Some Results on 4d Chern-Simons Theory: String Theory Realization, and Holography

Meer Ashwinkumar

National University of Singapore

Kavli Institute for Physics and Mathematics of the Universe, May 27th, 2019

Scope of Presentation

- A Review of 4d Chern-Simons Theory
- Summary of results
- 4d Chern-Simons theory from partial twist of D4-NS5 system
- 4d Chern-Simons theory with boundary and a 3d WZW model
- Conclusion and Future Work

A Review of 4d Chern-Simons theory

- 4d Chern-Simons theory has the action

$$
\begin{equation*}
S=\frac{1}{\hbar} \int_{Y \times \Sigma} C \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{1.1}
\end{equation*}
$$

where \mathcal{A} is a complex-valued gauge field, Y is a 2-manifold, and Σ is a Riemann surface endowed with a holomorphic one-form $C=C(z) d z$.

- Topological along Y, but depends on the complex structure of Σ.
- It has a complex gauge group, denoted G.
- Initially derived from deformed, twisted $\mathcal{N}=1$ SUSY gauge theory by Costello.*
- Subsequently studied in depth by Costello, Witten and Yamazaki. ${ }^{\dagger}$
- Describes integrable lattice models of clasical statistical mechanics, such as the six-vertex and eight-vertex model.
*. K. Costello, Supersymmetric gauge theory and the Yangian, arXiv:1303.2632
\dagger K. Costello, E. Witten, M. Yamazaki, Gauge Theory and Integrability, I, II, arXiv:1709.09993, 1802.01579
- Theory is unrenormalizable by power counting, as \hbar has dimensions of inverse mass.
- But theory can be quantized in perturbation theory - all conceivable counterterms vanish via EOM.
- Moreover, BV quantization was used by Costello to show that the theory has a well-defined perturbation expansion.
- The action involves only the ratio C / \hbar - naively, a zero of C corresponds to a point at which $\hbar \rightarrow \infty$.
- But the theory is only defined perturbatively, so C cannot have zeros, though it may have poles.
- This restricts Σ to one of the following possibilities:

$$
\begin{array}{lll}
\Sigma=\mathbb{C}, & C=d z, & \text { (rational) } \\
\Sigma=\mathbb{C} \times \mathbb{C} / \mathbb{Z}, & C=\frac{d z}{z}, & \text { (trigonometric) } \\
\Sigma=E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z}), & C=d z, & \text { (elliptic) } \tag{1.2}
\end{array}
$$

- As shown, the three choices of Σ lead to rational, trigonometric and elliptic integrable lattice models.
- Costello, Witten and Yamazaki explicitly showed how to derive the quasi-classical R-matrix from correlation functions of crossed Wilson lines.
- E.g., the rational R-matrix for Wilson lines on $Y=\mathbb{R}^{2}$:

- Here the Wilson lines at z_{1} and z_{2} are respectively in representations ρ and ρ^{\prime}, with $c_{\rho, \rho^{\prime}}=\sum_{a} T_{a, \rho} \otimes T_{a, \rho^{\prime}}$.
- Such an R-matrix, denoted $R_{\rho \rho^{\prime}}\left(z_{1}, z_{2}\right)$, is a solution of the Yang-Baxter equation with spectral parameter, i.e.,

$$
R_{12}\left(z_{1}, z_{2}\right) R_{13}\left(z_{1}, z_{3}\right) R_{23}\left(z_{2}, z_{3}\right)=R_{23}\left(z_{2}, z_{3}\right) R_{13}\left(z_{1}, z_{3}\right) R_{12}\left(z_{1}, z_{2}\right)
$$

- The YBE underlies the integrability of the integrable lattice models, as it leads to commuting transfer matrices.
- Can be realized in 4d CS theory due to the topological symmetry along Y.

- No singular behaviour arises in moving a Wilson line, as long as z_{1}, z_{2} and z_{3} are distinct.
- Outside of perturbation theory, 4d CS is not well-understood path integral is exponentially divergent.
- Question: What is the nonperturbative definition of 4d CS theory?
- Suggestion ${ }^{\ddagger}$ - Nonperturbative definition comes from the D4-NS5 system of string theory, similar to how the D3-NS5 system realizes the nonperturbative 3d analytically-continued Chern-Simons theory. ${ }^{\S}$
- Also, unlike 3d CS theory, much work on 4d CS theory has not involved canonical quantization, current algebras, and boundary theories.
- Question: Is there a boundary WZW theory for 4d CS theory?
\ddagger. E. Witten, Integrable Lattice Models From Gauge Theory, arXiv:1611.00592
§. E. Witten, Fivebranes and Knots, Quantum Topology 3 (1) (2012) 1-137

We shall attempt to answer these questions in today's talk. This talk is based on

- M. Ashwinkumar, K.-S. Png, M.-C. Tan, in progress
- M. Ashwinkumar, Boundary Dynamics of 4d Chern-Simons Theory, in progress

Summary of results : 4d CS from partial twist of D4-NS5

 system

- We begin with this brane configuration in type IIA string theory, where we have a stack of N D4-branes.
- Here, the D4-brane worldvolume is $Y \times \mathbb{R}_{+} \times \Sigma$, with boundary conditions determined by an NS5-brane.
- Moreover, the worldvolume theory is partially twisted along $Y \times \mathbb{R}_{+}$.
- This twisting gives us 4 supercharges that are scalar along V. We take a linear combination of 2 of them, denoted $\mathcal{Q}=\kappa Q+\lambda Q^{\prime}$ (for $\kappa, \lambda \in \mathbb{C}$), to define our theory.
- These 2 supercharges are distinguished since they lead to desirable \mathcal{Q}-invariant localization equations.
- In particular, for $\lambda=\bar{\kappa}$, they can be written as a gradient flow equation, i.e.,

$$
\begin{equation*}
\frac{d x^{i}}{d t}=-g^{i \bar{j}} \frac{\partial \bar{W}}{\partial x^{\bar{j}}} \tag{2.1}
\end{equation*}
$$

for

$$
\begin{equation*}
W=\frac{i e^{i 2 \rho}}{g_{5}^{2}} \int_{Y \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{2.2}
\end{equation*}
$$

- Such a gradient flow equation defines an integration cycle for the path integral over W that ensures its convergence.
- We can define a \mathcal{Q}-invariant action

$$
\begin{align*}
S= & \{\mathcal{Q}, \tilde{V}\} \\
& +\frac{w-\bar{w}}{4} \frac{i \psi}{2 \pi} \int_{\partial M} d z_{w} \wedge \operatorname{Tr}\left(\mathcal{A}_{w} \wedge d \mathcal{A}_{w}+\frac{2}{3} \mathcal{A}_{w} \wedge \mathcal{A}_{w} \wedge \mathcal{A}_{w}\right), \tag{2.3}
\end{align*}
$$

that is \mathcal{Q}-exact up to a 4 d Chern-Simons action.

- This action is equivalent to a 1d gauged A-model, with target space the space of all possible \mathcal{A}_{w} fields, and the 4 d Chern-Simons action as superpotential.
- This 1d A-model was shown by Witten ${ }^{\text {『 }}$ to reduce exactly to a path integral over the boundary superpotential, with integration cycle, Г, determined by localization equations.
- In this way, we end up with

$$
\begin{equation*}
\int_{\Gamma} D \mathcal{A} \exp \left(\frac{\Psi}{4 \pi} \int_{\partial M} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)\right) \tag{2.4}
\end{equation*}
$$

which for $\Psi=\frac{2 i}{\hbar}$ is the (convergent) path integral for 4 d Chern-Simons theory for all \hbar.

【. A New Look at the Path Integral of Quantum Mechanics, arXiv:1009.6032

Summary of results : 4d CS with boundary and a 3d WZW model

- Consider 4d CS on $D \times \Sigma$, where D is a disk, with classical action

$$
\begin{equation*}
S=\frac{1}{\hbar} \int_{D \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{2.5}
\end{equation*}
$$

Here, $\mathcal{A}=\mathcal{A}_{r} d r+\mathcal{A}_{\varphi} d \varphi+\mathcal{A}_{\bar{z}} d \bar{z}$, where (r, φ) are polar coordinates on D and (z, \bar{z}) are complex coordinates on Σ.

- To ensure locality of EOM, and gauge invariance, we require the boundary condition $\mathcal{A}_{\bar{z}}=0$.
- Using this boundary condition, we can show that 4d CS reduces to a boundary theory, i.e.,

$$
\begin{equation*}
\int D g e^{-S(g)} \tag{2.6}
\end{equation*}
$$

where g is a map $g: \partial D \times \Sigma \rightarrow G$, and where

$$
\begin{align*}
S(g)= & \frac{1}{\hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z} \operatorname{Tr}\left(\partial_{\varphi} g g^{-1} \partial_{\bar{z}} g g^{-1}\right) \\
& +\frac{1}{3 \hbar} \int_{D \times \Sigma} d z \wedge \operatorname{Tr}\left(d g g^{-1} \wedge d g g^{-1} \wedge d g g^{-1}\right) \tag{2.7}
\end{align*}
$$

- This is a 3d analogue of the 2d chiral WZW model.
- The classical action is invariant under the $G \times G$ symmetry

$$
\begin{equation*}
g(\varphi, z, \bar{z}) \rightarrow \tilde{\Omega}(\varphi, z) g \Omega(z, \bar{z}), \tag{2.8}
\end{equation*}
$$

where Ω and $\tilde{\Omega}$ give rise to the conserved currents $J_{\varphi}=-\frac{2}{\hbar} \partial_{\varphi} g g^{-1}$ and $J_{\bar{z}}=-\frac{2}{\hbar} g^{-1} \partial_{\bar{z}} g$ respectively.

- We find a current algebra for J_{φ} by computing Poisson brackets and canonically quantizing:

$$
\begin{aligned}
{\left[\operatorname{Tr} A J_{\varphi}(\varphi, z), \operatorname{Tr} B J_{\varphi}\left(\varphi^{\prime}, z^{\prime}\right)\right]=} & i \delta\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr}[A, B] J_{\varphi}(\varphi, z) \\
& -i \frac{2}{\hbar} \delta^{\prime}\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr} A B
\end{aligned}
$$

- This is an "analytically-continued" toroidal Lie algebra.
- A Wilson line in representation R can be described in terms of local operators of the boundary theory:

$$
\begin{equation*}
\mathcal{P} e^{\int_{t_{i}}^{t_{f}} \mathcal{A}} \rightarrow g_{R}^{-1}\left(t_{f}\right) g_{R}\left(t_{i}\right) \tag{2.9}
\end{equation*}
$$

- Correlation functions of Wilson lines in 4d CS can therefore be computed from the boundary theory.
- For crossed, perpendicular Wilson lines, we have

$$
\begin{aligned}
& \left\langle\mathcal{P} e^{\int_{\pi, z_{1}, \bar{z}_{1}}^{0, z_{1}, \bar{z}_{1}} \mathcal{A}_{R_{1}}} \otimes \mathcal{P} e^{\int_{3 \pi / 2, z_{2}, \bar{z}_{2}}^{\pi / 2, z_{2}, \bar{z}_{2}} \mathcal{A}_{R_{2}}}\right\rangle \\
= & \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle .
\end{aligned}
$$

Perpendicular Wilson lines on D.

- We can compute the 4-pt. function via perturbation theory around $g=\mathbb{1}$:

$$
g=e^{\phi_{a} T^{a}}=\mathbb{1}+\phi_{a} T^{a}+\ldots
$$

- Using the free-field propagator for ϕ_{a}, we arrive at

$$
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle \\
= & \mathbb{1}+\frac{\hbar}{z_{1}-z_{2}} c_{R_{1}, R_{2}}+O\left(\hbar^{2}\right),
\end{aligned}
$$

which is precisely Costello, Witten and Yamazaki's result for the R-matrix to leading nontrivial order.

4d Chern-Simons theory from partial twist of D4-NS5 system

D4-brane worldvolume theory with NS5 boundary conditions Partial twist

D4-brane worldvolume theory with NS5 boundary conditions

The low energy worldvolume theory of N coincident D4-branes on a flat manifold, \mathcal{M}, involves fields which transform as reps. of $S O_{\mathcal{M}}(5) \times S O_{R}(5):$

$$
\begin{align*}
& A_{M}:(\mathbf{5}, \mathbf{1}) \\
& \phi_{\widehat{M}}:(\mathbf{1}, \mathbf{5}) \tag{3.1}\\
& \rho_{A \widehat{A}}:(\mathbf{4}, \mathbf{4})
\end{align*}
$$

with the classical action of $5 \mathrm{~d} \mathcal{N}=2 \mathrm{SYM}$:

$$
\begin{aligned}
S=-\frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x \operatorname{Tr}(& \frac{1}{4} F_{M N} F^{M N}+\frac{1}{2} D_{M} \phi_{\widehat{M}} D^{M} \phi^{\widehat{M}}+\frac{1}{4}\left[\phi_{\widehat{M}}, \phi_{\widehat{N}}\right]\left[\phi^{\widehat{M}}, \phi^{\widehat{N}}\right] \\
& \left.+i \rho^{A \widehat{A}}\left(\Gamma^{M}\right)_{A}{ }^{B} D_{M} \rho_{B \widehat{A}}+\rho^{A \widehat{A}}\left(\Gamma^{\widehat{M}}\right)_{\widehat{A}} \widehat{B}^{\widehat{B}}\left[\phi_{\widehat{M}}, \rho_{A \widehat{B}}\right]\right) .
\end{aligned}
$$

It is invariant under the SUSY transformations

$$
\begin{align*}
\delta A_{M}= & 2 \zeta^{A \widehat{A}}\left(\Gamma_{M}\right)_{A}{ }^{B} \rho_{B \widehat{A}} \\
\delta \phi^{\widehat{M}}= & -i 2 \zeta^{A \widehat{A}}\left(\Gamma^{\widehat{M}}\right)_{\widehat{A}} \widehat{B} \rho_{A \widehat{B}} \\
\delta \rho_{A \widehat{A}}= & \left(\Gamma^{M}\right)_{A}{ }^{B} D_{M} \phi^{\widehat{M}}\left(\Gamma_{\widehat{M}}\right)_{\widehat{A}} \widehat{B} \zeta_{B \widehat{B}}-\frac{i}{2}\left(\Gamma_{\widehat{M}}\right)_{\widehat{A}} \widehat{B}\left(\Gamma_{\widehat{N}}\right)_{\widehat{B} \widehat{C}}\left[\phi^{\widehat{M}}, \phi^{\widehat{N}} \zeta_{A} \widehat{C}^{\widehat{C}}\right. \\
& -\frac{i}{2} F^{M N}\left(\Gamma_{M N}\right)_{A B} \zeta_{\widehat{A}}^{B} . \tag{3.2}
\end{align*}
$$

The stack of D4-branes shall be taken to end on an NS5-brane in the following type IIA brane configuration in flat Euclidean space

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D4	\times	\times	\times	\times	\times					
NS5	\times	\times		\times	\times	\times	\times			

where, e.g., an empty entry under ' 3 ' indicates that the brane is located at $x^{3}=0$. The scalar fields $\left\{\phi_{\widehat{1}}, \phi_{\widehat{2}}, \phi_{\widehat{3}}, \phi_{\widehat{4}}, \phi_{\hat{5}}\right\}$ are understood to parametrize the $\{6,7,8,9,10\}$ directions, respectively.

The NS5-brane provides boundary conditions for the D4-brane worldvolume theory.

Partial twist

4d Chern-Simons theory on $Y \times \Sigma$ is topological-holomorphic:

- It has diffeomorphism invariance along the 2-manifold denoted Y.
- It has holomorphic dependence on the Riemann surface, Σ.

To obtain it from the D4-NS5 system, we ought to perform a partial twist that leads to the above properties.

To this end, we shall take $\mathcal{M}=Y \times \mathbb{R}_{+} \times \Sigma$, and we wish to twist the D4-brane worldvolume theory along $Y \times \mathbb{R}_{+}$.

This amounts to redefining the $S O_{V}(3)$ rotation group of $V=Y \times \mathbb{R}_{+}$to be the diagonal subgroup

$$
S O_{V}(3)^{\prime} \subset S O_{V}(3) \times S O_{R}(3)
$$

where $S O_{R}(3) \subset S O_{R}(5)$ rotates $\left\{\phi_{\widehat{1}}, \phi_{\widehat{2}}, \phi_{\widehat{3}}\right\}$.

Specifically, we are studying the following type IIA configuration:

The twist arises in this configuration because $V \subset \tilde{V}=Y \times \mathbb{R}$, where \tilde{V} is the zero section of the cotangent bundle $T^{*} \tilde{V}$, and 'coordinates' normal to \tilde{V} in $T^{*} \tilde{V}$ must be components of one-forms, as we shall obtain via twisting. ${ }^{\|}$
||. M. Bershadsky, C. Vafa, V. Sadov, D-branes and topological field theories, Nu clear Physics B 463 (2-3) (1996) 420-434

Let us now implement the partial twist. Having performed the reductions $S O_{\mathcal{M}}(5) \rightarrow S O_{V}(3) \times S O_{\Sigma}(2)$ and $S O_{R}(5) \rightarrow S O_{R}(3) \times S O_{R}(2)$, we denote the relevant indices as

	$S O_{V}(3)$	$S O_{R}(3)$	$S O_{\Sigma}(2)$	$S O_{R}(2)$
Vector	$\alpha, \beta, \gamma, \ldots$	$\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma}, \ldots$	m, n, p, \ldots	$\widehat{m}, \widehat{n}, \widehat{p}, \ldots$
Spinor	$\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \ldots$	$\widehat{\bar{\alpha}}, \widehat{\beta}, \widehat{\bar{\gamma}}, \ldots$	$\bar{m}, \bar{n}, \bar{p}, \ldots$	$\widehat{\bar{m}}, \widehat{\bar{n}}, \widehat{\bar{p}}, \ldots$

Partial twisting amounts to setting the hatted $S O_{R}(3)$ indices to unhatted indices.

As a result, the scalar fields $\left\{\phi_{\widehat{1}}, \phi_{\hat{2}}, \phi_{\widehat{3}}\right\}$ now transform as the components $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ of a one-form on $Y \times \mathbb{R}_{+}$.

In addition, the spinor fields $\rho_{A \widehat{A}}=\rho_{\bar{\alpha} \overline{\bar{m}} \widehat{\bar{\alpha}} \widehat{\bar{m}}}$ can be expanded after twisting as

$$
\begin{equation*}
\rho_{\bar{\alpha} \bar{m} \bar{\beta} \widehat{\bar{m}}}=\epsilon_{\bar{\alpha} \bar{\beta}} \eta_{\bar{m} \widehat{\bar{m}}}+\left(\sigma^{\alpha}\right)_{\bar{\alpha} \bar{\beta}} \psi_{\alpha \bar{m} \widehat{\bar{m}}}, \tag{3.3}
\end{equation*}
$$

where $\eta_{\bar{m} \widehat{\bar{m}}}$ and $\psi_{\alpha \bar{m} \widehat{\bar{m}}}$ transform as $\mathbf{1}$ and $\mathbf{3}$ under $S_{V}(3)^{\prime}$.
Here we have used the antisymmetric matrix $\epsilon_{\bar{\alpha} \bar{\beta}}$ and the symmetric matrix $\left(\sigma^{\alpha}\right)_{\bar{\alpha} \bar{\gamma}}=\left(\sigma^{\alpha}\right)_{\bar{\alpha}}{ }^{\bar{\beta}} \epsilon_{\bar{\beta} \bar{\gamma}}$, where ϵ is the Levi-Civita symbol and σ^{α} are the Pauli matrices.

Likewise, we can expand the SUSY transformation parameters $\zeta_{A \widehat{A}}=\zeta_{\bar{\alpha} \bar{m} \widehat{\bar{\alpha}} \widehat{\bar{m}}}$ as

$$
\begin{equation*}
\zeta_{\bar{\alpha} \bar{m} \bar{\beta} \widehat{\bar{m}}}=\epsilon_{\bar{\alpha} \bar{\beta}} \zeta_{\bar{m} \widehat{\bar{m}}}+\left(\sigma^{\alpha}\right)_{\bar{\alpha} \bar{\beta}} \zeta_{\alpha \bar{m} \widehat{\bar{m}}} . \tag{3.4}
\end{equation*}
$$

Substituting these expansions into the SUSY transformations, we can obtain the partially twisted SUSY transformations.

However, we wish to pick a supercharge, \mathcal{Q}, that is scalar along V, w.r.t. which we shall eventually localize the theory.

We shall choose only ζ_{11} and ζ_{21} to be nonzero, and take a linear combination of the corresponding supercharges to be \mathcal{Q}.

This choice leads to localization equations that define an integration cycle for 4d Chern-Simons theory such that its path integral is convergent.

To see this, let $\zeta_{11}=\kappa$ and $\zeta_{21}=\lambda$, where $\kappa, \lambda \in \mathbb{C}$. The supercharge, \mathcal{Q}, generates the SUSY transformations

$$
\begin{aligned}
& \delta A_{\alpha}=-2 i \kappa \psi_{\alpha 22}+2 i \lambda \psi_{\alpha 12} \quad \delta \eta_{11}=i \kappa\left(F_{45}+\left[\begin{array}{c}
\phi_{4}, \phi_{5}
\end{array}\right]+D_{\beta} \phi^{\beta}\right) \\
& \delta \phi_{\alpha}=2 \kappa \psi_{\alpha 22}+2 \lambda \psi_{\alpha 12} \quad \delta \eta_{12}=-i \lambda\left(D_{4}-i D_{5}\right)\left(\begin{array}{c}
\phi_{4} \\
4 \\
5
\end{array}\right) \\
& \delta A_{4}=2 i \kappa \eta_{12}+2 i \lambda \eta_{22} \quad \delta \eta_{21}=-i \lambda\left(F_{45}-\left[\begin{array}{c}
\phi_{4}, \phi_{5} \\
\hline
\end{array}\right]+D_{\beta} \phi^{\beta}\right) \\
& \delta A_{5}=-2 \kappa \eta_{12}+2 \lambda \eta_{22} \quad \delta \eta_{22}=-i \kappa\left(D_{4}+i D_{5}\right)\left(\underset{4}{\phi}+i \phi_{5}\right) \\
& \delta \phi_{4}=2 \kappa \eta_{21}+2 \lambda \eta_{11} \quad \delta \psi_{\alpha 12}=\kappa\left(\left[\phi_{\alpha}, \phi_{4}+i \phi_{5}\right]-i D_{\alpha}\left(\phi_{4}+i \phi_{5}\right)\right) \\
& \underset{5}{\delta \phi_{\curlywedge}}=2 i \kappa \eta_{21}+2 i \lambda \eta_{11} \\
& \delta \psi_{\alpha 22}=\kappa\left(\left[\phi_{\alpha}, \phi_{4}+i \phi_{5}\right]+i D_{\alpha}\left(\underset{4}{\phi_{\wedge}}+i \phi_{5}\right)\right) \\
& \delta \psi_{\alpha 11}=\kappa \varepsilon_{\alpha \beta \gamma}\left(\frac{i}{2} F^{\beta \gamma}-\frac{i}{2}\left[\phi^{\beta}, \phi^{\gamma}\right]-D^{\beta} \phi^{\gamma}\right)+\lambda\left(F_{\alpha 4}-i F_{\alpha 5}+i\left(D_{4}-i D_{5}\right) \phi_{\alpha}\right) \\
& \delta \psi_{\alpha 21}=\kappa\left(-F_{\alpha 4}-i F_{\alpha 5}+i\left(D_{4}+i D_{5}\right) \phi_{\alpha}\right)+\lambda \varepsilon_{\alpha \beta \gamma}\left(\frac{i}{2} F^{\beta \gamma}-\frac{i}{2}\left[\phi^{\beta}, \phi^{\gamma}\right]+D^{\beta} \phi^{\gamma}\right)
\end{aligned}
$$

Let us consider the equations $\delta \psi_{\alpha 11}=0$ and $\delta \psi_{\alpha 21}=0$.

For $\lambda=\bar{\kappa}$, and $\kappa=|\kappa| e^{i \rho}$, these equations are equivalent, and are given by

$$
\begin{equation*}
\mathcal{F}_{\alpha \bar{z}}=-\frac{i}{4} e^{-i 2 \rho} \varepsilon_{\alpha \beta \gamma} \overline{\mathcal{F}}^{\beta \gamma} . \tag{3.5}
\end{equation*}
$$

Here, we have defined the complex coordinates $z=x^{4}+i x^{5}$ and $\bar{z}=x^{4}-i x^{5}$, the complex gauge fields

$$
\begin{equation*}
\mathcal{A}_{\alpha}=A_{\alpha}+i \phi_{\alpha}, \quad \mathcal{A}_{\bar{z}}=\frac{1}{2}\left(A_{4}+i A_{5}\right) \tag{3.6}
\end{equation*}
$$

whereby we have the covariant derivatives $\mathcal{D}_{\alpha}=\partial_{\alpha}+\left[\mathcal{A}_{\alpha}, \cdot\right]$ and $\mathcal{D}_{\bar{z}}=\partial_{\bar{z}}+\left[\mathcal{A}_{\bar{z}}, \cdot\right]$, and the field strengths $\mathcal{F}_{\beta \gamma}=\left[\mathcal{D}_{\beta}, \mathcal{D}_{\gamma}\right]$, $\mathcal{F}_{\alpha \bar{z}}=\left[\mathcal{D}_{\alpha}, \mathcal{D}_{\bar{z}}\right]$.

The equation (3.5) is equivalent to

$$
\begin{equation*}
\mathcal{F}_{3 \widetilde{\gamma}}=-i e^{-i 2 \rho} 2 \varepsilon_{\widetilde{\gamma}} \widetilde{\mathcal{F}}_{\widetilde{\mathcal{\alpha}}}, \quad \mathcal{F}_{3 \bar{z}}=-\frac{i}{4} e^{-i 2 \rho} \varepsilon^{\widetilde{\beta} \widetilde{\gamma}} \overline{\mathcal{F}} \widetilde{\widetilde{\beta} \widetilde{\gamma}} \tag{3.7}
\end{equation*}
$$

where $\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}=1,2$. They can be written in the gauge $A_{3}=0$ (with $x^{3}=\tau$) as

$$
\begin{equation*}
\frac{d x^{i}}{d \tau}=-g^{i \bar{j}} \frac{\partial \bar{W}}{\partial x^{\bar{j}}} \tag{3.8}
\end{equation*}
$$

for

$$
\begin{equation*}
w=\frac{i e^{i 2 \rho}}{g_{5}^{2}} \int_{Y \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{3.9}
\end{equation*}
$$

and the field-space metric

$$
\begin{equation*}
g=-\frac{1}{2 g_{5}^{2}} \int_{Y \times \Sigma} d^{2} z d^{2} \times \operatorname{Tr}\left(\delta \mathcal{A}^{\alpha} \otimes \underset{\mathcal{A}}{\tilde{\alpha}}+\delta \overline{\mathcal{A}}^{\widetilde{\alpha}} \otimes \underset{\alpha}{\mathcal{A} \sim}+4 \delta A_{\bar{z}} \otimes \delta A_{z}+4 \delta A_{z} \otimes \delta A_{\bar{z}}\right), \tag{3.10}
\end{equation*}
$$

i.e., gradient flow equations!

We perform the following convenient redefinitions:

$$
\begin{align*}
& \sigma=\frac{1}{\sqrt{2}}\left(\phi_{\widehat{5}}-i \phi_{\widehat{4}}\right), \quad \bar{\sigma}=\frac{1}{\sqrt{2}}\left(\phi_{\widehat{5}}+i \phi_{\overparen{4}}\right), \tag{3.11}\\
& \chi_{\alpha}=\frac{(1-i)}{2^{5 / 4}} \psi_{\alpha 11}+\frac{(-1-i)}{2^{5 / 4}} \psi_{\alpha 21}, \quad \tilde{\chi}_{\alpha}=\frac{(-1-i)}{2^{5 / 4}} \psi_{\alpha 11}+\frac{(1-i)}{2^{5 / 4}} \psi_{\alpha 21} \\
& \eta=\frac{(1+i)}{2^{1 / 4}} \eta_{11}+\frac{(1-i)}{2^{1 / 4}} \eta_{21}, \quad \widetilde{\eta}=\frac{(-1+i)}{2^{1 / 4}} \eta_{11}+\frac{(-1-i)}{2^{1 / 4}} \eta_{21} \\
& \psi_{\alpha}=\frac{(1+i)}{2^{3 / 4}} \psi_{\alpha 12}+\frac{(-1+i)}{2^{3 / 4}} \psi_{\alpha 22}, \quad \widetilde{\psi}_{\alpha}=\frac{(-1+i)}{2^{3 / 4}} \psi_{\alpha 12}+\frac{(1+i)}{2^{3 / 4}} \psi_{\alpha 22} \tag{3.12}\\
& \Upsilon=\frac{(1-i)}{2^{3 / 4}} \eta_{12}+\frac{(1+i)}{2^{3 / 4}} \eta_{22}, \quad \widetilde{\Upsilon}=\frac{(-1-i)}{2^{3 / 4}} \eta_{12}+\frac{(-1+i)}{2^{3 / 4}} \eta_{22}, \\
& u=\frac{1}{2^{1 / 4}}[(1+i) \kappa+(1-i) \lambda], \quad v=\frac{1}{2^{1 / 4}}[(-1+i) \kappa+(-1-i) \lambda] . \tag{3.13}
\end{align*}
$$

The supersymmetry transformations are then (upon rescaling δ)

$$
\begin{array}{cc}
\delta_{t} A_{\alpha}=i \psi_{\alpha}+i t \widetilde{\psi_{\alpha}} & \delta_{t} \eta=t\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)+[\bar{\sigma}, \sigma] \\
\delta_{t} \phi_{\alpha}=i t \psi_{\alpha}-i \widetilde{\psi}_{\alpha} & \delta_{t} \tilde{\eta}=-\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)+t[\bar{\sigma}, \sigma] \\
\delta_{t} A_{4}=i \Upsilon+i t \widetilde{\Upsilon} & \delta_{t} \psi_{\alpha}=D_{\alpha} \sigma+t\left[\phi_{\alpha}, \sigma\right] \\
\delta_{t} A_{5}=i t \Upsilon-i \widetilde{\Upsilon} & \delta_{t} \widetilde{\psi}_{\alpha}=t D_{\alpha} \sigma-\left[\phi_{\alpha}, \sigma\right] \\
\delta_{t} \sigma=0 & \delta_{t} \Upsilon=D_{4} \sigma+t D_{5} \sigma \\
\delta_{t} \bar{\sigma}=i \eta+i t \tilde{\eta} & \delta_{t} \widetilde{\Upsilon}=t D_{4} \sigma-D_{5} \sigma \\
\delta_{t} \chi_{\alpha}=\frac{1}{2}\left[F_{\alpha 4}+D_{5} \phi_{\alpha}+\frac{1}{2} \varepsilon_{\alpha \beta \gamma}\left(F^{\beta \gamma}-\left[\phi^{\beta}, \phi^{\gamma}\right]\right)\right]+\frac{1}{2} t\left[F_{\alpha 5}-D_{4} \phi_{\alpha}+\varepsilon_{\alpha \beta \gamma} D^{\beta} \phi^{\gamma}\right] \\
\delta_{t} \widetilde{\chi}_{\alpha}=\frac{1}{2} t\left[F_{\alpha 4}+D_{5} \phi_{\alpha}-\frac{1}{2} \varepsilon_{\alpha \beta \gamma}\left(F^{\beta \gamma}-\left[\phi^{\beta}, \phi^{\gamma}\right]\right)\right]-\frac{1}{2}\left[F_{\alpha 5}-D_{4} \phi_{\alpha}-\varepsilon_{\alpha \beta \gamma} D^{\beta} \phi^{\gamma}\right]
\end{array}
$$

so we now have $\mathcal{Q}=\mathcal{Q}_{L}+t \mathcal{Q}_{R}, t=v / u$. Henceforth, we write $\delta \chi_{\alpha}=\mathcal{V}_{\alpha}(t)$ and $\delta \widetilde{\chi}_{\alpha}=t \widetilde{\mathcal{V}}_{\alpha}(t)$.

The transformations now take a form very similar to those of GL-twisted $\mathcal{N}=4$ SYM, as considered by Kapustin and Witten.

In fact, taking $\Sigma=\mathbb{C}^{\times}$, whereby the x^{5} direction is S^{1}, we can dimensionally reduce along the latter to obtain precisely the transformations of Kapustin and Witten via $A_{5} \rightarrow \phi_{4}, \chi_{\alpha} \rightarrow \chi_{\alpha 4}^{+}$, $\widetilde{\chi}_{\alpha} \rightarrow \chi_{\alpha 4}^{-}, \psi_{4} \rightarrow \Upsilon, \widetilde{\psi}_{4} \rightarrow \widetilde{\Upsilon}$.

To construct an action suitable for localization, we require that it is \mathcal{Q}-exact up to some metric-independent term.

To this end we require that the rescaled supersymmetry variation

$$
\begin{equation*}
\delta_{t}=\delta_{L}+t \delta_{R} \tag{3.15}
\end{equation*}
$$

is nilpotent up to gauge transformations. This is achieved by introducing auxiliary fields $\left(H_{\alpha}, H_{\alpha}, P\right)$ that modify the SUSY variations to

$$
\begin{array}{ll}
\delta_{t} \chi_{\alpha}=H_{\alpha} & \delta \bar{\sigma}=i \eta+i t \eta \\
\delta_{t} \widetilde{\chi}_{\alpha}=\widetilde{H}_{\alpha} & \delta \eta=t P+[\bar{\sigma}, \sigma] \\
\delta_{t} H_{\alpha}=-i\left(1+t^{2}\right)\left[\sigma, \chi_{\alpha}\right] & \delta \tilde{\eta}=-P+t[\bar{\sigma}, \sigma] \\
\delta_{t} \widetilde{H}_{\alpha}=-i\left(1+t^{2}\right)\left[\sigma, \widetilde{\chi}_{\alpha}\right] & \delta P=-i t[\sigma, \eta]+i[\sigma, \widetilde{\eta}]
\end{array}
$$

We shall require that our action gives the original transformations on-shell.

As a result, for any field Φ, we have the SUSY algebra

$$
\begin{equation*}
\delta_{t}^{2} \Phi=-i\left(1+t^{2}\right) \mathcal{L}_{\sigma}(\Phi) \tag{3.17}
\end{equation*}
$$

where $\mathcal{L}_{\sigma}(\Phi)$ is the change in Φ due to a gauge transformation generated by σ, to first order.

We shall define the \mathcal{Q}-exact part of our action to be $\delta_{t} \widetilde{V}$, where $\widetilde{V}=\widetilde{V}_{1}+\widetilde{V}_{2}$.

Here,

$$
\widetilde{V}_{1}=\frac{2}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x\left(\frac{4}{1+t^{2}}\right) \operatorname{Tr}\left(\chi_{\alpha}\left(\frac{1}{2} H^{\alpha}-\mathcal{V}^{\alpha}\right)+\widetilde{\chi}\left(\frac{1}{2} \widetilde{H}^{\alpha}-t \widetilde{\mathcal{V}}^{\alpha}\right)\right)
$$

while

$$
\widetilde{V}_{2}=-\frac{1}{2 t}\left(\delta_{L}-t \delta_{R}\right) \widetilde{V}_{2}^{\prime}
$$

with

$$
\widetilde{V}_{2}^{\prime}=\frac{2}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} \times \operatorname{Tr}\left(-\frac{1}{2} \eta \widetilde{\eta}-i \bar{\sigma}\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)\right) .
$$

The \mathcal{Q}-exact action, upon integrating out auxiliary fields, takes the form (suppressing fermions)

$$
\begin{aligned}
S_{1}= & \frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x \operatorname{Tr}\left(\frac{-4}{1+t^{2}}\left(\mathcal{V}^{\alpha} \mathcal{V}_{\alpha}+t^{2} \widetilde{\mathcal{V}}^{\alpha} \widetilde{\mathcal{V}}_{\alpha}\right)-\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)^{2}\right. \\
& \left.-2 D_{m} \bar{\sigma} D^{m} \sigma+[\bar{\sigma}, \sigma]^{2}-2\left[\phi_{\alpha}, \sigma\right]\left[\phi^{\alpha}, \bar{\sigma}\right]+2 \partial_{\alpha}\left(\bar{\sigma} D^{\alpha} \sigma\right)+\ldots\right)
\end{aligned}
$$

The first line is just

$$
\begin{aligned}
&-\frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} \times \operatorname{Tr}\left(F_{\alpha m} F^{\alpha m}+F_{45} F^{45}+\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta}+D_{m} \phi_{\alpha} D^{m} \phi^{\alpha}+D_{\alpha} \phi_{\beta} D^{\alpha} \phi^{\beta}\right. \\
&\left.+\frac{1}{2}\left[\phi_{\alpha}, \phi_{\beta}\right]\left[\phi^{\alpha}, \phi^{\beta}\right]+\partial_{\alpha}\left(\phi^{\alpha} D_{\beta} \phi^{\beta}\right)-\partial_{\gamma}\left(\phi_{\delta} D^{\delta} \phi^{\gamma}\right)+2 \partial_{\alpha}\left(F_{45} \phi^{\alpha}\right)\right)+S_{t}
\end{aligned}
$$

Apart from the t-dependent term S_{t} and total derivative terms, we have the standard terms of $5 \mathrm{~d} \mathcal{N}=2 \mathrm{SYM}$ (partially twisted).
S_{t} takes the form

$$
\begin{align*}
S_{t}=\frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} \times \varepsilon^{\alpha \beta \gamma} \operatorname{Tr} & \left(2\left(\frac{t-t^{-1}}{t+t^{-1}}\right)\left(\frac{1}{2} F_{\alpha 4} F_{\beta \gamma}+\frac{1}{2} \partial_{\alpha}\left(\phi_{\beta} D_{4} \phi_{\gamma}\right)+\partial_{\alpha}\left(F_{\beta 5} \phi_{\gamma}\right)\right)\right. \\
& \left.-\left(\frac{4}{t+t^{-1}}\right)\left(\frac{1}{2} F_{\alpha 5} F_{\beta \gamma}+\frac{1}{2} \partial_{\alpha}\left(\phi_{\beta} D_{5} \phi_{\gamma}\right)+\partial_{\alpha}\left(F_{\beta 4} \phi_{\gamma}\right)\right)\right) . \tag{3.18}
\end{align*}
$$

We choose to cancel this term by adding $-S_{t}$ to the action.

Boundary conditions/action

We may obtain the explicit NS5 boundary data at the origin of \mathbb{R}_{+} $\left(x^{3}=0\right)$ by lifting them from GL-twisted $4 \mathrm{~d} \mathcal{N}=4$ SYM. Firstly, we obtain the Dirichlet boundary conditions

$$
\begin{equation*}
\phi_{3}=\left.0\right|_{\partial \mathcal{M}}, \quad \sigma=\left.0\right|_{\partial \mathcal{M}}, \quad \bar{\sigma}=\left.0\right|_{\partial \mathcal{M}} \tag{3.19}
\end{equation*}
$$

whereby the total derivative terms in the \mathcal{Q}-exact action are just zero.

The fields $\left\{\phi_{1}, \phi_{2}\right\}$ and $\left\{A_{1}, A_{2}, A_{4}\right\}$ obey generalized Neumann boundary conditions, which imply a Dirichlet boundary condition on A_{3}.
These conditions are implied by including the boundary action
$S_{\partial \mathcal{M}}=\frac{1}{g_{5}{ }^{2}} \int_{\partial M} d^{4} \times \operatorname{Tr}\left(\left(t+t^{-1}\right)\left(\frac{1}{2} \varepsilon^{\tilde{\alpha} \tilde{\beta}} D_{5} \phi_{\tilde{\alpha}} \phi_{\tilde{\beta}}\right)+\left(\frac{t+t^{-1}}{t-t^{-1}}\right) \varepsilon^{i j k}\left(A_{i} \partial_{j} A_{k}+\frac{2}{3} A_{i} A_{j} A_{k}\right)\right)$,
where $\tilde{\alpha}, \tilde{\beta}=1,2$ and $i, j, k=1,2,4$.

```
D4-brane worldvolume theory with NS5 boundary conditions
Partial twist
Boundary conditions/action
Localization to 4d Chern-Simons theory
```

In addition, the boundary conditions on the fermionic fields are projection conditions.

Finally, the 4d boundary conditions were shown to imply that $\delta\left(A_{i}+w \phi_{i}\right)=0$ for $w=\frac{t-t^{-1}}{2}$. The lift of this to 5 d gives

$$
\delta\left(A_{\tilde{\alpha}}+w \phi_{\tilde{\alpha}}\right)=0
$$

and

$$
\delta\left(A_{4}+w A_{5}\right)=0
$$

Localization to 4d Chern-Simons theory

Our total action now takes the form

$$
\begin{equation*}
S=\delta_{t} \widetilde{V}-S_{t}+S_{\partial \mathcal{M}} \tag{3.20}
\end{equation*}
$$

In fact,
$-S_{t}+S_{\partial \mathcal{M}}=\frac{w-\bar{w}}{4} \frac{i \psi}{2 \pi} \int_{\partial M} d z_{w} \wedge \operatorname{Tr}\left(\mathcal{A}_{w} \wedge d \mathcal{A}_{w}+\frac{2}{3} \mathcal{A}_{w} \wedge \mathcal{A}_{w} \wedge \mathcal{A}_{w}\right)$
where

$$
\Psi=\frac{4 \pi i}{g_{5}^{2}}\left(\frac{t-t^{-1}}{t+t^{-1}}-\frac{t+t^{-1}}{t-t^{-1}}\right) .
$$

Here, we have defined the complex coordinates z_{w}, \bar{z}_{w} with corresponding derivatives

$$
\begin{align*}
& \partial_{z_{w}}=\frac{1}{2}\left(\partial_{4}+\bar{w} \partial_{5}\right) \\
& \partial_{\bar{z}_{w}}=\frac{1}{2}\left(\partial_{4}+w \partial_{5}\right), \tag{3.21}
\end{align*}
$$

and the complexified gauge fields

$$
\begin{equation*}
\mathcal{A}_{w \tilde{\alpha}}=A_{\tilde{\alpha}}+w \phi_{\tilde{\alpha}} \tag{3.22}
\end{equation*}
$$

(for $\tilde{\alpha}=1,2$) and

$$
\begin{equation*}
\mathcal{A}_{w \bar{z}_{w}}=\frac{1}{2}\left(A_{4}+w A_{5}\right) \tag{3.23}
\end{equation*}
$$

that are \mathcal{Q}-invariant along the boundary. Hence, the non- \mathcal{Q}-exact 4d CS term is \mathcal{Q}-invariant, and we have a \mathcal{Q}-invariant $5 d$ topological-holomorphic theory.

In what follows we shall consider $t \neq \pm i$, as this implies that the theory is completely independent of t.

Now, we localize by adding the \mathcal{Q}-exact term

$$
\begin{align*}
& -\frac{1}{\epsilon}\left\{\mathcal{Q}, \int_{\mathcal{M}} \operatorname{Tr}\left(\chi_{\alpha} \mathcal{V}^{\alpha}+\widetilde{\chi}_{\alpha}^{\prime} \tilde{\mathcal{V}}^{\alpha}+\eta^{\prime} \mathcal{V}_{0}\right)\right\} \\
= & -\frac{1}{\epsilon} \int_{\mathcal{M}} \operatorname{Tr}\left(\mathcal{V}_{\alpha} \mathcal{V}^{\alpha}+\widetilde{\mathcal{V}}_{\alpha} \tilde{\mathcal{V}}^{\alpha}+\mathcal{V}_{0} \mathcal{V}_{0}+\ldots\right), \tag{3.24}
\end{align*}
$$

where $\mathcal{V}_{0}=F_{45}+D_{\alpha} \phi^{\alpha}$, and $\left\{\mathcal{Q}, \chi_{\alpha}\right\}=\mathcal{V}_{\alpha}(t),\left\{\mathcal{Q}, \widetilde{\chi}_{\alpha}^{\prime}\right\}=\widetilde{\mathcal{V}}_{\alpha}(t)$, and $\left\{\mathcal{Q}, \widetilde{\eta}_{\alpha}^{\prime}\right\}=\widetilde{\mathcal{V}}_{0}$.

Then, for $t \in \mathbb{R}$, we have the localization configurations

$$
\begin{align*}
\mathcal{V}_{\alpha}(t) & =0 \\
\widetilde{\mathcal{V}}_{\alpha}(t) & =0 \tag{3.25}\\
\mathcal{V}_{0} & =0
\end{align*}
$$

In fact for $t \in \mathbb{R}$, we retrieve the gradient flow equations from $\mathcal{V}_{\alpha}(t)=0$ and $\widetilde{\mathcal{V}}_{\alpha}(t)=0$.

This choice of t allowed - for any finite, fixed Ψ there is always a convenient choice of $t \in \mathbb{R}$, and we have freedom to choose t.

The remaining localization equations (for σ) are trivial.

The 5d partially twisted theory can be interpreted as a 1d gauged A-model, with target space \mathfrak{A}, the space of all \mathcal{A}_{w} fields, and gauge group H, the space of maps from $Y \times \Sigma$ to $U(N)$.

For example, with the metric

$$
g=-\frac{1}{2 g_{5}^{2}} \int_{Y \times \Sigma} d^{2} z d^{2} \times \operatorname{Tr}\left(\delta \mathcal{A}^{\sim} \otimes \overline{\mathcal{A}} \sim \tilde{\alpha}+\delta \overline{\mathcal{A}}^{\alpha} \otimes \mathcal{A} \sim+4 \delta A_{\bar{z}} \otimes \delta A_{z}+4 \delta A_{z} \otimes \delta A_{\bar{z}}\right)
$$

moment map

$$
\mu=-\frac{1}{g_{5}^{2}}\left(D_{\widetilde{\alpha}} \phi^{\widetilde{\alpha}}+F_{45}\right),
$$

and superpotential

$$
W=-\frac{e^{i \alpha}}{g_{5}^{2}} \int_{Y \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

the standard terms $\frac{1}{4}|d W|^{2}+|\mu|^{2}$ are equal to

$$
-\frac{1}{g_{5}^{2}} \operatorname{Tr}\left(\frac{1}{2} F^{\tilde{\alpha} \tilde{\beta}} F_{\tilde{\alpha} \tilde{\beta}}+D^{\tilde{\alpha}} \phi^{\tilde{\beta}} D_{\tilde{\alpha}} \phi_{\tilde{\beta}}+\frac{1}{2}\left[\phi^{\tilde{\alpha}}, \phi^{\tilde{\beta}}\right]\left[\phi_{\tilde{\alpha}}, \phi_{\tilde{\beta}}\right]+4 F_{\tilde{z}}^{\tilde{\alpha}} F_{\tilde{\alpha} z}+4 D_{z} \phi_{\tilde{\alpha}} D_{\bar{z}} \phi^{\tilde{\alpha}}-4 F_{z \bar{z}} F_{z \bar{z}}\right) .
$$

Such a 1d model localizes to its boundary superpotential.**

Hence, our 5d theory is equivalent to

$$
\int_{\Gamma} D \mathcal{A} \exp \left(\frac{\Psi}{4 \pi} \int_{\partial M} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)\right) .
$$

Here, we have assumed that there is no fermion number anomaly, and used the path integral's independence of w to set $w=i$.

We also require boundary conditions $\mathcal{A} \in$ Crit W and $\mu=0$ at infinity on \mathbb{R}_{+}.
**. E. Witten, A New Look at the Path Integral of Quantum Mechanics, arXiv:1009.6032

```
D4-brane worldvolume theory with NS5 boundary conditions
Partial twist

For \(\frac{1}{\hbar}=\frac{-i \psi}{2}\), this is the path integral for 4d Chern-Simons theory, defined beyond perturbation theory with integration cycle \(\Gamma\).

To obtain lattice, we use F-strings ending on D4-brane boundary to realize Wilson lines.

\section*{4d Chern-Simons theory with boundary and a 3d WZW model}

\section*{The 3d Chiral WZW Model}

4d Chern-Simons theory defined on \(D \times \Sigma\), where \(D\) is a disk, is
\[
\begin{equation*}
S=\frac{1}{\hbar} \int_{D \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right), \tag{4.1}
\end{equation*}
\]
where \(\mathcal{A}\) is the partial connection \(\mathcal{A}=\mathcal{A}_{r} d r+\mathcal{A}_{\varphi} d \varphi+\mathcal{A}_{\bar{z}} d \bar{z}\).
Varying \(S\) gives
\[
\begin{equation*}
\delta S=\frac{1}{\hbar} \int_{D \times \Sigma} d z \wedge \operatorname{Tr}(\delta \mathcal{A} \wedge \mathcal{F}+d(\delta \mathcal{A} \wedge \mathcal{A})) \tag{4.2}
\end{equation*}
\]

To have EOM free from boundary corrections, we impose \(\mathcal{A}_{\bar{z}}=\left.0\right|_{\partial D}\).

Observe that
\(S=-\frac{1}{\hbar} \int_{D \times \Sigma} z \operatorname{Tr}(F \wedge F)+\frac{1}{\hbar} \int_{\partial D \times \Sigma} z \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)\),
(4.3)
where \(\mathcal{A}\) has been extended to a full connection over \(D \times \Sigma\), i.e., \(\mathcal{A}=\mathcal{A}_{r} d r+\mathcal{A}_{\varphi} d \varphi+\mathcal{A}_{z} d z+\mathcal{A}_{\bar{z}} d \bar{z}\).

The boundary term on the RHS of (4.3) vanishes using \(\mathcal{A}_{\bar{z}}=\left.0\right|_{\partial D}\) as well as \(\mathcal{A}_{\boldsymbol{z}}=\left.0\right|_{\partial D}\).

The remaining term is gauge invariant under large gauge transformations
\[
\begin{equation*}
\mathcal{A} \rightarrow U \mathcal{A} U^{-1}-d U U^{-1} \tag{4.4}
\end{equation*}
\]

However, we ought to restrict \(U\) such that the boundary conditions \(\mathcal{A}_{\bar{z}}=\mathcal{A}_{z}=\left.0\right|_{\partial D}\) are preserved. We shall achieve this by insisting that \(U\) tends to the identity element of \(G\) at the boundary.

Using \(\mathcal{A}_{\bar{z}}=\left.0\right|_{\partial D}\), we find
\[
\begin{equation*}
S=\frac{1}{\hbar} \int d z \wedge d r \wedge d \varphi \wedge d \bar{z} \operatorname{Tr}\left(2 \mathcal{A}_{\bar{z}} \mathcal{F}_{r \varphi}-\mathcal{A}_{r} \partial_{\bar{z}} \mathcal{A}_{\varphi}+\mathcal{A}_{\varphi} \partial_{\bar{z}} \mathcal{A}_{r}\right) \tag{4.5}
\end{equation*}
\]

Varying \(A_{\bar{z}}\) gives \(\mathcal{F}_{r \varphi}=0\). Solved by
\[
\begin{equation*}
\mathcal{A}_{r}=-\partial_{r} g g^{-1}, \quad \mathcal{A}_{\varphi}=-\partial_{\varphi} g g^{-1} \tag{4.6}
\end{equation*}
\]
where \(g: D \times \Sigma \rightarrow G\).

Then, substituting into \(S\), we find
\[
\begin{align*}
S(g)= & \frac{1}{\hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z} \operatorname{Tr}\left(\partial_{\varphi} g g^{-1} \partial_{\bar{z}} g g^{-1}\right) \\
& +\frac{1}{3 \hbar} \int_{D \times \Sigma} d z \wedge \operatorname{Tr}\left(d g g^{-1} \wedge d g g^{-1} \wedge d g g^{-1}\right) \tag{4.7}
\end{align*}
\]

Also, no Jacobian appears when transforming the measure, i.e.,
\[
\begin{equation*}
\frac{1}{\operatorname{vol} G} \int D \mathcal{A}_{r} D \mathcal{A}_{\varphi} \delta\left(\mathcal{F}_{r \varphi}\right)=\frac{1}{\operatorname{vol} G} \int D g . \tag{4.8}
\end{equation*}
\]

Now, \(\mathcal{A} \rightarrow U \mathcal{A} U^{-1}-d U U^{-1}\) amounts to \(g \rightarrow U g\), so we may change the value of \(g\) in the interior without changing its boundary value.

Hence, the action only depends on the value of \(g\) on the boundary, so we can divide out vol \(G\) to obtain
\[
\begin{equation*}
\int D g e^{-S(g)}, \tag{4.9}
\end{equation*}
\]
where \(g\) is now a map \(g: \partial D \times \Sigma \rightarrow G\). This is a \(\mathbf{3 d}\) "chiral" WZW model.

This model has a local \(G \times G\) symmetry under
\[
\begin{equation*}
g(\varphi, z, \bar{z}) \rightarrow \tilde{\Omega}(\varphi, z) g \Omega(z, \bar{z}) \tag{4.10}
\end{equation*}
\]
\(\tilde{\Omega}\) and \(\Omega\) correspond, respectively, to the conserved currents \(J_{\varphi}=-\frac{2}{\hbar} \partial_{\varphi} g g^{-1}\) and \(J_{\bar{z}}=-\frac{2}{\hbar} g^{-1} \partial_{\bar{z}} g\), that obey \(\partial_{\varphi} J_{\bar{z}}=0\) and \(\partial_{\bar{z}} J_{\varphi}=0\).

We can use \(J_{\varphi}\) to derive a current algebra.

\section*{Current Algebra via Canonical Quantization}

To compute Poisson brackets of \(J_{\varphi}\), we shall first take \(\bar{z}\) to be the time direction.

In general, for an action first order in time with variables \(\phi^{i}\),
\[
\begin{equation*}
I=\int d t \mathscr{A}(\phi) \frac{d \phi^{i}}{d t} \tag{4.11}
\end{equation*}
\]
we have
\[
\begin{equation*}
\delta I=\int d t \omega_{i j} \delta \phi^{i} \frac{d \phi^{j}}{d t} \tag{4.12}
\end{equation*}
\]
where \(\omega_{i j}=\frac{\partial}{\partial \phi^{i}} \mathscr{A}_{j}-\frac{\partial}{\partial \phi^{j}} \mathscr{A}_{i}\) is the symplectic structure on the classical phase space.

The Poisson bracket of any two functions \(X\) and \(Y\) on the phase space is then defined by
\[
\begin{equation*}
[X, Y]_{P B}=\omega^{i j} \frac{\partial X}{\partial \phi^{i}} \frac{\partial Y}{\partial \phi^{j}}, \tag{4.13}
\end{equation*}
\]
where \(\omega^{j k} \omega_{k l}=\delta_{l}^{j}\).

Since
\[
\begin{equation*}
\delta S=-\frac{2}{\hbar} \int d \varphi \wedge d z \wedge d \bar{z} \operatorname{Tr}\left(g^{-1} \delta g \partial_{\varphi}\left(g^{-1} \partial_{\bar{z}} g\right)\right) \tag{4.14}
\end{equation*}
\]
we have
\[
\omega=1_{\mathfrak{g}} \otimes \frac{(-2)}{\hbar} \frac{\partial}{\partial \varphi} \otimes 1_{z}
\]
where \(1_{\mathfrak{g}}\) acts on the Lie algebra index, \(\frac{(-2)}{\hbar} \frac{\partial}{\partial \varphi}\) acts on the \(\varphi\) coordinate, and \(1_{z}\) acts on the \(z\) coordinate.

Its inverse is
\[
\begin{equation*}
\delta^{a b} \frac{(-\hbar)}{2} \theta\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \tag{4.15}
\end{equation*}
\]

Let \(X=\operatorname{Tr} A \frac{\partial g}{\partial \varphi} g^{-1}(\varphi, z)\) and \(Y=\operatorname{Tr} B \frac{\partial g}{\partial \varphi^{\prime}} g^{-1}\left(\varphi^{\prime}, z^{\prime}\right)\), where \(A, B \in \mathfrak{g}\).

We compute the Poisson brackets \([X, Y]_{P B}\), and canonically quantize such that \([X, Y]_{P B} \rightarrow-i[X, Y]\). In this manner, we arrive at the current algebra
\[
\begin{aligned}
{\left[\operatorname{Tr} A J_{\varphi}(\varphi, z), \operatorname{Tr} B J_{\varphi}\left(\varphi^{\prime}, z^{\prime}\right)\right]=} & i \delta\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr}[A, B] J_{\varphi}(\varphi, z) \\
& -i \frac{2}{\hbar} \delta^{\prime}\left(\varphi-\varphi^{\prime}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr} A B
\end{aligned}
\]

Expanding currents in Fourier modes along \(S^{1}=\partial D\),
\[
\begin{equation*}
J_{\varphi}(\varphi, z)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} J_{\varphi}^{n}(z) e^{i n \varphi} \tag{4.16}
\end{equation*}
\]
gives
\[
\begin{aligned}
{\left[\operatorname{Tr} A J_{\varphi}^{n}(z), \operatorname{Tr} B J_{\varphi}^{m}\left(z^{\prime}\right)\right]=} & i \operatorname{Tr}[A, B] J_{\varphi}^{n+m}(z) \delta\left(z-z^{\prime}\right) \\
& -(2 \pi i) \frac{2}{\hbar}\left(i n \delta_{m+n, 0}\right) \delta\left(z-z^{\prime}\right) \operatorname{Tr} A B
\end{aligned}
\]
a \(\mathfrak{g}\) Kac-Moody algebra with holomorphic generators. But note that there is no quantization condition on \(\hbar\).

Now let \(z=\epsilon t+i \theta\), and compactify the \(\theta\) direction to be valued in \([0,2 \pi]\), and take \(\epsilon \rightarrow 0\). Expanding as
\[
\begin{equation*}
J_{\varphi}^{n}(\theta)=\frac{1}{2 \pi} \sum_{\tilde{n}=-\infty}^{\infty} J_{\varphi}^{n, \tilde{n}} e^{i \tilde{n} \theta} \tag{4.17}
\end{equation*}
\]
we find
\[
\begin{align*}
{\left[\operatorname{Tr} A J_{\varphi}^{n, \tilde{n}}, \operatorname{Tr} B J_{\varphi}^{m, \tilde{m}}\right]=} & i \operatorname{Tr}[A, B] J_{\varphi}^{n+m, \tilde{n}+\tilde{m}} \\
& -(2 \pi i)^{2} \frac{2}{\hbar} n \delta_{m+n, 0} \delta_{\tilde{m}+\tilde{n}, 0} \operatorname{Tr} A B \tag{4.18}
\end{align*}
\]

This is a two-toroidal Lie algebra. So our original algebra is an is an "analytically-continued" toroidal Lie algebra.

\section*{R-matrix from Local Boundary Operators}

Consider Wilson lines along \(D\) ending on \(\partial D\). These can be expressed in terms of local boundary operators since \(\left.\mathcal{A}\right|_{D}\) is pure gauge.
E.g., for a Wilson line in representation \(R\),
\[
\begin{equation*}
\mathcal{P} e^{\int_{t_{i}}^{t_{f}} \mathcal{A}}=g_{R}^{-1}\left(t_{f}\right) \mathcal{P} e^{\int_{t_{i}}^{t_{f}} \mathcal{A}^{\prime}} g_{R}\left(t_{i}\right) \tag{4.19}
\end{equation*}
\]
where \(\mathcal{A}=g \mathcal{A}^{\prime} g^{-1}-d g g^{-1}\). Setting \(\mathcal{A}^{\prime}=0\), we find that
\[
\begin{equation*}
\mathcal{P} e^{\int_{t_{i}}^{t_{f}}\left(-d g g^{-1}\right)}=g_{R}^{-1}\left(t_{f}\right) g_{R}\left(t_{i}\right) . \tag{4.20}
\end{equation*}
\]

We can thus compute correlation functions of Wilson lines via correlators of such boundary operators.

Let us try to retrieve the R-matrix, using
\[
\begin{aligned}
& \left\langle\mathcal{P} e^{\int_{\pi, z_{1}, \bar{z}_{1}}^{0, \bar{z}_{1}} \mathcal{L}_{R_{1}}} \otimes \mathcal{P} e^{\int_{3 \pi / 2, z_{2}, \bar{z}_{2}}^{\pi / 2, \bar{z}_{2}} \mathcal{A}_{R_{2}}}\right\rangle \\
= & \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle .
\end{aligned}
\]


Perpendicular Wilson lines on \(D\).

Bulk R-matrix computation (to order \(\hbar\) ) used perturbation theory around \(\mathcal{A}=0\) and free field propagators.

So we consider perturbation theory around \(g=\mathbb{1}\) :
\[
g=e^{\phi_{a} T^{a}}=\mathbb{1}+\phi_{a} T^{a}+\ldots
\]
whereby the 3d WZW kinetic term is
\[
\begin{align*}
& \frac{1}{\hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z} \operatorname{Tr}\left(\partial_{\varphi} g g^{-1} \partial_{\bar{z}} g g^{-1}\right) \\
= & -\frac{1}{\hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z} \quad \phi^{a} \partial_{\varphi} \partial_{\bar{z}} \phi_{a}+\ldots \tag{4.21}
\end{align*}
\]

We construct the generating functional
\[
\begin{align*}
Z_{0}[J] & =\frac{\int D \phi e^{-\frac{1}{\hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \lambda d \bar{z}\left(-\phi^{a} \partial_{\varphi} \partial_{\bar{z}} \phi_{\mathrm{a}}+\hbar J_{a} \phi^{a}\right)}}{\int D \phi e^{-\frac{1}{\hbar} \int_{S^{1} \times \Sigma} d \varphi \wedge d z \wedge d \bar{z}\left(-\phi^{2} \partial_{\varphi} \partial_{\bar{z}} \phi_{\mathrm{a}}\right)}}  \tag{4.22}\\
& =\exp \left(-\frac{\hbar}{4} \int d^{3} x \int d^{3} y J_{a}(x) \Delta^{a b}(x-y) J_{b}(y)\right),
\end{align*}
\]
where \(x=(\varphi, z, \bar{z}), y=\left(\varphi^{\prime}, z^{\prime}, \bar{z}^{\prime}\right)\), and \(\Delta^{a b}\) is the propagator which obeys
\[
\begin{equation*}
\partial_{\varphi} \partial_{\bar{z}} \Delta^{a b}(x)=\delta^{a b} \delta(x) \tag{4.23}
\end{equation*}
\]

It is given explicitly by
\[
\begin{equation*}
\Delta^{a b}(x)=\delta^{a b} \frac{1}{2 \pi i} \frac{1}{z} \widetilde{\Delta}_{\varphi} \tag{4.24}
\end{equation*}
\]
where,
\[
\begin{equation*}
\tilde{\Delta}_{\varphi}=\frac{1}{2 \pi}\left(\sum_{k=1}^{\infty} \frac{e^{i k \varphi}}{i k}+\varphi+\sum_{k=-\infty}^{-1} \frac{e^{i k \varphi}}{i k}\right) \tag{4.25}
\end{equation*}
\]
defined with a branch cut. The two point function for \(\phi\) is
\[
\begin{equation*}
\left\langle\phi^{a}(x) \phi^{b}(y)\right\rangle=-\frac{\hbar}{2} \Delta^{a b}(x-y) \tag{4.26}
\end{equation*}
\]

Now
\[
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle \\
= & \mathbb{1}+\left\langle\phi_{a}\left(0, z_{1}\right) \phi_{c}\left(\pi / 2, z_{2}\right)\right\rangle T_{R_{1}}^{a} \otimes T_{R_{2}}^{c}-\left\langle\phi_{a}\left(\pi, z_{1}\right) \phi_{c}\left(\pi / 2, z_{2}\right)\right\rangle T_{R_{1}}^{a} \otimes T_{R_{2}}^{c} \\
- & \left\langle\phi_{a}\left(2 \pi, z_{1}\right) \phi_{c}\left(3 \pi / 2, z_{2}\right)\right\rangle T_{R_{1}}^{a} \otimes T_{R_{2}}^{c}+\left\langle\phi_{a}\left(\pi, z_{1}\right) \phi_{c}\left(3 \pi / 2, z_{2}\right)\right\rangle T_{R_{1}}^{a} \otimes T_{R_{2}}^{c}+\ldots
\end{aligned}
\]

Finally, using the 2 pt. function for \(\phi\) we have
\[
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}, \bar{z}_{1}\right) g_{R_{1}}\left(\pi, z_{1}, \bar{z}_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2, z_{2}, \bar{z}_{2}\right) g_{R_{2}}\left(3 \pi / 2, z_{2}, \bar{z}_{2}\right)\right\rangle \\
= & \mathbb{1}+\frac{1}{2 \pi i} \frac{\hbar}{z_{1}-z_{2}} T_{R_{1}}^{a} \otimes T_{a R_{2}}+\ldots
\end{aligned}
\]

If we use the conventions of CWY, we find precise agreement with their computation.


Non-perpendicular Wilson lines on \(D\).

Here, the four-point function is
\[
\begin{aligned}
& \left\langle g_{R_{1}}^{-1}\left(0, z_{1}\right) g_{R_{1}}\left(\pi, z_{1}\right) \otimes g_{R_{2}}^{-1}\left(\pi / 2-\delta, z_{2}\right) g_{R_{2}}\left(3 \pi / 2-\delta, z_{2}\right)\right\rangle \\
= & \mathbb{1}+\frac{1}{2 \pi i} \frac{\hbar}{z_{1}-z_{2}} \frac{1}{2}\left(1+\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{k \pi}{2}\right) \cos (k \delta)}{k}\right) T_{R_{1}}^{a} \otimes T_{a R_{2}} .
\end{aligned}
\]

The sum is \(\delta\)-independent and equal to \(\pi / 4\), so once again we have agreement with CWY.

\section*{Conclusion and Future Directions}
- We have made use of string theory to derive an integration cycle that allows us to define 4d CS theory nonperturbatively.
- We have also found a new 3d WZW model dual to 4d CS theory, governed by a novel toroidal Lie algebra. This WZW model could be used to learn more about 4d CS.
- Future work involves including D2-branes in the D4-NS5 system to realize surface defects in the 4d CS theory, which then allows us to study integrable field theories.
- D5-NS5, D6-NS5 systems can be studied to realize higher dim. Chern-Simons theories, e.g., 5d CS and affine Yangian, etc.
- For the 3d WZW model, future work involves computing R-matrix to higher order in \(\hbar\), framing anomaly, OPEs, etc.

\section*{Thank you for your attention!}```

