Positive geometry in the diagonal limit of the conformal bootstrap

Ahmadullah Zahed

Based on 1906.07202 with Kallol Sen, Aninda Sinha

Centre for High Energy Physics, Indian Institute of Science, Bangalore

June 24, 2019

Outline

(1) Introduction

- Big Picture
(2) Conformal Bootstrap
(3) Positive Geometry in diagonal limit

4. Positivity Criteria

- Scalar blocks
(5) Unitarity Polytope and Crossing Plane
- $N=1$: Bounds on scalar operator
- Δ_{+}and Δ_{-}for large Δ_{ϕ}
- Interpretation of Δ_{+}and Δ_{-}from numerical bootstrap
- Constraints on the first two operator Δ_{1}, Δ_{2}.
- Kink from Positive Geometry

Big Picture

Conformal bootstrap \rightarrow geometry problem.

Taylor coefficients of

Unitarity \rightarrow four point function lie inside a polytope \mathbf{U}

The consistent solution of the conformal bootstrap entails finding of $U \cap X$

Taylor coefficients of
Crossing \rightarrow four point function lie on a plane \mathbf{X}.

The polytope \mathbf{U} is a cyclic polytope \rightarrow face structure known
The conditions for intersection $\mathbf{U} \cap \mathbf{X} \rightarrow$ New exact results of the spectrum
example
Analytic bounds on leading operators
Analytic bounds on sub-leading operators
Kink from the positive geometry.

Conformal Bootstrap

Conformal transformations fixes

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2 \Delta}}, \quad \text { Normalize } c=1 \\
\left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)\right\rangle=\frac{\lambda_{123}}{\left|x_{12}\right|^{2 \alpha_{123}}\left|x_{13}\right|^{2 \alpha_{132}}\left|x_{23}\right|^{2 \alpha_{33}}}, \quad \alpha_{i j k}=\frac{\Delta_{i}+\Delta_{j}-\Delta_{k}}{2} \\
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{\mathcal{A}(u, v)}{x_{12}^{2 \Delta_{\phi}} x_{34}^{2 \Delta_{\phi}}} \\
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, v=\frac{x_{11}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \\
u, v \text { are cross ratios }
\end{gathered}
$$

Conformal Bootstrap

$$
\begin{gather*}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{\mathcal{A}(u, v)}{x_{12}^{2 \Delta_{\phi}} x_{34}^{2 \Delta_{\phi}}} \\
u=\frac{x_{112}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} ; u=z \bar{z}, v=(1-z)(1-\bar{z}) \tag{2.2}\\
\mathcal{A}(u, v)=\sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{G}_{d, \Delta, \ell}(u, v) \tag{2.3}
\end{gather*}
$$

Conformal blocks $\mathcal{G}_{\Delta, \ell}(u, v)$ are
(1) Conformally invariant.
(2) Consistent with factorization.
(3) Consistent with OPE.

Conformal blocks are not crossing symmetric!

Conformal Bootstrap

Crossing Equation

$$
\begin{gather*}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\left\langle\phi\left(x_{1}\right) \phi\left(x_{4}\right) \phi\left(x_{3}\right) \phi\left(x_{2}\right)\right\rangle \\
\mathcal{A}(u, v)=\left(\frac{u}{v}\right)^{\Delta_{\phi}} \mathcal{A}(v, u) \\
\sum_{\Delta, \ell} C_{\Delta, \ell} \underbrace{\left(\mathcal{G}_{d, \Delta, \ell}(u, v)-\left(\frac{u}{v}\right)^{\Delta_{\phi}} \mathcal{G}_{d, \Delta, \ell}(v, u)\right)}_{F_{d, \Delta, \ell}^{\Delta_{\phi}}(u, v)}=0 \tag{2.4}
\end{gather*}
$$

Diagonal limit of Blocks

$$
u=z \bar{z}, v=(1-z)(1-\bar{z})
$$

Diagonal limit $Z \rightarrow \bar{Z}$

$$
\mathcal{A}(z)=\sum_{\Delta, \ell} c_{\Delta, \ell} \mathcal{G}_{d, \Delta, \ell}(z)
$$

$\mathcal{G}_{d, \Delta, \ell}(z)$ for ℓ is even

$$
\begin{aligned}
\mathcal{G}_{d, \Delta, \ell}(z)= & \frac{\left(\frac{z^{2}}{1-2}\right)^{\Delta / 2}(d-2)_{\ell}\left(\frac{\Delta+1}{2}\right)_{\frac{\ell}{2}}}{\left(\frac{d-2}{2}\right)_{\ell}\left(\frac{\Delta}{2}\right)_{\frac{\ell}{2}}\left(\frac{1}{2}(-d-\ell+\Delta+3)\right)_{\frac{\rho}{2}}} \sum_{r=0}^{\frac{\ell}{2}} \frac{\left(\frac{1}{2}\right)_{r}\left(\frac{\ell}{r}\right)\left(\frac{d-2+\ell}{2}\right)_{r}\left(\frac{2-d+\Delta-\ell}{2}\right)_{\frac{\rho}{2}-r}}{\left(\frac{1+\Delta}{2}\right)_{r}} \\
& \times{ }_{3} F_{2}\left(-\frac{d}{2}+\frac{\Delta}{2}+1, r+\frac{\Delta}{2}, \frac{\Delta}{2} ; r+\frac{\Delta}{2}+\frac{1}{2},-\frac{d}{2}+\Delta+1 ; \frac{z^{2}}{4(z-1)}\right) .
\end{aligned}
$$

Bootstrap in diagonal limit

Crossing Equation

$$
\begin{aligned}
& \mathcal{A}(z)=\left(\frac{z}{1-z}\right)^{2 \Delta_{\phi}} \mathcal{A}(1-z) \\
& 1+\sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{G}_{d, \Delta, \ell}(z)=\left(\frac{z}{1-z}\right)^{2 \Delta_{\phi}}+\left(\frac{z}{1-z}\right)^{2 \Delta_{\phi}} \sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{G}_{d, \Delta, \ell}(1-z) \\
& \sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{F}_{d, \Delta, \ell}(z)=1
\end{aligned}
$$

where

$$
\mathcal{F}_{d, \Delta, \ell}(z)=\frac{(1-z)^{2 \Delta_{\phi}} \mathcal{G}_{d, \Delta, \ell}(z)-z^{2 \Delta_{\phi}} \mathcal{G}_{d, \Delta, \ell}(1-z)}{z^{2 \Delta_{\phi}}-(1-z)^{2 \Delta_{\phi}}},
$$

$$
\sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{F}_{d, \Delta, \ell}(z)=1
$$

Taking derivatives of the equation around $z=1 / 2$

$$
\left.\sum_{\Delta, \ell} C_{\Delta, \ell} \partial_{z}^{2 m} \mathcal{F}_{d, \Delta, \ell}(z)\right|_{z=1 / 2}=0, m>0
$$

Crossing condition can be satisfied?.
Obtain bounds on leading operator dimension Δ_{1}.
The conditions says that Δ_{1} should be below the curve.

Positive Geometry in diagonal limit

Conformal bootstrap equations \rightarrow in the language of polytopes.
Taylor expansion around $z=\frac{1}{2}$ truncated upto $2 N+2$ terms.

$$
y=z-\frac{1}{2}
$$

$$
\begin{aligned}
\mathcal{A}(z) & =\mathcal{A}^{0}+\mathcal{A}^{1} y+\mathcal{A}^{2} y^{2}+\cdots+\mathcal{A}^{2 N+1} y^{2 N+1} \\
G_{d, \Delta, \ell}(z) & =G_{d, \Delta, \ell}^{0}+G_{d, \Delta, \ell}^{1} y+G_{d, \Delta, \ell}^{2} y^{2}+\cdots+G_{d, \Delta, \ell}^{2 N+1} y^{2 N+1}
\end{aligned}
$$

Conformal bootstrap $\rightarrow 2 N+1$-dimensional geometry problem.

$$
\begin{aligned}
& \mathcal{A}(z) \rightarrow \mathbf{A}=\left(\begin{array}{c}
A^{0} \\
A^{1} \\
\vdots \\
A^{2 N+1}
\end{array}\right) ; \mathcal{G}_{d, \Delta, \ell}(z) \rightarrow \mathbf{G}_{d, \Delta, \ell}=\left(\begin{array}{c}
G_{d, \Delta, \ell}^{0} \\
G_{d, \Delta, \ell}^{1, \Delta} \\
\vdots \\
G_{d, \Delta, \ell}^{2 N+1}
\end{array}\right):\left.F^{\prime} \equiv \frac{1}{l!} \partial_{z}^{\prime} F(z)\right|_{z=1 / 2}, F=\mathcal{A} \text { or } \mathcal{G} \\
& \\
& \mathbf{A}=\sum_{\text {Ahmadullah Zahed (IISC) }} \quad \begin{array}{c}
\Delta, \ell
\end{array} \\
& \text { Positive geometry in the diagonal limit of the conformal bootstrap }
\end{aligned}
$$

Now lets take an example of vectors in 2 d .
Lets say you know $\mathbf{a}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4} \quad c_{i}>0$ and $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ vectors form a convex tetragon \rightarrow given to you

What can you comment about vector "a"?

$$
\begin{gathered}
\downarrow \\
\text { Is "a" inside the tetragon or not? } \\
\downarrow
\end{gathered}
$$

In this case you can say " a " is inside that tetragon if you know $\sum_{i} c_{i}=1$

Now someone gives you further information that "a" lies on line connecting two points, say the line is $\left(v_{5}, v_{6}\right)$

$$
\Downarrow
$$

Determining the intersection of the line with the tetragon you will be more sure about the region where a lies.

Given the line $\left(v_{5}, v_{6}\right)$, you can get some idea where the tetragon will be.

$$
\stackrel{\downarrow}{\downarrow}
$$

You will be able to say that the smallest of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ should be bounded, otherwise it will not sometime intersect the tetragon.

For future reference,
$\sum_{i} c_{i}=1$ defines the convex hull of the vectors v_{i}.
This four points actually form a polytope in 2d. Convex polygon are cycilc polytope in 2 d .

We will play same game with

$$
\mathbf{A}=\sum_{\Delta, \ell} C_{\Delta, \ell} \mathbf{G}_{d, \Delta, \ell} ; \quad C_{\Delta, \ell}>0
$$

We can consider the expansion of $\mathrm{A} \rightarrow t \mathrm{~A}$ The cone spanned by $\mathbf{G}_{d, \Delta, \ell} \rightarrow \alpha_{\Delta, \ell} \mathbf{G}_{d, \Delta, \ell}, \alpha_{\Delta, \ell}>0$ $\mathbf{A}=t\binom{1}{\overrightarrow{\mathcal{A}}}$ in terms of $\mathbf{G}_{d, \Delta, \ell}=\alpha_{\Delta, \ell}\binom{1}{\vec{G}_{d, \Delta, \ell}},$. Gives $\sum \alpha_{\Delta, \ell} C_{\Delta, \ell} \equiv \sum C_{\Delta, \ell}^{\prime}=t$. So we have

$$
\overrightarrow{\mathcal{A}}=\sum_{\Delta, \ell} \lambda_{\Delta, \ell} \vec{G}_{d, \Delta, \ell}, \quad \lambda_{\Delta, \ell}=\frac{C_{\Delta, \ell}^{\prime}}{\sum C_{\Delta, \ell}^{\prime}}
$$

$\sum_{\Delta, \ell} \lambda_{\Delta, \ell}=1 \rightarrow$ convex hull of $\vec{G}_{d, \Delta, \ell} \rightarrow$ a polytope in $\mathbb{R}^{2 N+1}$.
$\mathbf{A}=\sum_{\Delta, \ell} C_{\Delta, \ell} \mathbf{G}_{d, \Delta, \ell} ; \quad C_{\Delta, \ell}>0 \rightarrow$ projective polytope in $\mathbb{P}^{2 N+1}$.

We will play same game with

$$
\mathbf{A}=\sum_{\Delta, \ell} C_{\Delta, \ell} \mathbf{G}_{d, \Delta, \ell} ; \quad C_{\Delta, \ell}>0
$$

So our next task will be to show that
We get a cyclic polytopes from the vectors $\mathbf{G}_{d, \Delta, \ell}$ (from Unitarity)
Also to show that \mathbf{A} lies on a plane (from Crossing) that intersects the polytope.

Cyclic Polytopes

Cyclic polytope which vertices have an ordering $v_{1}, \ldots v_{n}$ such that

$\left\langle\mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}}, \ldots, \mathbf{v}_{i_{D}}\right\rangle$, have same sign $\forall i_{1}<i_{2}<\cdots<i_{D}$.

Faces of cyclic polytope are known

Positivity Criteria

From CFT spectrum, the block vectors can be ordered simply in terms of increasing Δ.

Ordered set of vectors $\left(i_{i}, i_{2}, \cdots i_{D+1}\right) \quad \Delta_{i_{1}}<\Delta_{i_{2}}<\cdots<\Delta_{i_{D+1}}$.
Conditions for a cyclic polytope translates into

$$
\begin{aligned}
& \left\langle i_{1}, i_{2}, \cdots, i_{D+1}\right\rangle \equiv \epsilon_{1_{1} l_{1} \cdots I_{D+1}} G_{d, \Delta_{1}, \ell}^{l_{1}} \cdots G_{d, \Delta_{i_{D+1}}, \ell}^{l_{D+1}}, \quad \text { same sign },
\end{aligned}
$$

the positivity of a D-dimensional unitary polytope.

We give a single shot verification for the positivity.

Define,

$$
F_{m, n}=\left.\frac{1}{m!} \partial_{\Delta}^{n} \partial_{z}^{m} G_{d, \Delta, \ell}(z)\right|_{z=1 / 2}
$$

Then construct $\mathrm{K}_{2 N+1},(2 N+1) \times(2 N+1)$ matrix,

$$
\mathbf{K}_{2 N+1}(d, \Delta, \ell)=\left(\begin{array}{ccccc}
F_{0,0} & F_{1,0} & . . & . . & F_{2 N+1,0} \\
F_{0,1} & F_{1,1} & . . & . . & . . \\
. . & . & F_{i, j} & . . & . . \\
. . & . & . & . & . . \\
F_{0,2 N+1} & . . & . . & . . & F_{2 N+1,2 N+1}
\end{array}\right)
$$

Condition for positivity

$$
g_{i}=\frac{\left|\mathbf{K}_{i}(d, \Delta, \ell)\right|\left|\mathbf{K}_{i-2}(d, \Delta, \ell)\right|}{\left|\mathbf{K}_{i-1}(d, \Delta, \ell)\right|^{2}}>0
$$

$\Delta \gg d, \ell$ limit of diagonal block

Leading order Block,
$\mathcal{G}_{d, \Delta, \ell}^{\text {approx }}(z)=\frac{\sqrt{\pi} 2^{-\frac{3 d}{2}}+2 \Delta+3}{}(\sqrt{1-Z}+1)^{d / 2}\left(\frac{Z}{z+2 \sqrt{1-Z-2}}\right)^{-\frac{\Delta}{2}} \Gamma(d+\ell-2) \quad\left(1+O\left(\frac{1}{\Delta}\right)\right)$.

Computing g_{i} analytically

$$
g_{i} \approx 2 \sqrt{2}: \quad \forall i, \quad \Delta \gg d, \ell
$$

Figure: g_{i} vs Δ for scalar blocks for various d, plot range is $\Delta>\frac{d-2}{2}$

Unitary

So far we have learnt that
Unitarity demands

$$
\mathbf{A}=\sum_{\Delta, \ell} C_{\Delta, \ell} \mathbf{G}_{d, \Delta, \ell} ; \quad C_{\Delta, \ell}>0
$$

A lies inside the polytope spanned by block vectors $\mathbf{G}_{d, \Delta, \ell}$

Now we turn to Crossing Symmetry

$$
\mathcal{A}(z)=\left(\frac{z}{1-z}\right)^{2 \Delta_{\phi}} \mathcal{A}(1-z)
$$

Taylor Expand around $z=1 / 2$,
This equation relates odd $\mathcal{A}^{2 n+1}$ in terms of the even $\mathcal{A}^{2 n} \quad \mathcal{A}^{1}$
This in turn defines a hyperplane $\mathbf{X}\left[\Delta_{\phi}\right]$ which is a $(2 N+2) \times(N+1)$ matrix in $\mathbb{P}^{2 N+1}$.

Crossing Symmetry demands
A lies on the hyperplane $\mathbf{X}\left[\Delta_{\phi}\right]$

Crossing

Crossing Symmetry demands

$$
\mathcal{A}(z) \rightarrow \mathcal{A}=\left(\begin{array}{c}
\mathcal{A}^{0} \\
\mathcal{A}^{1} \\
\vdots \\
\mathcal{A}^{2 N+1}
\end{array}\right)
$$ A lies on the hyperplane $\mathbf{X}\left[\Delta_{\phi}\right]$

For example $N=2$

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{c}
\mathcal{A}^{0} \\
4 \Delta_{\phi} \mathcal{A}^{0} \\
\mathcal{A}^{2} \\
\frac{64}{15} \Delta_{\phi}\left(32 \Delta_{\phi}^{4}-20 \Delta_{\phi}^{2}+3\right) \mathcal{A}^{0}-\frac{16}{3} \Delta_{\phi}\left(4 \Delta_{\phi}^{2}-1\right) \mathcal{A}^{2}+4 \Delta_{\phi} \mathcal{A}^{4} \\
\frac{16}{3}\left(\Delta_{\phi}-4 \Delta_{\phi}^{3}\right) \mathcal{A}^{0}+4 \Delta_{\phi} \mathcal{A}^{2} \\
\vdots
\end{array}\right) \in \mathbb{P}^{2 N+1} \\
\text { and } \\
\mathbf{X}\left[\Delta_{\phi}\right]=\left(\begin{array}{ccc}
\\
\mathcal{A}^{0} & \mathcal{A}^{2} & \mathcal{A}^{4} \\
1 & 0 & 0 \\
4 \Delta_{\phi} & 0 & 0 \\
0 & 0 & 0 \\
\frac{16}{3}\left(\Delta_{\phi}-4 \Delta_{\phi}^{3}\right) & 0 & 1 \\
0 & 0 \\
\frac{64}{15} \Delta_{\phi}\left(32 \Delta_{\phi}^{4}-20 \Delta_{\phi}^{2}+3\right) & \frac{16}{3}\left(\Delta_{\phi}-4 \Delta_{\phi}^{3}\right) & 4 \Delta_{\phi}
\end{array}\right)
\end{gathered}
$$

Implementing Bootstrap

Now we have both ingredients for bootstrap in the projective picture. Unitarity demands
A lies inside the polytope spanned by block vectors $\mathbf{G}_{d, \Delta, \ell}$

> Crossing Symmetry demands
> \mathbf{A} lies on the hyperplane $\mathbf{X}\left[\Delta_{\phi}\right]$
i.e. the consistent solution of bootstrap entails the region

$$
\mathbf{U}[\Delta] \cap \mathbf{X}\left[\Delta_{\phi}\right] .
$$

The question now is given $\mathbf{U}[\Delta]$,
what are the conditions determining the intersection with $\mathbf{X}\left[\Delta_{\phi}\right]$.

The Story is

k-plane intersects with a D-dimensional polytope with a $D-k$ face at a point given by,

$$
\mathbf{v}_{1}\left\langle\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \ldots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle-\mathbf{v}_{2}\left\langle\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}, \ldots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle+\ldots
$$

For a point inside the polytope and satisfying the intersection property above,
$\left\langle\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \ldots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle,-\left\langle\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}, \ldots, \mathbf{v}_{d-k}, \mathbf{X}\right\rangle,\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}, \ldots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle$ must have the same sign.

A further simplification occurs when one of the vertex vectors is the identity operator $\mathbf{v}_{0}=(1,0,0 \ldots, 0)$ or the infinity operator $\mathbf{v}_{\infty}=(0,0 \ldots, 0,1)$ since this reduces the dimensionality of the problem.

$N=1$: Bounds on scalar operator

The two-dimensional facets consists of the following two sets

$$
(0, i, i+1), \quad(i, i+1, \infty)
$$

where " i " is $\mathbf{G}_{d, \Delta_{i}, 0}, \quad 0$ is the identity operator $\mathbf{G}_{d, \Delta_{0}, 0}=(1,0, \cdots, 0)$ and ∞ is $\mathbf{G}_{d, \Delta_{\infty}, 0}=(0,0, \cdots, 1)$.
The subscripts i and $\mathrm{i}+1$ label two operators $\Delta_{i}<\Delta_{i+1}$ with nothing in between

The crossing plane \mathbf{X} is one-dimensional, which is a 4×2 matrix

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & 0 \\
4 \Delta_{\phi} & 0 \\
0 & 1 \\
\frac{16}{3}\left(\Delta_{\phi}-4 \Delta_{\phi}^{3}\right) & 4 \Delta_{\phi}
\end{array}\right)
$$

Using the sign rule of determinant

The crossing plane \mathbf{X} intersects with the face $(0, i, i+1)$ if and only if

$$
\langle\mathbf{X}, i, i+1\rangle, \quad-\langle\mathbf{X}, 0, i+1\rangle, \quad\langle\mathbf{X}, 0, i\rangle, \quad \text { have same sign }
$$

Similarly the crossing plane \mathbf{X} intersects with the face $(i, i+1, \infty)$ if and only if

$$
\langle\mathbf{X}, i, i+1\rangle, \quad-\langle\mathbf{X}, \infty, i+1\rangle, \quad\langle\mathbf{X}, \infty, i\rangle \quad \text { have same sign }
$$

The crossing plane intersects with the polytope iff either one of the two conditions is satisfied.

Of course generically if one condition is satisfied the other will not be;
To extract useful constraints from these conditions, it is often useful to derive necessary (but not necessarily sufficient)
conditions by projecting the geometry to lower dimensions.

For example

We take \mathbf{X} to be intersect $\mathbf{U}\left[\left\{\Delta_{i}\right\}\right]$ on both kinds of faces by forcing

$$
\langle\mathbf{X}, i, i+1\rangle=0
$$

Also we take projection through identity $\langle 0, \mathbf{X}, \Delta\rangle=0$.
The crossing plane intersects with the block curve at two points.
These two points are the solution to the equation

$$
\langle 0, \mathbf{X}, \Delta\rangle=0, \quad \Delta_{+} \text {and } \Delta_{-}
$$

There must exist at least an operator with dimension Δ satisfying

$$
\Delta_{-}<\Delta<\Delta_{+}
$$

The solutions Δ_{+}, Δ_{-}for large Δ_{ϕ}

$$
\begin{aligned}
\Delta_{+}= & 2 \sqrt{2} \Delta_{\phi}+\frac{(2 \sqrt{2}-3) d+6}{4 \sqrt{2}}+\frac{12-d(d+6)}{128 \sqrt{2} \Delta_{\phi}}-\frac{3(d(d(d+2)-44)+88)}{2048 \sqrt{2} \Delta_{\phi}^{2}} \\
& +\frac{d(-d(d+6)(37 d-282)-7392)+15216}{131072 \sqrt{2} \Delta_{\phi}^{3}}+O\left(\frac{1}{\Delta_{\phi}^{4}}\right) \\
\Delta_{-}= & \sqrt{2} \Delta_{\phi}+\frac{1}{8}(4-3 \sqrt{2}) d-\frac{(d-6) d+12}{64 \sqrt{2} \Delta_{\phi}}-\frac{3\left((d-4)^{2} d-32\right)}{512 \sqrt{2} \Delta_{\phi}^{2}} \\
& +\frac{d(d((372-37 d) d-1188)+480)-1680}{16384 \sqrt{2} \Delta_{\phi}^{3}}+O\left(\frac{1}{\Delta_{\phi}^{4}}\right)
\end{aligned}
$$

We can also expand around $\Delta_{\Phi}=\Delta_{\phi}+a$

 We can choose a whatever we want.$$
\begin{aligned}
\Delta_{+}= & 2 \sqrt{2} \Delta_{\Phi}+\frac{1}{8}(-16 \sqrt{2} a+(4-3 \sqrt{2}) d+6 \sqrt{2})+\frac{12-d(d+6)}{128 \sqrt{2} \Delta_{\Phi}} \\
& +\frac{-16 a(d(d+6)-12)-3(d(d(d+2)-44)+88)}{2048 \sqrt{2} \Delta_{\Phi}^{2}} \\
& +\frac{-1024 a^{2}(d(d+6)-12)-384 a(d(d(d+2)-44)+88)+d(-d(d+6)(37 d-282)-7392)+15216}{131072 \sqrt{2} \Delta_{\Phi}^{3}} \\
& +O\left(\frac{1}{\Delta_{\Phi}^{4}}\right) \\
\Delta_{-}= & \sqrt{2} \Delta_{\Phi}+\left(\frac{1}{8}(4-3 \sqrt{2}) d-\sqrt{2} a\right)-\frac{(d-6) d+12}{64 \sqrt{2} \Delta_{\Phi}}+\frac{-8 a((d-6) d+12)-3\left((d-4)^{2} d-32\right)}{512 \sqrt{2} \Delta_{\Phi}^{2}} \\
& +\frac{-256 a^{2}((d-6) d+12)-192 a\left((d-4)^{2} d-32\right)+d(d((372-37 d) d-1188)+480)-1680}{16384 \sqrt{2} \Delta_{\Phi}^{3}} \\
& +O\left(\frac{1}{\Delta_{\Phi}^{4}}\right)
\end{aligned}
$$

Figure: Solid lines represent Δ_{+}, Δ_{-}using exact block, dashed lines represent $a=1$ and dotted are $a=0$.

Interpretation of Δ_{+}and Δ_{-}from numerical bootstrap

Crossing Symmetry

$$
1+\sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{G}_{d, \Delta, \ell}(z)=\left(\frac{z}{1-z}\right)^{2 \Delta_{\phi}}+\left(\frac{z}{1-z}\right)^{2 \Delta_{\phi}} \sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{G}_{d, \Delta, \ell}(1-z)
$$

Rearrange the equation a bit

$$
\sum_{\Delta, \ell} C_{\Delta, \ell} \mathcal{F}_{d, \Delta, \ell}(z)=1
$$

where

$$
\mathcal{F}_{d, \Delta, \ell}(z)=\frac{(1-z)^{2 \Delta_{\phi}} \mathcal{G}_{d, \Delta, \ell}(z)-z^{2 \Delta_{\phi}} \mathcal{G}_{d, \Delta, \ell}(1-z)}{z^{2 \Delta_{\phi}}-(1-z)^{2 \Delta_{\phi}}}
$$

We can write

$$
\left.\sum_{\Delta, \ell} C_{\Delta, \ell} \partial_{z}^{2} \mathcal{F}_{d, \Delta, \ell}(z)\right|_{z=1 / 2}=0
$$

Figure

It is clear that $\left.\partial_{z}^{2} \mathcal{F}_{d, \Delta, 0}(z)\right|_{z=1 / 2}$ changes its sign at indicated values. At least there should be one operator below Δ_{+}(the larger value) in order to satisfy equation $\left.\sum_{\Delta, \ell} C_{\Delta, \ell} \partial_{z}^{2} \mathcal{F}_{d, \Delta, \ell}(z)\right|_{z=1 / 2}=0$,

Constraints on the first two operator Δ_{1}, Δ_{2}.

For $\Delta_{1}<\Delta_{-}$we should have $\Delta_{2}<\Delta_{+}$, since there should atleast one operator between $\left(\Delta_{-}, \Delta_{+}\right)$ as we observed in $N=1$ case.

And also $\Delta_{1}>\Delta_{+}$not allowed if Δ_{1} is the leading operator.
Necessary conditions from $N=2$ is
For $\Delta_{-}<\Delta_{1}<\Delta_{+}, \Delta_{2}$ must be below the curve $\left\langle\mathbf{X}, 0, \Delta_{1}, \Delta_{2}\right\rangle=0$ otherwise some of the sign rule of determinant will not satisfied.

(a)

(b)

Figure: Black solid line represents Δ_{+}and black dashed Δ_{-}. The region below the curve is allowed. Before the black dashed line, $\Delta_{1}<\Delta_{\text {- }}$ and hence Δ_{2} must be smaller than Δ_{+}. After the dashed line $\Delta_{-}<\Delta_{1}, \Delta_{2}$ must be below the curve $\left\langle\mathbf{X}, 0, \Delta_{1}, \Delta_{2}\right\rangle=0$. Finally $\Delta_{1}>\Delta_{+}$is ruled out.

Figure: How the curve $\left\langle\mathbf{X}, 0, \Delta_{1}, \Delta_{2}\right\rangle=0$ changes if we put the second operator with spin? In figure we have taken 2D ising model $\Delta_{\phi}=\frac{1}{8}$ and used the spin $\ell=2$ block for the operator Δ_{2} i.e we used $\mathbf{G}_{2, \Delta_{2}, 2}$ instead of $\mathbf{G}_{2, \Delta_{2}, 0}$. One can see the feature $\Delta=2$ is allowed for $\ell=2$. Orange line is using spin-2 block for Δ_{2} and blue dashed line is using scalar block for Δ_{2}.

Kink from Positive Geometry

$$
d=2
$$

Figure: Δ_{1} vs Δ_{ϕ}

Kink from Positive Geometry

We consider 10 scalar operators Δ_{i} where Δ_{0} is the identity operator and Δ_{9} is the infinity vector.
Δ_{1} is the leading operator and $\Delta_{i}, i \geq 2$ are chosen randomly to be above Δ_{1} (but ordered).

The intersection conditions are now checked.
For $N=1$ we find essentially the same results as from Δ_{+}
For $N=2$, we find that there is a kink type feature in the plot as in the figure,

Kink from Positive Geometry

$$
d=2
$$

Δ_{1} can't be above the red line

Figure: Δ_{1} vs Δ_{ϕ}

Thank You

Polytopes

Computations

Given a polytopes in \mathbb{P}^{D} built out of $\left\{\mathbf{v}_{i}\right\}$ $\left(\mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}}, \ldots \mathbf{v}_{i_{D}}\right) \rightarrow$ facets we need,
$\left\langle\mathbf{v}_{i}, \mathbf{v}_{i_{1}}, \ldots \mathbf{v}_{i_{D}}\right\rangle$ have the same sign $\forall i$.
\mathbf{v}_{i} or i we simply refer to $\mathbf{G}_{d, \Delta, \ell}$

An example: 2d polygons.
Three points v_{1}, v_{2}, v_{3} in $2 d$ plane projectively associated with three-vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

If v_{1}, v_{2}, v_{3} collinear $\rightarrow\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle=0$,
i.e.

$$
\operatorname{det}\left(\begin{array}{lll}
v_{1}^{(x)} & v_{1}^{(y)} & v_{1}^{(z)} \\
v_{2}^{(x)} & v_{2}^{(y)} & v_{2}^{(z)} \\
v_{3}^{(x)} & v_{3}^{(y)} & v_{3}^{(z)}
\end{array}\right)=0 .
$$

If v_{3} is not on the line $\left(v_{1} v_{2}\right) \rightarrow\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle>0$ or $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle<0$, If v_{4}, v_{3} is on same side of $\left(v_{1} v_{2}\right) \rightarrow\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle,\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\rangle$ same sign

This generalize to 2d convex n-gon formed by the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{n}$. ($v_{i_{1}} v_{i_{2}}$) is a edge if $\left\langle\mathbf{v}_{i}, \mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}}\right\rangle$ have same sign ; $\forall i$.

In general D-dimension will be

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{i_{1}}, \mathbf{v}_{i_{2}} \ldots \mathbf{v}_{i_{d}}\right\rangle \text { have same sign } ; \forall i
$$

Backup Intersection explain

To see this
We again go back to 2d and ask what is the intersection the two lines spanned by the point pairs $(a b)$ and $(c d)$.
Point of intersection is $\langle\mathbf{c}, \mathbf{d}, \mathbf{b}\rangle \mathbf{a}-\langle\mathbf{c}, \mathbf{d}, \mathbf{a}\rangle \mathbf{b}$.
To prove that this point is indeed collinear with $(a b)$ and $(c d)$ one have to use $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle=0$.
A 2-plane $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ intersects a line $\mathbf{v}_{a}, \mathbf{v}_{b}$ in \mathbb{P}^{3} at the point

$$
\mathbf{v}_{a}\left\langle\mathbf{v}_{b}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle-\mathbf{v}_{b}\left\langle\mathbf{v}_{a}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle .
$$

Generalization of it a k-plan \mathbf{X} intersects with a $D-k$-face of the polytope of D-dimension at a point, which is given as
$\mathbf{v}_{1}\left\langle\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \cdots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle-\mathbf{v}_{2}\left\langle\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}, \cdots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle+\mathbf{v}_{3}\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}, \cdots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle+\cdots$,
This point id interior of the polytope iff

$$
\begin{aligned}
& \left\langle\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \cdots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle, \quad-\left\langle\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}, \cdots, \mathbf{v}_{D-k}, \mathbf{X}\right\rangle, \\
& \frac{\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}, \cdots, \cdots,\right.}{\text { Zaned }^{\prime}(\text { IISc) }}, \cdots \text { Positive geometry in the diagonal limit of the conformal bootstrap }
\end{aligned}
$$

Backup Positivity Criteria

$$
\left\langle i_{1}, i_{2}, \cdots, i_{D+1}\right\rangle \equiv \epsilon_{I_{1} I_{2} \cdots I_{D+1}} G_{d, \Delta_{i_{1}}, \ell}^{I_{1}} \cdots G_{d, \Delta_{i_{D+1}}, \ell}^{I_{D+1}}, \quad \text { same sign }
$$

The function

$$
f_{D+1}=c_{1} G_{d, \Delta, \ell}^{0}+c_{2} G_{d, \Delta, \ell}^{1}+c_{3} G_{d, \Delta, \ell}^{3}+\cdots+G_{d, \Delta, \ell}^{D}=0
$$

can't have a solutions.
So what are the constrains that block should have ?

Normalize the block vector by $G_{d, \Delta, \ell}^{0}=1$

By induction.
For $\mathrm{D}=1, f_{2}=c_{1}+c_{2} G_{d, \Delta, \ell}^{1}=0$ can not have a solutions.

$$
\Rightarrow \quad g_{1}=\left(G_{d, \Delta, \ell}^{1}\right)^{\prime}>0
$$

$$
\begin{gathered}
\text { For } D=2 \\
f_{3}=c_{1}+c_{2} G_{d, \Delta, \ell}^{1}+c_{3} G_{d, \Delta, \ell}^{2}=0 \text { can't have solutions, } \\
\Downarrow \\
c_{2}\left(G_{d, \Delta, \ell}^{1}\right)^{\prime}+c_{3}\left(G_{d, \Delta, \ell}^{2}\right)^{\prime}=\left(G_{d, \Delta, \ell}^{1}\right)^{\prime}\left(c_{2}+c_{3} \frac{\left(G_{d, \Delta, \ell}^{2}\right)^{\prime}}{\left(G_{d, \Delta, \ell}^{1}\right)^{\prime}}\right)=0 \\
\text { can't have solution. } \\
\Rightarrow g_{2}=\left(\frac{\left(G_{d, \Delta, \ell}^{2}\right)^{\prime}}{\left(G_{d, \Delta, \ell}^{1}\right)^{\prime}}\right)^{\prime}>0 \text { if } g_{1}=\left(G_{d, \Delta, \ell}^{1}\right)^{\prime}>0 . \\
\text { Similarly for D=3, } \quad g_{3}=\left(\frac{\left(\frac{\left(G_{d, \Delta, \ell}^{3}\right)^{\prime}}{\left(G_{d, \Delta, \ell}\right)^{\prime}}\right)^{\prime}}{\left(\frac{\left(\sigma_{d, \Delta, \ell}^{2}\right)^{\prime}}{\left(G_{d, \Delta, \ell}\right)^{\prime}}\right)^{\prime}}\right)^{\prime}>0
\end{gathered}
$$

We give a single shot verification for the positivity.
No need for induction method

We define,

$$
\begin{equation*}
F_{m, n}=\left.\frac{1}{m!} \partial_{\Delta}^{n} \partial_{z}^{m} G_{d, \Delta, \ell}(z)\right|_{z=1 / 2} \tag{12.1}
\end{equation*}
$$

Then construct $\mathrm{K}_{2 N+1},(2 N+1) \times(2 N+1)$ matrix,

$$
\mathbf{K}_{2 N+1}(d, \Delta, \ell)=\left(\begin{array}{ccccc}
F_{0,0} & F_{1,0} & . . & . . & F_{2 N+1,0} \\
F_{0,1} & F_{1,1} & . . & . . & . . \\
. . & . & F_{i, j} & . . & . . \\
. . & . . & . & . . & . . \\
F_{0,2 N+1} & . . & . . & . . & F_{2 N+1,2 N+1}
\end{array}\right)
$$

Condition for positivity discussed above, can be written in a more generic format,

$$
\begin{equation*}
g_{i}=\frac{\left|\mathbf{K}_{i}(d, \Delta, \ell)\right|\left|\mathbf{K}_{i-2}(d, \Delta, \ell)\right|}{\left|\mathbf{K}_{i-1}(d, \Delta, \ell)\right|^{2}}>0 \tag{12.2}
\end{equation*}
$$

This is results is equivalent to previous induction method results.

Positivity criterion in $\Delta \gg d, \ell$ limit

Block Vectors

$$
\begin{gathered}
\left.\frac{\partial_{2}^{m} \mathcal{G}_{d, \Delta, \ell(2)}}{m!}\right|_{z=\frac{1}{2}}=\frac{\sqrt{\pi}\left(2+\frac{3}{\sqrt{2}}\right)^{d / 2}(12 \sqrt{2}+17)^{-\frac{\Delta}{2}} \Delta^{m} 2^{-2 d+2 \Delta+\frac{3 m}{2}+3}\ulcorner(d+\ell-2)}{\Gamma\left(\frac{d-1}{2}\right)(2)_{m-1} \Gamma\left(\frac{d}{2}+\ell-1\right)}\left[1+O\left(\frac{1}{\Delta}\right)\right], \\
F_{m, n} \text { matrix } \\
F_{m, n}=\frac{\sqrt{\pi}\left(2+\frac{3}{\sqrt{2}}\right)^{d / 2}(12-8 \sqrt{2})^{\Delta} 2^{-2 d+\frac{3 m}{2}+3} \Delta^{m}(-\Delta)^{-n} \Gamma(d+\ell-2)}{\Gamma\left(\frac{d-1}{2}\right)(2)_{m-1} \Gamma\left(\frac{d}{2}+\ell-1\right)} \\
U(-n, m-n+1,-\Delta \log (12-8 \sqrt{2}))\left(1+O\left(\frac{1}{\Delta}\right)\right)
\end{gathered}
$$

computing g_{i} analytically

$$
g_{i} \approx 2 \sqrt{2}: \quad \forall i, \quad \Delta \gg d, \ell .
$$

