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Recent developments in AdS6/CFT5

Outline

– AdS6/CFT5 dualities in Type IIB

– Matching “stringy” operators

– Sphere partition functions

– Counting black hole microstates
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AdS6/CFT5 dualities in Type IIB



Why 5d SCFTs?

Intrinsic interest:

– mathematical consistency allows SCFTs for d ≤ 6 [Nahm ’78],
but conventional Lagrangian constructions fail for d > 4

– string theory evidence that SCFTs in d = 5, 6 do exist

More pragmatically: unified perspective on lower-dim. QFT

– new QFTs in d ≤ 4 from compactification of
higher-dimensional ones (4d class S, 3d class F)

– new dualities and natural explanations for known dualities
(S-duality, AGT, Argyres-Seiberg duality)
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5d SCFTs from asymptotically safe gauge theories

Gauge theories in d > 4 perturbatively non-renormalizable (∼ 4d
GR). Naively make sense only as effective low-energy theories.

But they may make sense non-perturbatively, and flow to
strongly-coupled UV fixed point ∼ asymptotic safety.

– [Seiberg ’96]: SU(2) N=1 gauge theory with Nf ≤ 7 may flow
to strongly-coupled UV fixed point → asymptotically safe

O8 + Nf D8

D4D4
(i) convex prepotential on Coulomb Branch

(ii) construction in Type I’ string theory

Gauge theories with (i) classified in [Intriligator,Morrison,Seiberg].
Even more theories realized by (p, q) 5-brane webs in Type IIB. . .
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5-brane webs in Type IIB [Aharony,Hanany,Kol ’97]

5-brane web: planar arrangement of (p, q) 5-branes at angles
fixed by (p, q), junctions w/ conserved charges

free massive hypermultiplet free massless hypermultiplet

D5= (1, 0)

NS5= (0, 1)

(1, 1)

D5

NS5

(1, 1)

SU(2) Coulomb branch

finite gauge coupling
UV fixed point SCFT

0 1 2 3 4 5 6 7 8 9

D5 ××××××
NS5 ××××× × 5

6

Length scales in brane web ↔ mass parameters in field theory.
UV fixed point: all lengths → 0, intersection at a point.
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5d SCFTs from 5-brane junctions

General picture: any planar 5-brane junction realizes a 5d SCFT
on the intersection point

(p1, q1)

(p2, q2)

(p3, q3)

∑
pi =

∑
qi = 0

pi, qi ∈ Z

Characterized entirely by external 5-brane charges. No standard
Lagrangian. May or may not have gauge theory deformations.
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5-brane junctions with 7-branes [DeWolfe,Hanany,Iqbal,Katz ’99]

More general theories realized by 5-junctions with 7-branes:

(p1, q1)

(p2, q2)

(p3, q3)

– 5-branes can terminate on 7-branes
without changing the theory

– multiple 5-branes may end on same

7-brane → s-rule constraints
[Benini,Benvenuti,Tachikawa]

– related to unconstrained junction
by Higgs-branch flow

Additional data for 5-brane junctions w/ 7-branes: partition of
like-charged 5-branes into subgroups ending on same 7-brane
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Holographic duals for 5d SCFTs

Brane webs realize Coulomb and Higgs branches, RG flows, . . .
geometrically. AdS/CFT to access superconformal fixed points?

Needs AdS6 solutions in Type IIB supergravity:

– Unique superconformal algebra F (4), 8Q supercharges.
No maximally supersymmetric solutions (unlike d 6= 5).

– Fully localized intersections, not a standard near-horizon limit.

BPS equations studied by [Apruzzi, Fazzi, Passias, Rosa, Tomasiello ’14;

Kim, Kim, Suh ’15; Kim, Kim ’16].
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Symmetries and ansatz [D’Hoker,Gutperle,Karch,CFU arXiv:1606.01254]

AdS6 + 16 susies → F(4)AdS6 + 16 susies → F(4) ⊃ bosonic SO(2,5)⊕SO(3)

AdS6 S2

General ansatz: AdS6 and S2

warped over Riemann surface Σ

×

Σ
∂Σ

M = (AdS6 × S2)×w Σ

ds2 = f6(w, w̄)2ds2
AdS6

+ f2(w, w̄)2ds2
S2 + 4ρ(w, w̄)2|dw|2

C(4) = 0 B2 + iCRR
(2) = C(w, w̄)volS2 τ = τ(w, w̄)
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General local solution [D’Hoker,Gutperle,Karch,CFU arXiv:1606.01254]

BPS eq. → coupled non-linear PDEs on Σ. General local solution
parametrized by two locally holomorphic functions on Σ:

×

Σ
∂Σ

f 2
6 f 2

2

ρ2

Arbitrary locally holomorphic

A± : Σ→ C

yield metric functions, axio-dilaton,

two-form field and Killing spinors

A±

SU(1, 1) transforming ∂A± induces SL(2,R) on supergravity fields
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General local solution [D’Hoker,Gutperle,Karch,CFU arXiv:1606.01254]

General local solution to BPS eq. parametrized by two locally
holomorphic functions on Σ:

f2
6 =
√

6GT f2
2 =

1

9

√
6G
T 3

ρ2 = κ2

√
T

6G

B =
1 + iτ

1− iτ
=
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

C =
2i

3

(
∂w̄G∂wA+ + ∂wG∂w̄Ā−

3κ2T 2
− Ā− −A+

)
with composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 ∂wB = A+∂wA− −A−∂wA+

G = |A+|2 − |A−|2 + B + B̄ T 2 =

[
1 +R

1−R

]2

= 1 +
2κ2 G

3|∂wG|2
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General local solution [D’Hoker,Gutperle,Karch,CFU arXiv:1606.01254]

General local form of Type IIB solution with geometry AdS6 × S2

warped over Riemann surface and 16 supersymmetries.

Generic choices of A± do not lead to physically regular solutions.

Near-horizon limit of (p, q) 5-brane junctions? Implement global
regularity constraints. . .
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Regularity conditions [D’Hoker,Gutperle,CFU arXiv:1703.08186]

Real geometry with consistent spacetime signature, Im(τ) > 0:

κ2
∣∣
int(Σ)

> 0 G
∣∣
int(Σ)

> 0

→ Σ must have a boundary (∂w∂w̄G = −κ2 by construction)

For 10d geometry w/o boundary, collapse S2 on ∂Σ (AdS6 finite):

κ2
∣∣
∂Σ

= 0 G
∣∣
∂Σ

= 0

Global regularity conditions, to be realized by holomorphic A±.
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Solving the regularity conditions [D’Hoker,Gutperle,CFU arXiv:1703.08186]

Strategy to solve regularity conditions for Σ of arbitrary topology:

Σ

•
•

•
•

s1
s2 . . .

r3r1 r2 . . .

1) regular κ2: electrostatics potential Φ ≡ − ln |∂wA+/∂wA−|
positive charges sn in Σ + mirror charges ∼ zeros of ∂A±
regular differentials need poles r` on ∂Σ

2) G|∂Σ = 0 reduces to one local constraint per pole + one
non-local for each extra boundary; G > 0 in int(Σ) automatic
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Regular solutions on the disc [D’Hoker,Gutperle,CFU arXiv:1703.08186]

Σ =disc/upper half plane: L ≥ 3 poles, L− 2 “charges”

• s1

• s2

• s3

. . . • sL−2

Σ×

× ×

×r2r3

r1rL

..
.

A± = A0
± +

L∑
`=1

Z`
± ln(w − r`)

Z`
+ = σ

L−2∏
n=1

(r` − sn)

L∏
k 6=`

1

r` − rk

A−(w) = −A+(w̄)

L∑
`=1

Z`
+ = 0

Solving remaining regularity conditions leaves 2L− 2 free real
parameter ∼ choice of Z`

+ with
∑
Z`

+ = 0.

S2 collapses to each side of each pole → 3-cycles w/ 3-form flux.
Entire solution near poles matches (p, q) 5-brane w/ q+ ip ∼ Zm

+ .
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5-brane web picture

(p1, q1)

(p2, q2)(p3, q3)

(pL, qL)

.
.
.

Z1
+ ∼ q1 + ip1

Z2
+ ∼ q2 + ip2Z3

+ ∼ q3 + ip3

ZL
+ ∼ qL + ipL

.
.
.

• s1

• s2

• s3

. . . • sL−2

×

× ×

× r2r3

r1rL

..
.

Σ

– external 5-branes explicitly
(p, q) charge conserved

– parametrized by choice of
residues mod charge cons.

– AdS6 + 16 susies = F (4)

– need L ≥ 3, p and q charge

Supergravity solutions for arbitrary fully localized 5-brane junctions:

5-branes ↔ poles, (p, q) charges ↔ residues Z`
+ 3
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AdS6/CFT5 in Type IIB

AdS6/CFT5: Type IIB string theory on warped AdS6 solution ∼= 5d
SCFT realized on associated (p, q) 5-brane junction.

“Large-N”: junctions of large groups of like-charged 5-branes

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

Ni � 1 ∀i

pi, qi ∈ Z, relatively prime

Z`
+ ∼ N`(q` + ip`)

→ classical supergravity w/ continuous Z`
+∼N`(q` + ip`)

Unconstrained junctions: no 7-branes (or one 5-brane per 7-brane)
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Extension to constrained junctions [D’Hoker,Gutperle,CFU 1706.00433]

Supergravity solutions for “constrained” junctions with 7-branes:

(p1, q1)

(p2, q2)

(p3, q3)

– 5-branes can terminate on 7-branes
without changing the theory

(p1, q1)

(p3, q3)

– multiple 5-branes ending on same

7-brane: s-rule constraints

Mass-deform to open up brane web, Hanany-Witten transitions to
move 7-branes w/ multiple 5-branes into the web, take UV limit.

→ Σ = disc with punctures & SL(2,R) monodromy = 7-branes.
Worked out for commuting monodromies, so far.

17



Extension to constrained junctions [D’Hoker,Gutperle,CFU 1706.00433]

Supergravity solutions for “constrained” junctions with 7-branes:

(p1, q1)

(p2, q2)

(p3, q3)

– 5-branes can terminate on 7-branes
without changing the theory

(p1, q1)

(p3, q3)

– multiple 5-branes ending on same

7-brane: s-rule constraints

Mass-deform to open up brane web, Hanany-Witten transitions to
move 7-branes w/ multiple 5-branes into the web, take UV limit.

→ Σ = disc with punctures & SL(2,R) monodromy = 7-branes.
Worked out for commuting monodromies, so far.
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Holographic duals for 5d SCFTs

General warped AdS6 × S2 × Σ solution with 16 supersymmetries
in Type IIB. 3

Physically regular solutions for Σ =disc with single-valued A±.
Identified with unconstrained (p, q) 5-brane junctions. 3

Regular solutions for punctured disc with commuting SL(2,R)
monodromies. Describe constrained 5-brane junctions. 3
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– Matching stringy operators –



Matching stringy operators [Bergman,Rodriguez-Gomez,CFU 1806.07898]

5-brane picture: gauge invariant operators from strings and string
junctions connecting external 5-branes

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

Supergravity: probe string (junctions) ↔ ∆ = O(N) operators

Strategy: identify stringy BPS operators in gauge theory
deformations, extrapolate charges and scaling dim to SCFT
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Matching stringy operators: +N,M theory

M NS5

N D5

SU(N)2×SU(M)2×U(1)

global symmetry

M

N

B(k)

Mi
j

gauge theory deformation:

[N ]
x1

− SU(N)
x2

− · · ·
xM−1

− SU(N)
xM

− [N ]

M i
j = (x(1) · · ·x(M))ij (N, N̄,1,1) ∆ =

3

2
M Q =

1

2
M

B(k) = det(x(k)) ⊂ (1,1,M, M̄) ∆ =
3

2
N Q =

1

2
N

M i
j ∼ F1 between D5, B(k) ⊂ D1 between NS5

20



Matching stringy operators: +N,M theory

M NS5

N D5

SU(N)2×SU(M)2×U(1)

global symmetry

M

N

B(k)

Mi
j

gauge theory deformation:

[N ]
x1

− SU(N)
x2

− · · ·
xM−1

− SU(N)
xM

− [N ]

M i
j = (x(1) · · ·x(M))ij (N, N̄,1,1) ∆ =

3

2
M Q =

1

2
M

B(k) = det(x(k)) ⊂ (1,1,M, M̄) ∆ =
3

2
N Q =

1

2
N

M i
j ∼ F1 between D5, B(k) ⊂ D1 between NS5

20



Matching stringy operators: +N,M theory

M NS5

N D5

SU(N)2×SU(M)2×U(1)

global symmetry

M

N

B(k)

Mi
j

gauge theory deformation:

[N ]
x1

− SU(N)
x2

− · · ·
xM−1

− SU(N)
xM

− [N ]

M i
j = (x(1) · · ·x(M))ij (N, N̄,1,1) ∆ =

3

2
M Q =

1

2
M

B(k) = det(x(k)) ⊂ (1,1,M, M̄) ∆ =
3

2
N Q =

1

2
N

M i
j ∼ F1 between D5, B(k) ⊂ D1 between NS5

20



Matching stringy operators: +N,M theory

M NS5

N D5

SU(N)2×SU(M)2×U(1)

global symmetry

M

N

B(k)

Mi
j

gauge theory deformation:

[N ]
x1

− SU(N)
x2

− · · ·
xM−1

− SU(N)
xM

− [N ]

M i
j = (x(1) · · ·x(M))ij (N, N̄,1,1) ∆ =

3

2
M Q =

1

2
M

B(k) = det(x(k)) ⊂ (1,1,M, M̄) ∆ =
3

2
N Q =

1

2
N

M i
j ∼ F1 between D5, B(k) ⊂ D1 between NS5

20



Matching stringy operators: +N,M theory

Σ

N D5N D5

M NS5

M NS5

F1
D1

Supergravity: 4-pole solution

F1 between D5 poles, D1 between NS5 poles:

∆F1 =
3

2
M ∆D1 =

3

2
N

Solve EOM and are BPS, scaling dim. match field theory 33
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Matching stringy operators: TN theory

TN : N D5, N NS5, N (1, 1) 5-branes [Benini,Benvenuti,Tachikawa ’09]

N

N

N

(a)

– SU(N)3 global symmetry
E6 theory for N = 3

– reduce on S1 to 4d TN ∼ 6d N=(2, 0)

on 3-punctured sphere [Gaiotto ’09]

Gauge theory deformation of 5d TN :

N −SU(N − 1)− . . . −SU(2)− 2
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Matching stringy operators: TN theory

N

N

N

(a)

Q

external 5-branes can be connected with
D1-F1-(1, 1) triple string junction

(N,N,N) of SU(N)3; contains meson in

N −SU(N − 1)− . . . −SU(2)− 2

=⇒ ∆ =
3

2
(N − 1) Q =

1

2
(N − 1)

Triple junction in supergravity:

∆ =
3

2
N Q =

1

2
N

Agrees with TN operator at large N . 33

Σ

D5

NS5

(1, 1)

F1

D1

(1, 1)
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Matching stringy operators

Similar quantitative matches of field theory and supergravity for

N N

(a)
2N

(a)

N

N

M

M

(a)

N

M

M

k

N

(a)

[Kj , 1N−Kj ]

[1N ]

[1N ]

kj

M

M

Predictions for various operators not easily seen in gauge theory,
and for more exotic junctions, e.g. ∆ = 9

2N in large-N E0 theory.
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– Sphere partition functions –



S5 partition functions [Gutperle,Marasinou,Trivella,CFU 1705.01561]

Holographically: FS5 from on-shell action (with zero 5-form) or via
SEE,disc from 8d minimal surface.

N1(p1, q1)

N2(p2, q2)

N3(p3, q3)

– results agree, poles unproblematic

for both computations

– generically non-trivial dependence

of FS5 on all (p, q) charges

Homogeneous rescaling of all (p, q) charges:

Ni → nNi ∀i =⇒ F(S5)→ n4F(S5)

Steeper than n5/2 for USp(N) theory from D4/D8/O8 [Jafferis,Pufu]
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+N,M and TN theories

Supergravity results for TN and +N,M theories:

N

N

N 5d TN theory w/ gauge theory deformation

N − SU(N − 1)× · · · × SU(2)− 2

Fsugra(S5) = − 27

8π2
ζ(3)N4

D5/NS5 intersection: N − SU(N)M−1 −N

Fsugra(S5) = − 189

16π2
ζ(3)N2M2

N

M

N

M
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+N,M and TN in field theory [Fluder, CFU 1806.08374]

Supersymmetric localization in large-N gauge theory: instantons
exponentially suppressed, saddle point approximation exact.

Extrapolate to SCFT assuming higher-dim operators Q-exact.

Remaining challenge: long quivers

Z0 =

∫ ∏
i,j

dλ
(j)
i exp (−F)

Gauge node becomes effectively continuous parameter at large N .
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+N,M and TN in field theory [Fluder, CFU 1806.08374]

Numerical evaluation [Herzog,Klebanov,Pufu,Tesileanu]: Replace saddle

point eq. by set of particles w/ coordinates λ
(j)
i in potential F

⇒ FS5 numerically, N ≤ 50 for TN , N,M ≤ 30 for +N,M
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Confirms N4 and N2M2 scaling predicted from supergravity,
coefficients of leading terms agree to 1o/oo 33
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– Counting AdS6 black hole microstates –



Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

AdS6 × S2 × Σ solution in Type IIB ←→ 5d SCFT encoded in
(Σ,A±) in conformal vacuum on R1,4, S5, . . . , finite T ,. . .

Consistent KK reduction to 6d F(4) sugra based on these general
AdS6 solutions: [Hong,Liu,Mayerson ’18;Malek,Samtleben,Vall Camell ’18]

→ any (bosonic) solution to 6d F(4) supergravity combined with
any choice of (Σ,A±) uplifts to 10d solution of Type IIB
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Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

Magnetically charged AdS6 black holes in 6d F(4) supergravity
with AdS2×Σg1 ×Σg2 , near-horizon limit [Suh ’18].

Analytic near-horizon solution including B2 (missing in [Naka ’02])

ds2 = ds2
AdS2

+ ds2
Σg1

+ ds2
Σg2

φ = const

F 3 ∼ volΣg1
+ volΣg2

B2 ∼ volAdS2

Σgi constant curvature Riemann surfaces of genus gi, g1, g2 > 1.

Uplift to AdS6 black hole solutions in IIB with near-horizon limit
(AdS2 × Σg1 × Σg2)× S2 warped over IIB Riemann surface Σ.
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Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

Family of Type IIB AdS6 black hole solutions for each (regular)
choice (Σ,A±), labeled by (g1, g2). Bekenstein-Hawking entropy:

SBH = −8

9
(1− g1)(1− g2)FS5

FS5 = −4

9
π3

∫
Σ
d2w|∂wG|2

∂wG = (Ā+ −A−)∂wA+ + (A+ − Ā−)∂wA−

Near-horizon solution describes 5d SCFT characterized by (Σ,A±)
compactified on Σg1 × Σg2 × S1 with topological twist.
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Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]

Partition function ZS1×Σg1×Σg2
from localization [Hosseini,Yaakov,

Zaffaroni ’18, Crichigno,Jain,Willett ’18] ∼ 5d top. twisted index.

Large-N prescription of [Hosseini,Yaakov, Zaffaroni ’18]:

ZΣg1×Σg2×S1 =

∞∑
k=0

∑
m,n

∮
C
qkZ

(k-instantons)
int (m, n, a; . . . )

(i) exchange sum over flux on Σg1 with integration and resum

(ii) (pole, flux on Σg2) dominating remaining integral+sum from

exp

(
i
∂W̃(a, n; ∆, t)

∂a`

)
= 1 exp

(
2πi

~
∂F(a)

∂a`

)
= 1

Agrees with holographic prediction for 5d USp(N) theory [Suh ’18]
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Counting black hole microstates [Fluder,Hosseini,CFU 1902.05074]
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M

Supports index computation, KK reductions, AdS6/CFT5 dualities.
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– Summary & Outlook–



Summary

Supergravity solutions for fully localized 5-brane junctions in
Type IIB. Holographic duals for the corresponding 5d SCFTs.

Quantitative tests of proposed AdS6/CFT5 dualities: spectrum
of stringy operators, S5 partition functions, top. twisted indices.

Supports existence of 5d SCFTs and SCFT interpretation of
5-brane junctions.

N4 scaling of # d.o.f. from sphere partition functions, results
consistent with conjectured 5d F-theorem
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Outlook

More quantitative studies of 5d SCFTs: spectrum, correlators,
non-local operators, finite T , . . .

Lessons for d ≤ 4: boundaries and defects, compactification

Further solutions: mutually non-local 7-branes?

Similar story for closely related AdS2×S6 × Σ solutions?
[Corbino,D’Hoker,CFU 1712.04463], [Corbino,D’Hoker,Kaidi,CFU 1812.10206]

Thank you!
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