5d partition functions with A twist

Marcos Crichigno University of Amsterdam

1808.06744

with D. Jain (Saha) & B. Willett (Santa Barbara)

April 2, IPMU

Landscape of SCFTs

String theory predicts the existence of interacting local SCFTs in d = 5, 6.

Arise from worldvolume of D- and M-branes. $AdS/CFT \Rightarrow conformal$

Most famous example: maximal 6d (2,0) theory

Still remain rather mysterious. Known features include

- ADE classification
- Global symmetry: $SO(6) \times SO(5)_R$
- 't Hooft anomalies
- AdS₇ gravity dual

Compactification: 6d \rightarrow 4d [Gaiotto]

Our limited knowledge has not stopped us from exploring these theories

Vast space of new 4d $\mathcal{N} = 2$ and $\mathcal{N} = 1$ SCFTs

The power of high dimensions

Number of interesting results and insights:

- Discovery of new theories in 4d [Gaiotto]
- Most theories are non-Lagrangian
- New dualities: 4d/2d [AGT] and 3d/3d [Dimofte-Gaiotto-Gukov,..]
- Interesting interplay with holography [Gaiotto-Maldacena, BBBW]

Due to lack of Lagrangians results are rather indirect.

What about 5d?

I) 5d $\mathcal{N} = 1$ gauge theories

II) Partition function on $M_3 \times \Sigma_{\mathfrak{g}}$

III) Two applications

I) 5d $\mathcal{N} = 1$ gauge theories

5d $\mathcal{N} = 1$ gauge theories (8 SUSYs)

Multiplets of 5d $\mathcal{N} = 1$ SUSY:

vector:
$$V = (A_{\mu}, \sigma, \lambda^{I}, D^{IJ})$$
 hyper: $\Phi = (q^{I}, \psi)$

Global symmetry:

 $SO(6) \times SU(2)_R \times G_F$

We can write Lagrangians, e.g.,

$$S_V = \frac{1}{g_5^2} \operatorname{Tr} \int d^5 x \left(\frac{1}{2} F^{\mu\nu} F_{\mu\nu} + i\lambda_I \not D \lambda^I - D^\mu \sigma D_\mu \sigma - \lambda_I [\sigma, \lambda^I] - \frac{1}{2} D^{IJ} D_{IJ} \right)$$

- Non-renormalizable: $g_5^2 \sim mass^{-1}$ (always effective theories)
- Coupling decreases at large distances:

$$g_5 \to 0$$
 as $E \to 0$

RG flow

Unlike $d \leq 4$, in d = 5 strongly-coupled SCFT at UV:

Example 1: Seiberg theories

Some 5d gauge theories admit UV completions as CFTs [Seiberg]

USp(N) SYM with N_f hypers+AS

- For $N_f < 8$, gauge theory is the IR description of an SCFT with enhanced E_{N_f+1} .
- Number of d.o.f. grows to $N^{5/2}$

Example 2: Maximal theory

Some 5d theories admit UV completions as 6d theories! [Douglas, Lambert et al.]

Maximal 5d U(N) SYM

Size of "emergent direction"

$$\beta = \frac{g_5^2}{2\pi}$$

0

grows at large coupling. (Examples with eight supercharges also exist, e.g., Seiberg theory with $N_f = 8.$)

"5d is the best d"

A (5d) Lagrangian method for (4d) non-Lagrangian theories

Then

Partition function invariant under RG \Rightarrow

Match can be seen as:

- Precision test of 5d maximal $SYM \Leftrightarrow 6d (2,0)$ conjecture
- Computational tool for non-Lagrangian theories

(Basic idea considered previously in [Fukuda-Kawano-Matsumiya])

(In this talk we will take $M_3 = S_b^3$ and $\mathcal{C}_{g,n} = \Sigma_g$ for simplicity)

Supersymmetric localization

Basic localization argument [Witten, Pestun]

$$Z_{M_d} = \int [D\Phi] e^{-S[\Phi]} \quad \to \quad Z_{M_d}(t) = \int [D\Phi] e^{-(S[\Phi] + t\mathcal{Q}V[\Phi])}$$

If $\mathcal{Q}V[\Phi]$ positive semidefinite and \mathcal{Q} -invariant, then

$$\frac{d}{dt}Z_{M_d}(t) = 0$$

For $t \to \infty$ contributions only from BPS locus, $\{\Phi_0 \mid \mathcal{Q}V[\Phi_0] = 0\},\$

$$Z_{M_d} = \int d\Phi_0 \, e^{-S[\Phi_0]} \, Z^{1-loop}(\Phi_0) Z^{inst}(\Phi_0) \qquad \text{Exact!}$$

BPS locus depends on M_d (e.g., \mathcal{Q} depends on M_d)

The 5d background

First thing to check is if SUSY can be preserved on $M_5 = S_b^3 \times \Sigma_{\mathfrak{g}}$.

However, space has no Killing spinors. Problem is Riemann surface:

$$(\partial_{\mu} + \frac{1}{4}\omega_{\mu})\epsilon^{(2d)} \neq 0$$

Problem solved by "topological twist." [Witten] If global R-symmetry then:

$$(\partial_{\mu} + \frac{1}{4}\omega_{\mu} + \underbrace{A^{R, back}_{\mu}}_{-\frac{1}{4}\omega_{\mu}})\epsilon^{(2d)} = \partial_{\mu}\epsilon^{(2d)} = 0$$

Then, take

$$\zeta^{(5d)} = \zeta^{(3d)} \otimes \epsilon_0^{(2d)}$$

with $\zeta^{(3d)}$ Killing spinor of S_b^3 and $\epsilon_0^{(2d)}$ constant. [Kawano-Matsumiya]

Other 5-manifolds possible; classification in [Alday-Genolini-Fluder-Richmond-Sparks] The now standard approach to localization is:

- Couple QFT to supergravity and take rigid limit [Festuccia-Seiberg]
- Solve for background
- Compute 1-loop determinants in background

Approach is systematic and powerful, but every background requires calculation from scratch

Our approach will be instead to "glue" together basic building blocks

(Related results on $M_4 \times S^1$ by [Hosseini-Yaakov-Zaffaroni])

Three perspectives

1) Reduction on S^3 : A-model on $\Sigma_{\mathfrak{q}}$

2) Reduction on $\Sigma_{\mathfrak{g}}$: Direct sum of 3d theories

3) Uplift from 4d: Nekrasov partition function

The final answer

By either method, one finds [MC-Jain-Willett]

$$Z_{S^3_b \times \Sigma_{\mathfrak{g}}}(\nu)_{\mathfrak{n}} = \sum_{\hat{u}: \Pi_a(\hat{u})=1} \Pi_i(\hat{u},\nu)^{\mathfrak{n}_i} \mathcal{H}(\hat{u},\nu)^{\mathfrak{g}-1}$$

with

$$\underbrace{\prod_{i} = e^{2\pi i \partial_{\nu_{i}} \mathcal{W}}}_{flavor-flux op.}, \quad \underbrace{\prod_{a} = e^{2\pi i \partial_{u_{a}} \mathcal{W}}}_{gauge-flux op.}, \quad \underbrace{\mathcal{H} = e^{2\pi i \Omega} \det_{a,b} \partial_{u_{a}} \partial_{u_{b}} \mathcal{W}}_{handle-gluing op.},$$

determined by the two functions:

$$\underbrace{\mathcal{W}}_{Bethe \ potential} = \mathcal{W}_{pert} + \mathcal{W}_{inst} , \qquad \underbrace{\Omega}_{effective \ dilaton} = \Omega_{pert} + \Omega_{inst}$$

 $\mathcal{W}_{pert}, \Omega_{pert}$ computed by a standard 1-loop calculation

Perturbative contribution

Reducing on $\Sigma_{\mathfrak{g}}$, non-zero modes cancel leaving

$$Z_{S_b^3 \times \Sigma_{\mathfrak{g}}}^{pert} = \sum_{\mathfrak{m} \in \Lambda_G} \oint du \left(Z_{S_b^3}^{chiral}(u, \Delta) \right)^{n_R - n_L} \left(Z_{S_b^3}^{vector}(u) \right)^{n_R - n_L}$$

where [Kapustin-Willett-Yaakov] [Hama-Hosomishi-Lee] [Jafferis]

$$Z_{S_b^3}^{chiral}(u) = \prod_{j,k\geq 0} \frac{(j+\frac{1}{2})b + (k+\frac{1}{2})b^{-1} - Qu}{(j+\frac{1}{2})b + (k+\frac{1}{2})b^{-1} + Qu} \equiv s_b(-iQu)$$
(0.1)

and $Z_{S_b^3}^{chiral}(u, \Delta) = Z_{S_b^3}^{chiral}(u + i(\Delta - \frac{1}{2})), Q \equiv \frac{1}{2}(b + b^{-1})$. By 2d index theorem:

$$n_R - n_L = \frac{1}{2\pi} \int \left(F_{gauge} + F_{flavor} + F_R \right) = \mathfrak{m} + \mathfrak{n} + (\mathfrak{g} - 1)(r - 1)$$

 $\mathfrak{m} \in \Lambda_G$ is a gauge magnetic flux on $\Sigma_{\mathfrak{g}}$ one must sum over

Collecting terms

$$Z^{pert}_{S^3_b \times \Sigma_{\mathfrak{g}}} = \sum_{\mathfrak{m}} \oint du \, \Pi^{pert}_a(u,\nu)^{\mathfrak{m}_a} \, \Pi^{pert}_i(u,\nu)^{\mathfrak{n}_i} \, \mathcal{H}^{pert}(u,\nu)^{\mathfrak{g}}$$

where $\nu = 1 - \Delta$ and

$$\Pi_i^{pert} = e^{2\pi i \partial_{\nu_i} \mathcal{W}^{pert}} , \quad \Pi_a^{pert} = e^{2\pi i \partial_{u_a} \mathcal{W}^{pert}}$$

with

$$\begin{aligned} \mathcal{W}^{pert}(\mu,\nu) &= \sum_{\rho \in R} g_b(\rho(u) + \nu) - \sum_{\alpha \in Ad(G)} g_b(\alpha(u) - 1) \\ \Omega^{pert} &= \sum_{\rho \in R} (r-1) \, l_b(\rho(u) + \nu) \\ g_b(u) &= \frac{1}{2\pi i} \int du \log s_b(-iQu) \,, \quad l_b(u) = \frac{1}{2\pi i} \log s_b(-iQu) \end{aligned}$$

Performing sum over ${\mathfrak m}$ and contour integral gives expression above.

Relation to 5d Nekrasov partition function

The full nonperturbative answer is:

$$\mathcal{W} = \mathcal{W}_{NS}^{(5d)}, \qquad \Omega = \Omega_{NS}^{(5d)}$$

where these are read off from the 5d Nekrasov partition function:

5d Ω -background: $\lim_{\epsilon_2 \to 0} Z_{\mathbb{R}_{\epsilon_1} \times \mathbb{R}_{\epsilon_2} \times S^1} = e^{\frac{1}{\epsilon_2} \mathcal{W}_{NS}^{(5d)}(u,\epsilon_1) + \Omega_{NS}^{(5d)}(u,\epsilon_1) + \mathcal{O}(\epsilon_2)}$

and identification $\epsilon_1 = \frac{1}{2}(b - b^{-1})$. To see this we "glue" four copies:

and finally fiber the S^1 over one of the S^2 's to get S_b^3 . (With no fibration gives exact result for $S^2 \times S^2 \times S^1$)

Summary

The final result of localization is:

$$Z_{S^3_b \times \Sigma_{\mathfrak{g}}}(\nu)_{\mathfrak{n}} = \sum_{\hat{u}: \ \Pi_a(\hat{u})=1} \Pi_i(\hat{u},\nu)^{\mathfrak{n}_i} \mathcal{H}(\hat{u},\nu)^{\mathfrak{g}-1}$$

Main features:

- Formula is exact; includes all instanton contributions
- Has the form of an A-twisted 2d TQFT (\mathcal{W}, Ω)
- Determined fully by 5d Nekrasov partition function; $\mathcal{W} = \mathcal{W}_{NS}^{(5d)}$ and $\Omega = \Omega_{NS}^{(5d)}$

Next, I discuss applications of this formula

III) Two Applications

1) Maximal SYM: Superconformal index of 4d class ${\cal S}$

2) Seiberg theory and holography

I will mostly focus on 2)

1) Maximal U(N) 5d SYM

First, solve Bethe equations

$$\Pi_a(u) = e^{2\pi i \partial_{u_a}(\mathcal{W}^V(u) + \mathcal{W}^H_{Ad}(u, \nu_{Ad}))} = 1$$

Difficult but simplified for $\nu_{Ad} = \frac{i}{2}(b - b^{-1})$ (Schur limit) \Rightarrow

$$Z_{S_b^3 \times \Sigma_{\mathfrak{g}}}^{\mathcal{N}=2 \text{ SYM}} = \sum_{\hat{u}: \Pi_a(\hat{u})=1} \Pi_i(\hat{u}, \nu_{Ad})^{\mathfrak{n}_i} \mathcal{H}(\hat{u}, \nu_{Ad})^{\mathfrak{g}-1} = e^{-\beta E_C} \mathcal{I}(p, q)$$

with

$$\mathcal{I}(p,q) = \left(\frac{p^{\frac{1}{12}N(N^2-1)}V(p)}{(p;p)^{N-1}}\right)^{-\ell_1} \left(\frac{q^{\frac{1}{12}N(N^2-1)}V(q)}{(q;q)^{N-1}}\right)^{-\ell_2} \\ \times \sum_{\lambda \in \Lambda_{cr}^+} \dim_p(R_\lambda)^{-\ell_1} \dim_q(R_\lambda)^{-\ell_2}$$

where $\ell_1 = \mathfrak{g} - 1 + \mathfrak{n}, \ell_2 = \mathfrak{g} - 1 - \mathfrak{n}$, identifications

$$p = e^{2\pi b\gamma^{-1}}, \qquad q = e^{2\pi b^{-1}\gamma^{-1}}, \quad \gamma = -\frac{2\pi Q}{g_5^2}$$

V(p) polynomial and $\dim_p(R_{\lambda})$ the "quantum dimension" of a representation with highest weight λ . Matches [Rastelli et al.][Beem-Gadde]

1) Maximal U(N) 5d SYM

First, solve Bethe equations

$$\Pi_a(u) = e^{2\pi i \partial_{u_a}(\mathcal{W}^V(u) + \mathcal{W}^H_{Ad}(u,\nu_{Ad}))} = 1$$

Difficult but simplified for $\nu_{Ad} = \frac{i}{2}(b - b^{-1})$ (Schur limit) \Rightarrow

$$Z_{S_b^3 \times \Sigma_{\mathfrak{g}}}^{\mathcal{N}=2 \text{ SYM}} = \sum_{\hat{u}: \Pi_a(\hat{u})=1} \Pi_i(\hat{u}, \nu_{Ad})^{\mathfrak{n}_i} \mathcal{H}(\hat{u}, \nu_{Ad})^{\mathfrak{g}-1} = e^{-\beta E_C} \mathcal{I}(p, q)$$

with

$$\begin{aligned} \mathcal{I}(p,q) = & \left(\frac{p^{\frac{1}{12}N(N^2-1)}V(p)}{(p;p)^{N-1}}\right)^{-\ell_1} \left(\frac{q^{\frac{1}{12}N(N^2-1)}V(q)}{(q;q)^{N-1}}\right)^{-\ell_2} \\ & \times \sum_{\lambda \in \Lambda_{cr}^+} \dim_p(R_\lambda)^{-\ell_1} \dim_q(R_\lambda)^{-\ell_2} \end{aligned}$$

where $\ell_1 = \mathfrak{g} - 1 + \mathfrak{n}$, $\ell_2 = \mathfrak{g} - 1 - \mathfrak{n}$, identifications

$$p = e^{2\pi b\gamma^{-1}}, \qquad q = e^{2\pi b^{-1}\gamma^{-1}}, \quad \gamma = -\frac{2\pi Q}{g_5^2}$$

V(p) polynomial and $\dim_p(R_{\lambda})$ the "quantum dimension" of a representation with highest weight λ . Matches [Rastelli et al.][Beem-Gadde]

1) Maximal U(N) 5d SYM

First, solve Bethe equations

$$\Pi_a(u) = e^{2\pi i \partial_{u_a}(\mathcal{W}^V(u) + \mathcal{W}^H_{Ad}(u,\nu_{Ad}))} = 1$$

Difficult but simplified for $\nu_{Ad} = \frac{i}{2}(b - b^{-1})$ (Schur limit) \Rightarrow

$$Z_{S_b^3 \times \Sigma_{\mathfrak{g}}}^{\mathcal{N}=2 \text{ SYM}} = \sum_{\hat{u}: \ \Pi_a(\hat{u})=1} \Pi_i(\hat{u}, \nu_{Ad})^{\mathfrak{n}_i} \mathcal{H}(\hat{u}, \nu_{Ad})^{\mathfrak{g}-1} = e^{-\beta E_C} \mathcal{I}(p, q)$$

with

$$\mathcal{I}(p,q) = \left(\frac{p^{\frac{1}{12}N(N^2-1)}V(p)}{(p;p)^{N-1}}\right)^{-\ell_1} \left(\frac{q^{\frac{1}{12}N(N^2-1)}V(q)}{(q;q)^{N-1}}\right)^{-\ell_2} \\ \times \sum_{\lambda \in \Lambda_{cr}^+} \dim_p(R_\lambda)^{-\ell_1} \dim_q(R_\lambda)^{-\ell_2}$$

where $\ell_1 = \mathfrak{g} - 1 + \mathfrak{n}$, $\ell_2 = \mathfrak{g} - 1 - \mathfrak{n}$, identifications

$$p = e^{2\pi b\gamma^{-1}}, \qquad q = e^{2\pi b^{-1}\gamma^{-1}}, \quad \gamma = -\frac{2\pi Q}{g_5^2}$$

V(p) polynomial and $\dim_p(R_{\lambda})$ the "quantum dimension" of a representation with highest weight λ . Matches [Rastelli et al.][Beem-Gadde]

- Perfect match with previous results [Rastelli et al.][Beem-Gadde] in the Schur limit
- Index known only for this and other special limits
- In principle, 5d partition function gives full answer (might be hard to explicitly solve the Bethe equations in general)

2) Seiberg theory and holography

The Seiberg theory has a 5d UV SCFT completion. Compactifying gives rise to a 3d theory (instead of 4d):

New SCFTs in 3d

Compactification from 5d provides a map:

$$\mathcal{T}^{(5d)}, \Sigma_{\mathfrak{g}}, \mathfrak{n} \qquad \Rightarrow \qquad \mathcal{T}^{(3d)}_{\mathfrak{g}, \mathfrak{n}}$$

Assuming RG flow ends in a nontrivial fixed point:

Infinite family of 3d SCFTs labeled by $\mathfrak{g}, \mathfrak{n}$

Their partition function is explicitly given by

$$Z_{S^3}[\mathcal{T}_{\mathfrak{g},\mathfrak{n}}^{(3d)}] = Z_{S^3 \times \Sigma_{\mathfrak{g}}}[\mathcal{T}^{(5d)}]_{\mathfrak{n}}$$

How do we know RG flows end in interacting SCFTs?

Holography of RG flows across dimensions

According to AdS/CFT [Maldacena-Núñez]

Extremal black p-branes in asymptotically locally AdS are flows across dimensions!

Universal RG flow

Idea: Use holography to construct 5d \rightarrow 3d RG flows explicitly

Consider 6d F(4) gauged supergravity (unique theory with AdS₆ vacuum) [Romans]

Bosonic content:
$$\{g_{\mu\nu}, A^I_{\mu}, A_{\mu}, B_{\mu\nu}, \phi\}$$

Extremal 2-brane solution [Núñez et al., Naka]

$$ds_6^2 = e^{2f(r)} ds^2(\mathbb{R}^4) + e^{2g(r)} ds^2(\Sigma_{\mathfrak{g}>1}), \quad dA^I = \delta^{I3} \operatorname{dvol}(\Sigma_{\mathfrak{g}}), \quad \phi = \phi(r) \,.$$

Indeed interpolates between AdS_6 and AdS_4 . But

Is this what we are looking for?

Universal RG flow

Topological twist implemented by A^{I} only (dual to $SU(2)_{R}$). In field theory this means

 $\mathfrak{n} = 0$

From sugra solution it follows that [Bobev-MC]

$$F_{\text{AdS}_4}^{sugra} = -\frac{8}{9}(\mathfrak{g}-1)F_{\text{AdS}_6}^{sugra}$$

Using AdS/CFT dictionary

$$F_{S^3}^{\rm QFT} = -\frac{8}{9}(\mathfrak{g}-1)F_{S^5}^{\rm QFT}$$

Sugra solution can be uplifted to 10d massive IIA with a generic internal $M_4 \Rightarrow$

Relation is universal

Back to field theory

We can test the holographic prediction for the Seiberg theory:

Then, the Bethe potential is:

$$\mathcal{W}^{pert} = -\sum_{i < j} \left[g_b (1 \pm (u_i - u_j)) + g_b (1 \pm (u_i + u_j)) \right] - \sum_i g_b (1 + 2u_i) + \sum_{i < j} \left[g_b (\nu_{AS} \pm (u_i - u_j)) + g_b (\nu_{AS} \pm (u_i + u_j)) \right] + \sum_{I=1}^{N_f} \sum_i g_b (\nu_I + u_i)$$

Perturbative accuracy sufficient at large N

Continuum method

Need to solve Bethe equations:

$$e^{2\pi i \partial_{u_i} \mathcal{W}^{pert}} = 1$$

At large N:

Continuum method [Herzog-Klebanov-Pufu-Tesileanu]

$$u_i \to i N^{\alpha} x + y(x), \qquad \sum_i \to N \int dx \,\rho(x), \qquad (0.2)$$

r

In our case y(x) = 0 and

$$\mathcal{W}^{pert} \approx \frac{(8 - N_f)}{6} Q^2 N^{1+3\alpha} \int dx \,\rho(x) \,|x|^3 \\ - \frac{1}{2} Q^2 \left(1 - \nu_{AS}^2\right) N^{2+\alpha} \int_{y < x} dx \,dy \,\rho(x)\rho(y) \left(|x + y| + |x - y|\right)$$

Balancing of two terms requires

$$\alpha = \frac{1}{2}$$

Extremizing with respect to density ρ (and ν_{AS}), and evaluating free energy $F \equiv -\log |Z|$ on-shell (and b = 1):

$$F_{S_b^3 \times \Sigma_{\mathfrak{g}}} \simeq -\frac{8}{9} (\mathfrak{g} - 1) \underbrace{\left(-\frac{9\sqrt{2}\pi N^{5/2}}{5\sqrt{8 - N_f}}\right)}_{F_{\varsigma 5} \text{ [Jafferis-Pufu]}}$$

Exactly reproduces holographic prediction

More general theories

5d quiver gauge theories for Sp(N) and U(N) nodes with gravity duals [Bergman-Rodriguez]

In all cases explicit computation yields (always $\mathfrak{n} = 0$)

$$F_{S_b^3 \times \Sigma_{\mathfrak{g}}} \simeq -\frac{8}{9} (\mathfrak{g} - 1) F_{S^5}$$

- Universal prediction satisfied for all quivers
- Strong evidence for existence of 3d SCFTs
- Free energy scales as $N^{5/2}$

Generalizations

For nonzero \mathfrak{n} field theory calculation yields

$$F_{S_b^3 \times \Sigma_{\mathfrak{g}}} = \frac{8}{9} (\mathfrak{g} - 1) \left(\frac{\sqrt{2} \left| \hat{\mathfrak{n}}^2 - \kappa^2 \right|^{3/2} \left(\sqrt{\kappa^2 + 8\hat{\mathfrak{n}}^2} - \kappa \right)}{\kappa \left| 4\hat{\mathfrak{n}}^2 - \kappa^2 + \kappa \sqrt{\kappa^2 + 8\hat{\mathfrak{n}}^2} \right|^{3/2}} \right) F_{S^5}$$

where $\kappa = 0, \pm 1$. Holographic solutions recently constructed [Bah-Passias-Weck] [Hosseini, Hristov, Passias, Zaffaroni] with perfect agreement.

Other applications for case $\Sigma_{\mathfrak{g}} \times \Sigma_{\mathfrak{g}'} \times S^1$ include computation of BH entropy in AdS₆ [Hosseini-Yaakov-Zaffaroni] [Fluder-Hosseini-Uhlemann]

To summarize:

- Large class of 3d SCFTs: $\mathcal{T}_{\mathfrak{g},\mathfrak{n}}^{(3d)}$
- Exact partition functions calculable as 2d TQFT
- Holographic duals confirm flows (at least at large N)

Summary

Argued that 5d is a fruitful vantage point:

- Can access theories in d = 6 as well as d < 5
- Explicit computations are possible by localization
- Computed the exact partition function on $S_b^3 \times \Sigma_{\mathfrak{g}}$
- Precision tests of holography and field theory

- \bullet General expression for 4d superconformal index of class ${\cal S}$
- Include punctures on $\Sigma_{\mathfrak{g}}$. More general M_3 .
- M_4 partition function of class S?
- Purely three-dimensional description of 3d SCFTs?
- 3d/2d correspondence?

Thank you