Light feebly interacting massive particle: freeze-in production and galactic-scale structure formation

Ayuki Kamada (IBS-CTPU)

Based on

Kyu Jung Bae, <u>AK</u>, Seng Pei Liew, and Keisuke Yanagi, PRD, 2018 and JCAP, 2018 Kyu Jung Bae, Ryusuke Jinno, <u>AK</u>, and Keisuke Yanagi, in preparation

Jun. 12, 2019 @ Kavli IPMU

Dark matter

Accumulated evidences from observations of the Universe

Known properties

- long-lived over the age of the Universe
- accounting for about 30% of the present energy density of the Universe $\Omega_{\rm dm}h^2 \simeq 5\Omega_{\rm baryon}h^2 \simeq 0.12$
- feebly-interacting with photon and baryon
- not too hot to smear out primordial density contrast

No standard model (SM) particle satisfies the properties

→ long-standing mystery in cosmology and particle physics

WIMP Miracle

Weakly interacting massive particle: WIMP

Stability: new \mathbb{Z}_2 symmetry e.g., matter parity: $U(1)_{B-L} \rightarrow (-1)^{3(B-L)}$

Abundance: annihilation $\chi\chi \rightarrow AA \quad \chi: WIMP \quad A: SM$

- thermal freeze-out: TeV-scale (!) interaction

- indirect detection (cosmic ray) experiments

Interaction with SM particles: (sub-) weak scale

- direct detection (nuclei recoil) experiments

Non-relativistic: cold dark matter

Related with TeV-scale new physics (!) that explains the origin of the weak scale (naturalness problem)

- collider experiments

Pragmatic WIMP

LHC null-detection of TeV-scale new physics

- something wrong in naturalness and postulated solutions
- no convincing reason for new physics at the TeV scale

- grand unified theory (GUT)?

→ mini-split supersymmetry (SUSY)

Still WIMP is a good benchmark (even though not a miracle)

- direct/indirect detection experiments
- thermal freeze-out: relic abundance is insensitive to unconstrained ultraviolet physics (early Universe dynamics)

Thermal production

Freeze in: Feebly Interacting Massive Particle (FIMP)

Light FIMP

Light (keV-scale) FIMP

Stability: light + feeble interaction (quasi-stable)

Abundance: freeze-in via out-of-equilibrium processes

- renormalizable interaction with tiny coefficient

Interaction with SM particles: super weak

- indirect detection (X-ray) experiments $\chi \rightarrow \gamma \cdots$

e.g., 3.5 keV line \rightarrow 7 keV FIMP

Non-relativistic: warm dark matter - alter galactic-scale structure of the Universe

Collider: long-lived particle A if $A \rightarrow \chi B$ is dominant B : SM Bulbul, Markevitch, Foster, Smith, Loewenstein, and Randall, ApJ, 2014

Boyarsky, Ruchayskiy, lakubovskyi, and Franse, PRL, 2014

Example: light axino

Axion: Nambu-Goldstone (NG) boson of PQ symmetry

- dynamically explaining why CP is a good symmetry in strong interaction

Axino: fermionic SUSY partner of axion $A = \frac{s + ia}{\sqrt{2}} + \sqrt{2}\theta \tilde{a} + \theta^2 \mathcal{F}_A$

c.f., bosonic SUSY partner: saxion

Axino mass: naively ~ gravitino mass, but light (keV-scale) axino is also possible

DFSZ axion model: PQ-charge assignment of SM fields Kim, PRL, 1979

Shifman, Vainshtein, and Zakharov, NPB, 1980

- explaining why μ term is at the TeV scale Kim and Nilles, PLB, 1984
- long lifetime of proton w/o R parity

c.f., KSVZ: heavy vector-like quark

Dine, Fischer, and Srednicki, PLB, 1981

Goto and Yamaguchi, PLB, 1992

Zhitnitsky, Sov. J. Nucl. Phys. B, 1980

Light axino interaction

Chun, PLB, 1999 Choi, Chun, Hwang, PRD, 2001 Chun and Kim, JHEP, 2006

Bae, AK, Liew, and Yanagi, PRD, 2017

R parity violating interaction \rightarrow axino-neutrino mixing

$$\theta \simeq 10^{-5} \left(\frac{\epsilon}{10^{-5}}\right) \left(\frac{\mu}{400 \,\mathrm{GeV}}\right) \left(\frac{7 \,\mathrm{keV}}{m_{\tilde{a}}}\right) \left(\frac{10^{10} \,\mathrm{GeV}}{v_{\mathrm{PQ}}}\right)$$

- axino as sterile neutrino

R parity preserving interaction \rightarrow freeze-in production of axino

We will discuss

Part 1: Galactic-scale structure

Possible discrepancies from the CDM (WIMPs) prediction on galactic (sub-Mpc) scales (small-scale issues)

Bullock and Boylan-Kolchin, ARAA, 2018

- missing satellite problem: observed number of dwarf spheroidal galaxies is $\mathcal{O}(10)$ times smaller than in simulations

Klypin, Kravtsov, Valenzuela, and Prada, ApJ, 1999

Moore, Ghigna, Governato, Lake, Quinn, Stadel, and Tozzi, ApJ, 1999

 too-big-to-fail problem: ~10 missing galaxies are the biggest subhalos in simulations (to big to fail to be detected)

Boylan-Kolchin, Bullock, and Kaplinghat, MNRAS, 2011 and 2012

The issues may be attributed to incomplete understanding of complex astrophysical processes (subgrid physics)

APSOTLE collaboration, MNRAS, 2016

NIHAO collaboration, MNRAS, 2016

FIRE cllaboration, ApJ, 2016

The issues are easily explained by alternatives to CDM

- WDM (FIMPs) $m_{WDM} = \mathcal{O}(1) \text{ keV}$

- beyond WIMP?

Fiducial model of WDM

Thermal WDM: early decoupled fermion like SM neutrino

- FIMPs are in thermal equilibrium in the early Universe through non-renormalizable interaction (not freeze-in) and decouple when relativistic e.g., light gravitino

Fermi-Dirac distribution w/ 2 spin degrees of freedom:

$$f_{\rm WDM} = \frac{1}{e^{p/T_{\rm WDM}} + 1}$$

Two parameters: temperature T_{WDM} and mass m_{WDM}

 $T_{\rm WDM}$ is determined by the (observed) DM mass density for a given $m_{\rm WDM}$:

$$\Omega_{\rm WDM} h^2 = \left(\frac{m_{\rm WDM}}{94\,{\rm eV}}\right) \left(\frac{T_{\rm WDM}}{T_{\nu}}\right)^3$$

Linear matter power spectrum

 $m_{\rm WDM}$ parametrizes the linear matter power spectrum:

$$P_{\text{WDM}}/P_{\text{CDM}} = T_{\text{WDM}}^{2}(k) = \left[1 + (\alpha k)^{2\nu}\right]^{-10/\nu} \qquad \nu = 1.12$$

$$\alpha = 0.049 \text{ Mpc}/h \left(\frac{m_{\text{WDM}}}{\text{keV}}\right)^{-1.11} \left(\frac{\Omega_{\text{WDM}}}{0.25}\right)^{0.11} \left(\frac{h}{0.7}\right)^{1.22}$$

$$\overset{\text{Kennedy, Frenk, Cole, and Benson, MNRAS, 2014}}{\overset{2}{\text{Benson, MNRAS, 2014}}} \stackrel{2.6}{\overset{2}{\text{Vel}}} = \frac{1}{0.002} \stackrel{\text{KeV}}{\overset{2}{\text{20}}} = \frac{1}{0.002} \stackrel{\text{KeV}}{\overset{0}{\text{200}}} = \frac{1}{0.002} \stackrel{\text{KeV}}{\overset{0}{\overset{0}{\text{200}}} = \frac{1}{0.002} \stackrel{\text{KeV}}{\overset{0}$$

Missing satellite problem w/ WDM

Too-big-to-fail problem w/ WDM

Schneider, Anderhalden, Maccio, and Diemand, MNRAS, 2014

WDM also reduces a predicted number of bigger subhalos than observed satellites

Lyman-a forest constraints on WDM

Part 2: FIMP ≠ thermal WDM

One cannot conclude that 7 keV FIMP DM (for 3.5 keV line) is cold enough from $m_{WDM} \gtrsim 3.3 \text{ keV}$

Thermal WDM: entropy conservation after decoupling

$$T_{\rm DM} = \left(\frac{g_*(T)}{g_*(T_{\rm dec})}\right)^{1/3} T$$
$$\Omega_{\rm WDM} h^2 = \left(\frac{m_{\rm WDM}}{94\,{\rm eV}}\right) \left(\frac{T_{\rm WDM}}{T_\nu}\right)^3 = 7.5 \left(\frac{m_{\rm WDM}}{7\,{\rm keV}}\right) \left(\frac{106.75}{g_*(T_{\rm dec})}\right)$$

 extra entropy production (~100) after decoupling is needed to realize keV-scale WDM

Thermal WDM is much colder than naively expected

→ lower bound on the FIMP mass w/o entropy production is higher

Constraining FIMP

7 keV FIMP vs thermal WDM

Warmness

Quantity characterize warmness of DM:

Analytic mapping via warmness

Analytic formulas of f(q) are available in a simplified model

Analytic vs full

Analytic mapping through warmness works well up to ~10% in $m_{\rm DM}$

Part 3: More generic approach

101

Single parameter:

Viel, Lesgourgues, Haehnelt, Matarrese, and Riotto, PRD, 2005

$$P_{\rm WDM}/P_{\rm CDM} = T_{\rm WDM}^2(k) = \left[1 + (\alpha k)^{2\nu}\right]^{-10/\nu} \nu = 1.12$$

$$\alpha = 0.049 \,{\rm Mpc}/h \left(\frac{m_{\rm WDM}}{\rm keV}\right)^{-1.11} \left(\frac{\Omega_{\rm WDM}}{0.25}\right)^{0.11} \left(\frac{h}{0.7}\right)^{1.22}$$

Three parameters:

$$P_{\text{WDM}}/P_{\text{CDM}} = T_{\text{WDM}}^2(k) = \left[1 + (\alpha k)^{\beta}\right]^{2\gamma}$$

Murgia, Merle, Viel, Totzauer, and Schneider, JCAP, 2017

 (α, β, γ) - covers not only FIMPs, but also a broad class of DM models

e.g., Fuzzy DM, Interacting DM

Hu, Barkana, and Gruzinov, PRL, 2000 Hui, Ostriker, Tremain, and Witten, PRD, 2017

Boehm, Fayet, and Schaeffer, PLB, 2001

ETHOS collaboration, PRD, 2016 and MNRAS, 2016

Two-step approach

Bae, Jinno, <u>AK,</u> and Yanagi, in preparation

Three parameters \rightarrow not easy to share results \rightarrow Machine learning!

Summary

FIMPs are as a good benchmark as pragmatic WIMPs

- relic abundance insensitive to ultraviolet physics (early Universe dynamics)
- accommodated in well-motivated particle physics models e.g., axino (SUSY partner of axion)

Light (keV-scale) FIMPs are of particular interest

- indirect detection experiments (3.5 keV X-ray line)
- galactic-scale structure formation (small-scale issues)

Summary

Once the mass is inferred by indirect detection experiments, we would like to check if FIMPs are consistent w/ galactic-scale structure formation

- conventional thermal WDM \neq FIMP
- mapping from $m_{
 m WDM}$, e.g., through warmness σ^2

- only phase-space distribution is needed

- analytic formulas available in a simplified model

More generic approach w/ (α, β, γ) parametrization of $T^2(k)$ divide the task into two: particle physics part and astrophysics part

- Machine learning helps us share results with each other

Thank you for your attention

Anomalous line around 3.5 keV

3.5 keV line excess is found in some instruments (Chandra, XMM-Newton), but not in others (Suzaku); in some objects (Galaxy clusters, Andromeda galaxy), but not in others (M31, dwarf spheroidal)

Sterile neutrino

Right-handed neutrino inferred by observed neutrino oscillations - heavier than active ones through the see-saw mechanism

radiative decay $\tau \sim 10^{27} \, {
m s}$ through ${\cal L}_{
m int} \propto \sin(2\theta) e G_{
m F} m_s \nu_s \sigma^{\mu\nu} \nu_a F_{\mu\nu}$

$$v_s \rightarrow v + v$$

produced around the QCD phase transition through the mixing with active neutrinos: $\Omega_s h^2 \simeq 0.01 \left(\frac{\sin^2 2\theta}{2 \times 10^{-10}}\right) \left(\frac{m_s}{7 \,\text{keV}}\right)^2 \ll \Omega_{\rm dm} h^2 \simeq 0.12$ Dodelson *et al.*, PRL, 1994
Abazajian *et al.*, PRD, 2006
Asaka *et al.*, JHEP, 2007

 $\begin{array}{l} \mbox{The mixing may be enhanced by a large lepton asymmetry:} \\ \frac{n_\ell}{s} \sim 10^{-6} & \frac{n_b}{s} \simeq 9 \times 10^{-11} \\ \mbox{C.f.} & \frac{n_b}{s} \simeq 9 \times 10^{-11} \\ \mbox{Abazajian et al., PRL, 2014} \end{array}$

 m_s : mass

 θ : mixing angle

3.5 keV line status

A large part of preferred parameter region (including a central value) has been disfavored by null-detections, although not covered

<u>Axion</u>

$\begin{array}{l} \textbf{Strong CP-problem:} \\ \mathcal{L}_{CP} = \bar{\theta} \frac{g_3^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^{a\mu\nu}, \quad \bar{\theta} = \theta - \arg \det Y_u - \arg \det Y_d \\ \textbf{neutron electric dipole moment} \rightarrow |\bar{\theta}| \lesssim 10^{-10} \end{array}$

Prominent realizations: - Kim-Shifman-Vainstein-Zakharov (KSVZ): vector-like heavy quarks are charged under PQ-symmetry Kim, PRL, 1979 Shifman *et al.*, Nucl. Phys. B, 1980 - DFSZ: SM quarks are charged under PQ-symmetry Dine *et al.*, PLB, 1981 Zhitnitsky, Sov. J. Nucl. Phys. B, 1980

Supersymmetry (SUSY)

Saxion and axino masses: axion is (almost) massless \rightarrow saxion and axino are massless in the SUSY limit SUSY breaking $(m_{3/2}) \rightarrow$ naively $m_s \sim m_{\tilde{a}} \sim m_{3/2}$ depending on models $m_s \sim m_{3/2}$, $m_{\tilde{a}} \sim m_{3/2}^2/f_a$. Goto *et al.*, PLB, 1992 Chun *et al.*, PLB, 1992 Chun *et al.*, PLB, 1995

 $m_{3/2} \sim 100 \,\mathrm{GeV}, f_a \sim 10^{10} \,\mathrm{GeV} \rightarrow m_{\tilde{a}} \sim 1 \,\mathrm{keV}$

PQ scale constraint:Raffelt, Lect. Notes Phys., 2008- supernova cooling (SN1987A) through nucleon bremsstrahlung
$$\rightarrow f_a > 4 \times 10^8 \text{ GeV}$$
- axion coherent oscillation $\Omega_a h^2 \simeq 0.11 \left(\frac{f_a}{5 \times 10^{11} \text{ GeV}} \right)^{1.19} F \bar{\theta}_i^2$ $\ll \Omega_{dm} h^2 \simeq 0.12$ Bae et al., JCAP, 2008Wants et al., PRD, 2010

$\underline{\mu} \ {\rm term} \ {\rm and} \ {\rm R}{\rm -parity} \ {\rm violating} \ {\rm term}$

$$\begin{aligned} & Q_{\rm PQ}\{X, H_u, H_d\} = \{-1, 1, 1\} & W_{\rm DFSZ} = \frac{y_0}{M_*} X^2 H_u H_d \\ & Q_{\rm PQ}(L_i) = 2 & W_{\rm bRPV} = \frac{y'_i}{M_*^2} X^3 L_i H_u \\ & \text{Kim et al., PLB, 1999 Choi et al., PRD, 2001 Chun, JHEP, 2006} & \text{cut-off scale} \\ & & & \\ \hline & X = \frac{v_{\rm PQ}}{\sqrt{2}} e^{A/v_{\rm PQ}} & v_{\rm PQ} = f_a N_{\rm DW} \\ & & & \\ \hline & X = \frac{v_{\rm PQ}}{\sqrt{2}} e^{A/v_{\rm PQ}} & n_{\rm PQ} = f_a N_{\rm DW} \\ & & & \\ \hline & & & \\$$

Axino production

Production processes

Yield from each process

reaction rate per Hubble time: $\Gamma_{
m pro}Y_{
m eq}/H$, $H\propto T^2$ decay: $\Gamma_{
m pro}\sim (m/T)\Gamma_{
m dec}$ scattering through a renormalizable interaction: $\Gamma_{
m pro}\propto T$

Anomalous coupling

Cold Dark Matter?

Small scale matter density fluctuations, especially their deviations from the ΛCDM model, contain imprints of the nature of DM

Small scale crisis I

When *N*-body simulations in the ACDM model and observations are compared, problems appear at (sub-)galactic scales: **small scale crisis**

Small scale crisis II

cusp vs core problem

N-body (DM-only) simulations in the Λ CDM model \rightarrow common DM profile independent of halo size: NFW profile

Small scale crisis III

N-body (DM-only) simulations in the ∧CDM model → ~10 subhalos with deepest potential wells in Milky Way-size halos do not host observed counterparts (dwarf spheroidal galaxies)

Gravitational potentials are shallower for smaller objects → Baryonic heating and cooling may be dominant

Baryonic processes

 heating from ionizing photons - ionizing photons emitted and spread around reionization of the Universe heat and evaporate gases

- mass loss by supernova explosions - supernova explosions blow gases from inner region \rightarrow DM redistribute along shallower potential

Warm Dark Matter

Free-streaming of DM particles smears the small-scale primordial density fluctuations

Warm Dark Matter (WDM): the free-streaming length ~ kpc - Mpc c.f. (in my personal experience)

Hot Dark Matter (HDM): the free-streaming length ~ Mpc - Gpc

Cold Dark Matter (CDM): the free-streaming length is below kpc

WDM subhalo number in a MW-like halo

Lyman-alpha forest as a probe of matter distribution

Sterile neutrino parameter space

Sterile neutrino as mixed dark matter

47

MDM subhalo number in a MW-like halo

<u>Constraints from Lyman-a forests (MDM)</u>

7 keV sterile neutrino WDM may be excluded with 95%CL MDM with 50%/25% 7 keV sterile neutrino is allowed within 95%/68%CL

missing satellite problem in MDM models

Anomalous flux ratio

Likelihood

 r_{warm} mass fraction of warm component

New constrains from Lyman-alpha forest I

New constrains from Lyman-alpha forest II

Phase space distribution

$$\begin{array}{|c|c|c|c|} \mathsf{FIMP} \rightarrow f_{\tilde{a}} \ll 1 \text{ can be ignored in the collision term} \\ \hline & & & \\ \hline & & \\ & & \\ \hline & & \\$$

Benchmark points

 $f_{\tilde{a}}$ is a sum of all the contributions freeze-in \rightarrow the next-to-the-lightest supersymmetric particle (NLSP) provides a dominant contribution BM1: Higgsino NLSP BM2: wino NLSP

		BM1	BM2
Higgs VEV ratio	aneta	20	20
μ -term	μ	$500{ m GeV}$	$10{ m TeV}$
wino mass	M_2	$10 \mathrm{TeV}$	$500{ m GeV}$
CP-odd Higgs mass	m_A	$10{\rm TeV}$	$20{ m TeV}$
stop masses	$m_{\widetilde{Q}_3} = m_{\widetilde{t}^c}$	$6.5\mathrm{TeV}$	$10\mathrm{TeV}$
SM-like Higgs mass	$m_h^{ m SM-like}$	$125{ m GeV}$	$126{ m GeV}$
H_u soft mass	$m_{H_u}^2(Q=m_{\tilde{t}^c})$	$(956{ m GeV})^2$	$-(9.86{ m TeV})^2$
H_d soft mass	$m_{H_d}^2(Q=m_{\tilde{t}^c})$	$(9.94\mathrm{TeV})^2$	$(17.3\mathrm{TeV})^2$

TABLE II: MSSM parameters of BM1 and BM2 are shown. The SM-like Higgs mass and soft masses at $Q = m_{\tilde{t}^c}$ are calculated by SUSY-HIT v1.5a [88]. The masses of the other SUSY particles are taken to be 10 TeV.

Phase space distributions in the BM points

phase space distribution from each process $\int dq q^2 f(q) = 1$, $p = T_{\tilde{a}}q$, $T_{\tilde{a}} = \left(\frac{g_*(T)}{g_*(T_{\text{dec}})}\right)^{1/3} T_{\tilde{a}}$ normalized so that 0.4 **Higgsino NLSP** Wino NLSP, $T_R=1$ TeV 0.3 Wino NLSP, T_R =100 GeV Wino NLSP, T_R =50 GeV *q*² f(q) 0.2 Fermi-Dirac 0.1 0.0 8 2 4 6 10 q BM1, where Higgs 2-body decay is dominant,

results in the coldest phase space distribution

Linear matter power spectrum in the BM points

$$m = 7 \operatorname{keV} \left(\frac{m_{\text{WDM}}}{2.5 \operatorname{keV}(\tilde{\sigma}/3.6)^{-3/4}} \right)^{4/3}$$

most stringent bound: $m_{\rm WDM} > 5.3 \,\rm keV$

Entropy production from the saxion decay

Even the coldest phase space distribution (BM1) does not satisfy $m_{\rm WDM} > 5.3 \,\rm keV$

saxion domination
$$(T_e^s)$$
 and decay $(T_D^s) \rightarrow$ entropy production

$$\Delta = \frac{s_w}{s_{wo}} \simeq \frac{T_e^s}{T_D^s}, \quad T_e^s = \frac{4}{3} m_s Y_s^{CO} \simeq 2.5 \times 10^2 \text{ GeV} \left(\frac{\min[T_R, T_s]}{10^7 \text{ GeV}}\right) \left(\frac{s_0}{10^{16} \text{ GeV}}\right)^2$$

saxion domination after the freeze-in $T_e^s \ll \mu, M_2 \rightarrow \text{colder axino}$ $T_{\tilde{a}} = \left(\frac{g_*(T)}{g_*(T_{\text{dec}})}\right)^{1/3} T \longrightarrow T_{\tilde{a}} = \left(\frac{g_*(T)}{\Delta g_*(T_{\text{th}})}\right)^{1/3} T$

Linear matter power spectrum w/ entropy production

61

Caveats on 3-body decay

Effects of a degenerate mass spectrum

Caveats on a degenerate mass spectrum

The mass degeneracy also suppresses the decay rate
→ scatterings become dominant

