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HIGGS POTENTIAL WE ONLY
KNOW THE MASS

Standard
EWSB

. Nonstandard Potentials
~Occur in many scenarios
w/ new EWSB source

e.g 2HDM, induced EWSB
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TRIPLE HIGGS PROCESS

Papaefstathiou and Sakural
See also Chien etal.
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UNITARITY VIOLATION

The Standard Model

s a precise deck of cards,

modifications (due to

hisher dimensional operators)

ead to problems at high
energies, In particular

Unitarity violation
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CLASSIC EXAMPLE
SCATTERING ZL ZL & WL WL

S —————————

M = e

Energy? + .. M = -c Energy? + ..

Higgs exchange cancels high energy srowth |

are S
m

" Its couplings

M-like, matrix element 1s Unita

ry T

4 = | TeV (Lee, Quigg, Thacker)
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GENERAL HIGGS POTENTIAL

1
V = §mih2 + Mnnh® + Annan bt + Aunhanh® + -

Higgs Effective Field Theory (HEFT) parameterizes
most general Higgs couplings

| Phenomenological and agnostic about origin of Higgs boson
!

- Not SU(2) x U(l) invariant, but can be lifted to EWV gauge |
invariant theory via
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STANDARD MODEL EFT
(SMEFT)

Nonanalytic nature of HEFT around v = 0O reflects a nonlocal
EFT for Higgs doublet in ultraviolet

SMEFT Instead looks at the most general EVV gauge invariant
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NONSTANDARD HIGGS TRILINEAR
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T RILINEAR UNITARITY
VIOLATION

Modifying trilinear from SM value automatically leads to Unitarity
violation at high energies

Example:

w w VAWANWAR - WAWAWA]

Cancellation to get

gMM @‘é §W‘4 M ~ |/Energy?
requires SM

trilinear value!
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Unitarity constraints from this amplitude requires
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ONE PARTICLE EXAMPLE

— " Optimal bound i1s when k = n/2
n!
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070l
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HEFT TRILINEAR

(ALSO SEE FALKOWSKI, RATTAZZI)
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Theorem says
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HEFT TRILINEAR

(ALSO SEE FALKOWSKI, RATTAZZI)

2v 2v
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) 4y™

Unitarity violating scale for
ZL hm/Z — ZL hm/Z
s ~> leV form ~ [0-15

EUnitarity

(TeV)

[ Goldstone Fquivalence
Theorem says
Goldstone scattering
gives high energy
longitudinal W.Z
scattering

:ﬂ

Sky =1072,1071
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SMEFT VS HEFT

In two descriptions, they differ wildly at high multiplicity
N the interactions

SMEFT |HI HEFT h3
cuts off at 6-pt interactions has Infinite tower of Interactions
(analytic In H) (non-analytic in H)

—<ﬂ

[ .

1Thus, these higher order terms are model dependent
and are due to assumptions about Higgs potential
modifications (e.g. existence of h*, h°, h® corrections)

L J
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o0r These couplings only

50 | depend on trilinear

10!l modifications and
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(Te\/) bounds (15 TeV for
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In SMEFT with

correlated trilinear
03 to hexilinear couplings

10f—

bound does not get
better until much larger
03 (w/o large
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SMEFT VS HEFT SUMMARY

Effective Theory SMEFT HEFT

Parameters are closer to
extracted Higgs
couplings

Better High Energy

Advant
i Behavior

Breaks down at a
low energy scale

unless couplings are
tuned towards SMEFT

Larger correlations
Disadvantages assumed amongst
Higgs modifications




SMEFT VS HEFT SUMMARY

Effective Theory SMEFT HEFT

Parameters are closer to
extracted Higgs
couplings

Better High Energy

Advant
i Behavior

Breaks down at a
low energy scale

unless couplings are
tuned towards SMEFT

Larger correlations
Disadvantages assumed amongst
Higgs modifications

O( ) deviation In trilinear suggests new physics must appear below 5
TeV for generic Higgs couplings, | 3 TeV assuming UV structure
(Aside: trilinear interactions from derivatives, have even lower
Unitarity bounds)
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S0 far, we have been completely model independent
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R POWER COUNTING

Our scenario has large modifications for the Higgs
potential, but not In non-derivative couplings

M4 < H
RO R
g2 M "M

Non-Nambu-Goldstone SILH power counting would realize
for strong coupling g« >> |

I —— - _ = = = — e =

| Generlc Scalmg for a U\/ completlon vv|th one mass scale M

13{ ~and one couplmg Strength g

— e —— ——— —— = == = —— — —_— = == —— —_ — - —

|
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SCENARIOS REALIZING
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MODEL-INDPT BOUN

In these scenarios the new physics ca

appear at M =13.4 TeV/03'/? and fitting the -
requires g« = /

Model isﬁ—cognsistent with conkstaints nﬁote

rilinear

However, Higgs mass and quartic have to b

26

e tuned
since they should be of order M and g:? respectively!
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GENERIC HIGGS BOUND

Q. 3 _YS 3y 4 QY ° 0%
X _(\/UQ—I_QY_U) L 2v° | 4v7 209 7o

For "generic" Higgs couplings, we see that g«/M ~ |/v,
leading to g+ = M/v = 20 (M/5 TeV)

Strong c.c—JuFSIing s larger than noerav an
| f ~M/gx = v, so all Higgs coupling deviations
' should be order one, not |0-20%!

27



POWER COUNTING LESSON

[t Is possible to push the new physics to the
model-independent Unitarity bound, but not the
generic bound
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COLLIDER PROBES Henning etal.1812.09299

Some work towards observing Unitarity violating processes

- vl

-10}

Constraints from pp = fj £ v/*v hat HL-LHC

-

______________________________________________

_______________________________________________

_18

10

Searching for Unitarity violating
process has similar sensitivity as
double Higgs production

But Higgs wasn't discovered by
vector boson scattering, so
need to continue to explore

,  Mmodel dependent signals



CONCLUSIONS



CONCLUSIONS

r n
* Nonstandard EWSB Is possible and measuring trilinear

S a major goal of high luminosity LHC and future
colliders

30



CONCLUSIONS

 Nonstandard EWSB Is possible and measuring trilinear
S a major goal of high luminosity LHC and future

colliders

» Trilinear modifications lead to Unitarity violation at
high energies (~ 5 - 13 TeV for 03 ~ | depending on

assumptions)

30



CONCLUSIONS

 Nonstandard EWSB Is possible and measuring trilinear
S a major goal of high luminosity LHC and future

colliders

» Trilinear modifications lead to Unitarity violation at
high energies (~ 5 - 13 TeV for 03 ~ | depending on

assumptions)

» Possible to push new physics to |3 TeV and have O( )
trilinear, but natural models will have it much lower

30
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Figure 1: Parameter space for the cubic Higgs self-coupling deformation Aj relative to the
SM value. The allowed region depends on the value ¢y = £ay/as, which encodes effects of
dimension-8 SMEFT operators in the Higgs potential. The gray area is excluded by stability
considerations, as the potential contains a deeper minimum that the EW vacuum at (HTH) =
v?/2. Left: the purple areas are excluded for ay = 1 and ay = 0.01 under different hypotheses
about the parameter £ = v?/f2, which characterizes the size of the corrections to the single
Higgs boson couplings to matter. Right: the blue areas are excluded for ay = 1 and £ = 0.1
under different hypotheses about the coupling strength g, of the BSM theory underlying the
SM.
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