 2-brane solution [Nũñez et al., Naka]
$d s_{6}^{2}=e^{2 f(r)} d s^{2}\left(\mathbb{R}^{4}\right)+e^{2 g(r)} d s^{2}\left(\Sigma_{\mathfrak{g}>1}\right), \quad d A^{I}=\delta^{I 3} \operatorname{dvol}\left(\Sigma_{\mathfrak{g}}\right), \quad \phi=\phi(r)$.
Indeed interpolates between AdS_{6} and AdS_{4}. But
Is this what we are looking for?

Universal RG flow

Topological twist implemented by A^{I} only (dual to $\left.S U(2)_{R}\right)$. In field theory this means

$$
\mathfrak{n}=0
$$

From sugra solution it follows that [Bobev-MC]

$$
F_{\mathrm{AdS}_{4}}^{\text {sugra }}=-\frac{8}{9}(\mathfrak{g}-1) F_{\mathrm{AdS}_{6}}^{\text {sugra }}
$$

Using AdS/CFT dictionary

$$
F_{S^{3}}^{\mathrm{QFT}}=-\frac{8}{9}(\mathfrak{g}-1) F_{S^{5}}^{\mathrm{QFT}}
$$

Sugra solution can be uplifted to 10d massive IIA with a generic internal $M_{4} \Rightarrow$

Relation is universal

Back to field theory

We can test the holographic prediction for the Seiberg theory:

Then, the Bethe potential is:

$$
\begin{aligned}
\mathcal{W}^{\text {pert }}= & -\sum_{i<j}\left[g_{b}\left(1 \pm\left(u_{i}-u_{j}\right)\right)+g_{b}\left(1 \pm\left(u_{i}+u_{j}\right)\right)\right]-\sum_{i} g_{b}\left(1+2 u_{i}\right) \\
& +\sum_{i<j}\left[g_{b}\left(\nu_{A S} \pm\left(u_{i}-u_{j}\right)\right)+g_{b}\left(\nu_{A S} \pm\left(u_{i}+u_{j}\right)\right)\right] \\
& +\sum_{I=1}^{N_{f}} \sum_{i} g_{b}\left(\nu_{I}+u_{i}\right)
\end{aligned}
$$

Perturbative accuracy sufficient at large N

Continuum method

Need to solve Bethe equations:

$$
e^{2 \pi i \partial_{u_{i}} \mathcal{W}^{\text {pert }}}=1
$$

At large N :

Continuum method [Herzog-Klebanov-Pufu-Tesileanu]

$$
\begin{equation*}
u_{i} \rightarrow i N^{\alpha} x+y(x), \quad \sum_{i} \rightarrow N \int d x \rho(x) \tag{0.2}
\end{equation*}
$$

In our case $y(x)=0$ and

$$
\begin{aligned}
\mathcal{W}^{\text {pert }} \approx & \frac{\left(8-N_{f}\right)}{6} Q^{2} N^{1+3 \alpha} \int d x \rho(x)|x|^{3} \\
& -\frac{1}{2} Q^{2}\left(1-\nu_{A S}^{2}\right) N^{2+\alpha} \int_{y<x} d x d y \rho(x) \rho(y)(|x+y|+|x-y|)
\end{aligned}
$$

Balancing of two terms requires

$$
\alpha=\frac{1}{2}
$$

Extremizing with respect to density ρ (and $\nu_{A S}$), and evaluating free energy $F \equiv-\log |Z|$ on-shell (and $b=1$):

$$
F_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}} \simeq-\frac{8}{9}(\mathfrak{g}-1) \underbrace{\left(-\frac{9 \sqrt{2} \pi N^{5 / 2}}{5 \sqrt{8-N_{f}}}\right)}_{F_{S^{5}}[\text { Jafferis-Pufu }]}
$$

Exactly reproduces holographic prediction

More general theories

5 d quiver gauge theories for $S p(N)$ and $U(N)$ nodes with gravity duals [Bergman-Rodriguez]

In all cases explicit computation yields (always $\mathfrak{n}=0$)

$$
F_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}} \simeq-\frac{8}{9}(\mathfrak{g}-1) F_{S^{5}}
$$

- Universal prediction satisfied for all quivers
- Strong evidence for existence of 3d SCFTs
- Free energy scales as $N^{5 / 2}$

Generalizations

For nonzero \mathfrak{n} field theory calculation yields

$$
F_{S_{b}^{3} \times \Sigma_{\mathfrak{g}}}=\frac{8}{9}(\mathfrak{g}-1)\left(\frac{\sqrt{2}\left|\hat{\mathfrak{n}}^{2}-\kappa^{2}\right|^{3 / 2}\left(\sqrt{\kappa^{2}+8 \hat{\mathfrak{n}}^{2}}-\kappa\right)}{\kappa\left|4 \hat{\mathfrak{n}}^{2}-\kappa^{2}+\kappa \sqrt{\kappa^{2}+8 \hat{\mathfrak{n}}^{2}}\right|^{3 / 2}}\right) F_{S^{5}}
$$

where $\kappa=0, \pm 1$. Holographic solutions recently constructed [Bah-Passias-Weck] [Hosseini, Hristov, Passias, Zaffaroni] with perfect agreement.

Other applications for case $\Sigma_{\mathfrak{g}} \times \Sigma_{\mathfrak{g}^{\prime}} \times S^{1}$ include computation of BH entropy in AdS_{6} [Hosseini-Yaakov-Zaffaroni] [Fluder-Hosseini-Uhlemann]

To summarize:

- Large class of 3d SCFTs: $\mathcal{T}_{\mathfrak{g}, \mathfrak{n}}^{(3 d)}$
- Exact partition functions calculable as 2d TQFT
- Holographic duals confirm flows (at least at large N)

Summary

Argued that 5 d is a fruitful vantage point:

- Can access theories in $d=6$ as well as $d<5$
- Explicit computations are possible by localization
- Computed the exact partition function on $S_{b}^{3} \times \Sigma_{\mathfrak{g}}$
- Precision tests of holography and field theory

Outlook

- General expression for 4 d superconformal index of class \mathcal{S}
- Include punctures on $\Sigma_{\mathfrak{g}}$. More general M_{3}.
- M_{4} partition function of class \mathcal{S} ?
- Purely three-dimensional description of 3d SCFTs?
- 3d/2d correspondence?

Thank you

