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Ubiquity of AdS,

e Extremal black holes are important: they have the smallest
possible mass for given charges so they are ground states.

e Spherically symmetric asymptotically flat extremal black holes in
D = 4 have horizon geometry AdS, x S°.

e In fact all extremal black holes include an AdS, factor (a theorem).

e This motivates interest in AdS, quantum gravity.



AdS,/CFT, Holography?

e AdS, 1/CFT, correspondence is confusing for d = 1.

e No finite energy excitations possible in AdS,:
Their backreaction spoil asymptotic AdS, boundary conditions.

e Also many other (related) unpleasantries.

e So AdS,/CFT; holography is not yet well understood.



nAdS./nCFT, Holography.

e Recently developed version AdSs/CFT; holography: duality
between nearly AdS, geometry and nearly CFT;.

e Conformal symmetry is broken spontaneously and explicitly.

e Interesting nCFT;’s realize the symmetry breaking pattern:
SYK,....

e Motivation and outlook: develop SUSY breaking in setting with
precision and detail.



This Talk: The Scales

e NnAdSo/nCFT; holography is not scale invariant.
e So: what physical scale(s) appear does the theory depend on?

e Inspiration: the extremal AdS, geometry (including its matter) is
determined by an Attractor Mechanism.

e Result: the nearextremal AdS, geometry (and matter supporting
it) is determined by a nAttractor Mechanism.
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A Canonical Setting

e 4D N = 2 ungauged SUGRA with ny vector multiplets.

e The black hole parameters are:
Mass M
Charges (p',q;), I =0, ..ny
Asymptotic value of complex scalars zéo 1=1,..ny.

e For extreme black holes the mass M is not independent: it is
minimal (a function of the other parameters).

e Extremal black holes in this setting have been studied extensively.



The Extremal Attractor Mechanism

e A radial flow: the scalars 2 evolve from infinity to the horizon.

e The attractor mechanism: scalar fields at the horizon are
independent of their “initial” value at infinity.

e So the horizon theory is universal: independent of moduli,
including the coupling constants,....

e The attractor mechanism determines the attractor values for
the scalars (as function of black hole charges).

e “Practical” aspect: no need to analyze the black hole solutions.



Preview: nAttractor Mechanism

e We want to determine the scales characterizing the nAdS, region.

e They will depend on the black hole charges (p’, ¢;) and the
moduli z__.

e A nAttractor mechanism: these scales are computed by a
generalization of the extremal attractor mechanism

e “Practical” aspect: no need to analyze nonextremal black hole
solutions.



A Physical Scale: the Specific Heat

e The extremal black hole entropy is a ground state entropy

A 1
S0 = 4G, 4G,

There is no scale, just a large dimensionless number.

e The nearly extreme black hole entropy has small temperature:
1
S = S() + §7TLT

The length L is the symmetry breaking scale.

e It is essentially the specific heat C' = T'0pS.



Near Extreme Black Holes

The “near” of nAdS,/nC F'T appears in two ways:

1. Black holes only nearly extremal. So scalars at the horizon
depart from their extremal attractor value.

2. Also: nAdSy/nCFT; considers the entire near horizon region. So
the scalars are not constant.

We consider these two challenges in turn.
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Non-Extreme Black Holes

e General non-extreme black holes depends on a single radial
function R(r):
2 2 2
re—r R*(r
R2(r) r? —rg

ds? = — dr® + R*(r)dQ;

e There is an event horizon at r = ry.

e Entropy and temperature are encoded in the radial function:

S _ 7TR2<7“())
Gy
L= R ()

e The extremal limit is 7y — 0 with charges and moduli fixed.
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Near-Extreme Black Holes

e The near extreme entropy depends on M :

0S
AS = a—MAM

Estimates: AS ~ T but 9,5 ~ T~ ! (1stlaw) so AM ~ T2,

e The radial function R(r) depends on r and also on M.

T [OR? OR?
AS = AM + L5
=G <8M o T)

Estimates: AS ~ T from Ar ~ ry ~ T. Oy R? is subleading.

e AS follows from R? at extremality but at a new position r = 1.

e This is a major simplification.

12



The Symmetry Breaking Scale

e The symmetry breaking scale only depends on moving away
from the horizon (but not on the solution being non-extreme):

_2AS 27 OR

L=""ZC=|
T T G4 67“ hor

e Moreover, the dependence is extremely simple: just a radial
derivative.

e Highlight: the function R(r) is that of the extremal black hole.
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The Extremal Attractor

e For fixed charges, the [, ['/""-type terms in the Lagrangian
subject the scalars 2’ to an effective potential V' .

e The scalars z' are constant on the AdS, x S? attractor geometry.
e So the effective potential V' is extremized: 0,V = 0.
e The extremum value of the potential gives: R*(0) = G4 V.

e This procedure is identical to the entropy function formalism.
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Results of Extremization

e Notation for the resulting radial function on AdS, x S*:

RY0) = I,(P',Qr)
e The generating function 1, is quartic in the charges.
e Example (V' = 4 SUGRA): I,(p’, qr) = p*¢*> — (pq)*.
e The scalar values at the horizon are also encoded in [,:

XI{OI _ p] ; _aQI 1/2
(rfr) = (5) (o) 0 an

Symplectic section (X I F7) represents scalars projectively:
2= X"/ XY
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Moving Away from the Horizon

e The radial function at the horizon depends only on charges.

e It depends on scalars at infinity away from the horizon.

e Parametrize scalars at infinity through “charges” pgo, q7°:

X! I\ (0
()~ (4) ()

e So: parametrize scalars at infinity using the charge/scalar
relation determined at the horizon.

e The full attractor flow has the radial function

RYr) = L(P" +rp, Q1 + g
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The Symmetry Breaking Scale

e The radial derivative of R* gives the symmetry breaking scale.

e It is equivalent to a derivative in charge space

2T 0 0
L="- I(P! .
G4 (pooapj + qdr 8Q1> 4( 7@1)

e So the nAttractor behavior follows from attractor geometry.

e [, is quartic in the charges; L is cubic in charges and linear in
moduli.

e The derivative replaces a charge by its corresponding modulus.
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Explicit Example: The STU Model

e The “four-charge” solution has one electric charge gy and three
magnetic ones p', p?, p°.

e The effective potential
1

3y'y*y?

The y' (with 2 = 1,2, 3) are scalar fields.

V =

= (g5 + (p'y*%)7 + (0°*y' ) + (PPy'y?)?)

e The extremal attractor gives scalar fields y' at the horizon as
qo pi

p'p°p’

independently of their asymptotic values.

(A
yhor -

e The extremal entropy

S = dnVier = 27/ qopp?p3
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A nAttractor Mechanism

e Present moduli at infinity as “charges” by inverting

i = o P
> pLpipd,

e The symmeiry breaking scale/specific heat:

2mqop' p*p’ R (1 P )
— 4Tqop P P 1111 | —
@ pyiyd  pPuiul Pyl

e It depends on moduli at infinity: Ry, yL,*°.

e It depends on non-trivial combinations of charges.
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The Long String Scale

e In the dilute gas regime the electric charge is small compared
to magnetic background charges.

e Then the symmetry breaking scale is

L = 2np'p*p’ Ry

e This is the long string scale known from microscopic black hole
models.

e Physics: low energy excitations much lighter L~! than naive
geometrical estimate R} ".
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A Flow of Many Fields

e “The” breaking scale is (essentially) the radial derivative of R?.
e Other scalar fields approach their fixed value z{__at the horizon.
e Their radial derivatives from differentiation in charge space:
Z = —<
d?“ pooaP] QI 8@ hor R2 hor
e In general each scalar field introduces a scale.

e STU example: the four apparent terms are independent scales.
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Effective Boundary Theory

e So far: symmetry breaking scales of the geometry and
thermodynamics from the UV theory.

e Now: the symmetry breaking scale in the effective IR action:

1 1 7 r
——L d (N2 MY
4 /aD u< 2<7"> +<7”>>

e How does this action emerge from the UV theory?
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2D SUGRA Action

e Start from N = 2 SUGRA in 4D

e Dimensional reduction on M x S? gives

2V
AG4Ly = R*RY + 2+ 2(VR)? — 2R%g;V ,2' V"2 — —

e The effective potential V' depends on electric and magnetic
charges (p’, qr) and moduli 2*.

o M,=AdS, with R? = V = /3 is solution for constant scalars
extremizing the potential 0;V = 0.

e \We want to compute the on-shell action of our solution.
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Black Hole Geometry

e The complete (Euclidean) geometry with > = r3 cosh s

% sinh? £ R>2
ds” = ———2dr’ + g—%dpQ + R%d03.

e For R? constant with R = /5: geometry is AdS, with radius /s.

e Here: R? given by complete solution, including flow away from
the horizon.

e Near extreme black holes: there is a near horizon region where:
R~ R4 (r—1m0)0. R+ ...

with R? evaluated for the extreme geometry.
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The Boundary

e Introduce a boundary at p ~ p. with p. so 2 < 72 sinh 7¢ < 1.

e Allow general boundary curve (7(u), p(u)) but special interest
2
in thermal boundary T = %g())u with u € |0, 27].

e Extrinsic curvature of boundary curve:

1 o T /s ™ 37",
K== coth 2 — sun 2o R 2
{5 “ by 03 i {5 " (77)? sinh? % ( 2( )

e The first two terms are large because p. > /5.
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The Gauss-Bonnet Theorem

e The key terms in the on-shell action
/ R*R + 2/ R°KC = 4mxR*(rg) + . ..
M oM
e \ = | for a topological disc.

e Exact result (omit “dots”) applies when explicit R* constant but
the R? in the geometry general.

e All terms in the “dots” are proportional to the derivative 0, R? of
the explicit R
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Effective IR Action from the UV

e With the exception of the Gauss-Bonnet term, all terms are
proportional to 0, R*:

TR2  ry0,R? 7 3 7
logZ = —J = 220 0% g du (= =2y
o6 Gy " 2G4 [W+/ U(T/ 2(7/>)]

e The scale Schwarzian and Gauss-Bonnet terms are the same.

e Restoring the nAttractor scale L.

1 11 3 !/
logZ = —1 =5+ ZLT [27r + /du (T—/ — —(T )2>]

T 27!

e No contribution to the black hole from the Schwarzian: 7 ~ wu.
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Matching in Effective QFT

e UV: boundary curve just outside the AdS, region gives
Schwarzian with determined coefficient.

e IR: boundary curve just inside the AdS, region gives
Schwarzian form but undetermined coefficient.

e Effective QFT: UV and IR computations must give same form of
the action.

e The effective parameters in the IR theory are determined by
matching.
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Summary and Outlook

e NAdS»/nCFT; holography describes the near horizon region of
nearly extreme black holes.

e The near extremality is unimportant: near horizon aspect is a
radial derivative.

e A nAttractor mechanism computes near extreme heat capacity
and near horizon scalars in terms of the extreme attractor.

e Generalizations: D > 4, gauged SUGRA, 4D nonBPS branch,
rotation, ... (in progress, with Hong and Liu).

e Does SUSY nonrenormalization protect scales and other physics?
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