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Introduction Big Picture
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Constrains in CFT data,
or solving the theory

Feynman Diagrams Bootstrap

Polyakov Bootstrap,
Numerical Bootstrap,

etc

Difficult!!

Lagrangian Symmetries



Introduction Big Picture

Big Picture
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Conformal bootstrap → geometry problem.

Unitarity →
Taylor coefficients of
four point function
lie inside a polytope U

Crossing →
Taylor coefficients of
four point function
lie on a plane X.

}
The consistent solution of
the conformal bootstrap
entails finding of U ∩ X



Introduction Big Picture

The polytope U is a cyclic polytope → face structure known

The conditions for intersection U∩X→ New exact results of the spectrum

example
Analytic bounds on leading operators

Analytic bounds on sub-leading operators
Kink from the positive geometry.
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Conformal Bootstrap

Conformal Bootstrap

Conformal transformations fixes

〈φ(x)φ(y)〉 =
c

|x − y |2∆
, Normalize c = 1

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
λ123

|x12|2α123 |x13|2α132 |x23|2α33
, αijk =

∆i + ∆j −∆k

2

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
A(u, v)

x
2∆φ

12 x
2∆φ

34

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

(2.1)

u, v are cross ratios
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Transformations
xµ → aµ + xµ

xµ → λxµ

xµ → xµΛνµ

xµ → xµ−(x·x)bµ

1−2(b·x)+(b·b)(x·x)



Conformal Bootstrap

Conformal Bootstrap

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
A(u, v)

x
2∆φ

12 x
2∆φ

34

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

; u = zz , v = (1− z)(1− z) (2.2)

A(u, v) =
∑
∆,`

C∆,`Gd ,∆,`(u, v) (2.3)

Conformal blocks G∆,`(u, v) are

1 Conformally invariant.

2 Consistent with factorization.

3 Consistent with OPE.

Conformal blocks are not crossing symmetric!
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Conformal Bootstrap

Conformal Bootstrap

〈φ (x1)φ (x2)φ (x3)φ (x4)〉 = 〈φ (x1)φ (x4)φ (x3)φ (x2)〉

A(u, v) =
(u
v

)∆φ

A(v , u)

∑
∆,`

C∆,`

(
Gd ,∆,`(u, v)−

(u
v

)∆φ

Gd ,∆,`(v , u)

)
︸ ︷︷ ︸

F
∆φ
d,∆,`(u,v)

= 0 (2.4)
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Crossing Equation



Bootstrap in diagonal limit

Diagonal limit of Blocks

u = zz̄ , v = (1− z)(1− z̄)

Diagonal limit z → z̄

A(z) =
∑
∆,`

C∆,`Gd ,∆,`(z)

Gd ,∆,`(z) for ` is even

Gd,∆,`(z) =

(
z2

1−z

)∆/2
(d − 2)`

(
∆+1

2

)
`
2(

d−2
2

)
`

(
∆
2

)
`
2

(
1
2

(−d − `+ ∆ + 3)
)
`
2

`
2∑

r=0

(
1
2

)
r

( `
2
r

) (
d−2+`

2

)
r

(
2−d+∆−`

2

)
`
2
−r(

1+∆
2

)
r

× 3F2

(
−
d

2
+

∆

2
+ 1, r +

∆

2
,

∆

2
; r +

∆

2
+

1

2
,−

d

2
+ ∆ + 1;

z2

4(z − 1)

)
.
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Bootstrap in diagonal limit

Bootstrap in diagonal limit

Crossing Equation

A(z) =

(
z

1− z

)2∆φ

A(1− z)

1 +
∑
∆,`

C∆,`Gd,∆,`(z) =

(
z

1− z

)2∆φ

+

(
z

1− z

)2∆φ∑
∆,`

C∆,`Gd,∆,`(1− z)

∑
∆,`

C∆,`Fd ,∆,`(z) = 1 ,

where

Fd,∆,`(z) =
(1− z)

2∆φGd,∆,`(z)− z
2∆φGd,∆,`(1− z)

z
2∆φ − (1− z)

2∆φ
,
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Bootstrap in diagonal limit∑
∆,`

C∆,`Fd ,∆,`(z) = 1 ,

Taking derivatives of the equation around z = 1/2

∑
∆,`

C∆,`∂
2m
z Fd ,∆,`(z)|z=1/2 = 0 , m > 0

Crossing condition can be satisfied?.
Obtain bounds on leading operator dimension ∆1 .

The conditions says that ∆1 should be below the curve.
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Positive Geometry in diagonal limit

Positive Geometry in diagonal limit

Conformal bootstrap equations→ in the language of polytopes.
Taylor expansion around z = 1

2
truncated upto 2N + 2 terms.

A(z) =A0 +A1y +A2y2 + · · ·+A2N+1y2N+1

Gd ,∆,`(z) =G 0
d ,∆,` + G 1

d ,∆,`y + G 2
d ,∆,`y

2 + · · ·+ G 2N+1
d ,∆,` y

2N+1

Conformal bootstrap → 2N + 1-dimensional geometry problem.

A(z)→ A =


A0

A1

.

.

.

A2N+1

 ; Gd,∆,`(z)→ Gd,∆,` =


G0
d,∆,`

G1
d,∆,`

.

.

.

G2N+1
d,∆,`

 : F I ≡
1

I !
∂
I
zF (z)|z=1/2 , F = A or G

A =
∑
∆,`

C∆,`Gd ,∆,` ; C∆,` > 0
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y = z − 1
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Positive Geometry in diagonal limit

Now lets take an example of vectors in 2d.

Lets say you know a = c1v1 + c2v2 + c3v3 + c4v4 ci > 0
and v1, v2, v3, v4 vectors form a convex tetragon → given to you

↓
What can you comment about vector “a”?

↓
Is “a” inside the tetragon or not?

↓
In this case you can say “a” is inside that tetragon if you know

∑
i ci = 1
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v1

v4 v3

v2

a



Positive Geometry in diagonal limit

Now someone gives you further information
that “a” lies on line connecting two points, say the line is (v5, v6)

⇓
Determining the intersection of the line with the tetragon you will be more

sure about the region where a lies.
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v1

v4 v3

v2

(v5, v6)
a



Positive Geometry in diagonal limit

Given the line (v5, v6), you can get some idea where the tetragon will be.

↓
For example

You will be able to say that the smallest of v1, v2, v3, v4 should be
bounded,

↓
otherwise it will not sometime intersect the tetragon.
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v1

v4 v3

v2

(v5, v6)
a



Positive Geometry in diagonal limit

For future reference,∑
i ci = 1 defines the convex hull of the vectors vi .

This four points actually form a polytope in 2d.
Convex polygon are cycilc polytope in 2d.

We will play same game with

A =
∑
∆,`

C∆,`Gd ,∆,` ; C∆,` > 0
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v2

(v5, v6)
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Polytopes, Cyclic Polytopes and Positive Geometry

We can consider the expansion of A → t A
The cone spanned by Gd ,∆,` → α∆,`Gd ,∆,` , α∆,` > 0

i.e

A = t

(
1
~A

)
in terms of Gd ,∆,` = α∆,`

(
1

~Gd ,∆,`

)
, .

Gives
∑
α∆,`C∆,` ≡

∑
C ′∆,` = t.

So we have

~A =
∑
∆,`

λ∆,`
~Gd ,∆,` , λ∆,` =

C ′∆,`∑
C ′∆,`∑

∆,` λ∆,` = 1 → convex hull of ~Gd ,∆,` → a polytope in R2N+1.

A =
∑

∆,` C∆,`Gd ,∆,` ; C∆,` > 0 → projective polytope in P2N+1.
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Polytopes, Cyclic Polytopes and Positive Geometry

We will play same game with

A =
∑
∆,`

C∆,`Gd ,∆,` ; C∆,` > 0

So our next task will be to show that
We get a cyclic polytopes from the vectors Gd ,∆,` (from Unitarity)

Also to show that A lies on a plane (from Crossing) that intersects
the polytope.
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Polytopes, Cyclic Polytopes and Positive Geometry

Cyclic Polytopes

Cyclic polytope which vertices have an ordering v1, . . . vn
such that

〈vi1 , vi2 , . . . , viD 〉 , have same sign ∀ i1 < i2 < · · · < iD .

Faces of cyclic polytope are known
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Positive Geometry in CFT Positivity of the Diagonal Conformal Block

Positivity Criteria

From CFT spectrum, the block vectors can be ordered simply in terms of
increasing ∆.

Ordered set of vectors (ii , i2, · · · iD+1) ∆i1 < ∆i2 < · · · < ∆iD+1
.

Conditions for a cyclic polytope translates into

〈i1, i2, · · · , iD+1〉 ≡ εI1I2···ID+1
G I1
d ,∆i1

,` · · ·G
ID+1

d ,∆iD+1
,` , same sign ,

“i” is short hand for → Gd,∆i ,`
=



G0
d,∆i ,`

G1
d,∆i ,`

...

G2N+1
d,∆i ,`



the positivity of a D−dimensional unitary polytope.
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Positivity Criteria

We give a single shot verification for the positivity.

Define,

Fm,n =
1

m!
∂∆

n ∂z
mGd ,∆,`(z)|z=1/2

Then construct K2N+1, (2N + 1)× (2N + 1) matrix,

K2N+1(d ,∆, `) =


F0,0 F1,0 .. .. F2N+1,0

F0,1 F1,1 .. .. ..
.. .. Fi,j .. ..
.. .. .. .. ..

F0,2N+1 .. .. .. F2N+1,2N+1



Condition for positivity

gi =
|Ki (d ,∆, `)| |Ki−2(d ,∆, `)|

|Ki−1(d ,∆, `)|2
> 0 ,
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Positivity Criteria

∆� d , ` limit of diagonal block

Leading order Block,

Gapproxd,∆,` (z) =

√
π2−

3d
2

+2∆+3 (√1− Z + 1
)d/2

(
Z

Z+2
√

1−Z−2

)−∆
2

Γ(d + `− 2)

Γ
(

d−1
2

)
Γ
(

d
2

+ `− 1
) (

1 + O

(
1

∆

))
.

Computing gi analytically

gi ≈ 2
√

2 : ∀ i , ∆� d , ` .
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Positivity Criteria

Δ∼0.22
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(d) gi vs ∆ for d = 4

Figure: gi vs ∆ for scalar blocks for various d , plot range is ∆ > d−2
2

From the plots (Figure [2]) it is clear that all the gi ’s goes as 2
√

2 for
∆� 1. All the gi ’s are not positive around the unitary bounds on ∆, i.e.
∆ ≈ d−2

2 . There is a nice feature that the minimum of the plots go up
with increasing values of i . From the ∆� 1 analysis we can immediately
say that the minimum should go above the axis for some values of ∆.
Another observation is that we have taken the minimum value of gi till g9

they lies in a curve1 and this curve cross the axis. Interestingly if we
include g11 it lies in that curve too!. In the Figure(2) we have indicated
approximately where the curve of minimum crosses the axis.
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Unitarity Polytope and Crossing Plane

Unitary

So far we have learnt that
Unitarity demands

A =
∑
∆,`

C∆,`Gd ,∆,` ; C∆,` > 0

A lies inside the polytope spanned by block vectors Gd ,∆,`
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Unitarity Polytope and Crossing Plane

Now we turn to Crossing Symmetry

A(z) =

(
z

1− z

)2∆φ

A(1− z) .

Taylor Expand around z = 1/2,
This equation relates odd A2n+1 in terms of the even A2n

This in turn defines a hyperplane X[∆φ] which is a (2N + 2)× (N + 1)
matrix in P2N+1.

Crossing Symmetry demands
A lies on the hyperplane X[∆φ]
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A(z)→ A =


A0

A1

.

.

.

A2N+1

 .



Unitarity Polytope and Crossing Plane

Crossing

Crossing Symmetry demands
A lies on the hyperplane X[∆φ]
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A(z)→ A =


A0

A1

.

.

.

A2N+1

 .



Unitarity Polytope and Crossing Plane

For example N = 2

A =



A0

4∆φA0

A2

16
3

(
∆φ − 4∆3

φ

)
A0 + 4∆φA2

64
15

∆φ

(
32∆4

φ − 20∆2
φ + 3

)
A0 − 16

3
∆φ

(
4∆2
φ − 1

)
A2 + 4∆φA4

.

.

.


∈ P2N+1

and

X[∆φ] =



A0 A2 A4

1 0 0
4∆φ 0 0

0 1 0
16
3

(
∆φ − 4∆3

φ

)
0 0

0 0 1
64
15

∆φ

(
32∆4

φ − 20∆2
φ + 3

)
16
3

(
∆φ − 4∆3

φ

)
4∆φ
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Unitarity Polytope and Crossing Plane

Implementing Bootstrap

Now we have both ingredients for bootstrap in the projective picture.
Unitarity demands

A lies inside the polytope spanned by block vectors Gd ,∆,`

Crossing Symmetry demands
A lies on the hyperplane X[∆φ]

i.e. the consistent solution of bootstrap entails the region
U[∆] ∩ X[∆φ].
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Unitarity Polytope and Crossing Plane

The question now is given U[∆],
what are the conditions determining the intersection with X[∆φ].

The Story is
k−plane intersects with a D−dimensional polytope with a D − k face at a

point given by,

v1〈v2, v3, v4, . . . , vD−k ,X〉 − v2〈v1, v3, v4, . . . , vD−k ,X〉+ . . . .

For a point inside the polytope and satisfying the intersection property
above,

〈v2, v3, v4, . . . , vD−k ,X〉 ,−〈v1, v3, v4, . . . , vd−k ,X〉 , 〈v1, v2, v4, . . . , vD−k ,X〉 ,

must have the same sign.
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Unitarity Polytope and Crossing Plane

A further simplification occurs
when one of the vertex vectors is

the identity operator v0 = (1, 0, 0 . . . , 0)
or the infinity operator v∞ = (0, 0 . . . , 0, 1)

since this reduces the dimensionality of the problem.
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

N = 1: Bounds on scalar operator

The two-dimensional facets consists of the following two sets
(0, i , i + 1), (i , i + 1,∞)

where “i” is Gd ,∆i ,0, 0 is the identity operator Gd ,∆0,0 = (1, 0, · · · , 0)
and ∞ is Gd ,∆∞,0 = (0, 0, · · · , 1) .

The subscripts i and i+1 label two operators ∆i < ∆i+1 with nothing in
between
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

The crossing plane X is one-dimensional, which is a 4× 2 matrix

X =


1 0

4∆φ 0
0 1

16
3

(
∆φ − 4∆3

φ

)
4∆φ
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

Using the sign rule of determinant
The crossing plane X intersects with the face (0, i , i + 1) if and only if

〈X, i , i + 1〉, −〈X, 0, i + 1〉, 〈X, 0, i〉, have same sign

Similarly the crossing plane X intersects with the face (i , i + 1,∞) if and
only if

〈X, i , i + 1〉, −〈X,∞, i + 1〉, 〈X,∞, i〉 have same sign
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

The crossing plane intersects with the polytope iff either one of the two
conditions is satisfied.

Of course generically if one condition is satisfied the other will not be;

To extract useful constraints from these conditions,
it is often useful to derive

necessary
(but not necessarily sufficient)

conditions by projecting the geometry to lower dimensions.
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

For example
We take X to be intersect U [{∆i}] on both kinds of faces by forcing

〈X, i , i + 1〉 = 0

Also we take projection through identity 〈0,X,∆〉 = 0.

The crossing plane intersects with the block curve at two points.
These two points are the solution to the equation

〈0,X,∆〉 = 0, ∆+ and ∆−

There must exist at least an operator with dimension ∆ satisfying

∆− < ∆ < ∆+

.
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

The solutions ∆+,∆− for large ∆φ

∆+ = 2
√

2∆φ +

(
2
√

2− 3
)
d + 6

4
√

2
+

12− d(d + 6)

128
√

2∆φ

−
3(d(d(d + 2)− 44) + 88)

2048
√

2∆2
φ

+
d(−d(d + 6)(37d − 282)− 7392) + 15216

131072
√

2∆3
φ

+ O

(
1

∆4
φ

)

∆− =
√

2∆φ +
1

8

(
4− 3

√
2
)
d −

(d − 6)d + 12

64
√

2∆φ

−
3
(
(d − 4)2d − 32

)
512
√

2∆2
φ

+
d(d((372− 37d)d − 1188) + 480)− 1680

16384
√

2∆3
φ

+ O

(
1

∆4
φ

)
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

We can also expand around ∆Φ = ∆φ + a
We can choose a whatever we want.

∆+ = 2
√

2∆Φ +
1

8

(
−16
√

2a +
(

4− 3
√

2
)
d + 6

√
2
)

+
12− d(d + 6)

128
√

2∆Φ

+
−16a(d(d + 6)− 12)− 3(d(d(d + 2)− 44) + 88)

2048
√

2∆2
Φ

+
−1024a2(d(d + 6)− 12)− 384a(d(d(d + 2)− 44) + 88) + d(−d(d + 6)(37d − 282)− 7392) + 15216

131072
√

2∆3
Φ

+ O

(
1

∆4
Φ

)

∆− =
√

2∆Φ +

(
1

8

(
4− 3

√
2
)
d −
√

2a

)
−

(d − 6)d + 12

64
√

2∆Φ

+
−8a((d − 6)d + 12)− 3

(
(d − 4)2d − 32

)
512
√

2∆2
Φ

+
−256a2((d − 6)d + 12)− 192a

(
(d − 4)2d − 32

)
+ d(d((372− 37d)d − 1188) + 480)− 1680

16384
√

2∆3
Φ

+ O

(
1

∆4
Φ

)
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator
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(d) ∆+,∆− vs ∆φ for d = 4

Figure: Solid lines represent ∆+,∆− using exact block,
dashed lines represent a = 1 and dotted are a = 0.
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator

Interpretation of ∆+ and ∆− from numerical bootstrap

Crossing Symmetry

1 +
∑
∆,`

C∆,`Gd,∆,`(z) =

(
z

1− z

)2∆φ

+

(
z

1− z

)2∆φ∑
∆,`

C∆,`Gd,∆,`(1− z)

Rearrange the equation a bit∑
∆,`

C∆,`Fd ,∆,`(z) = 1 ,

where

Fd ,∆,`(z) =
(1− z)2∆φGd ,∆,`(z)− z2∆φGd ,∆,`(1− z)

z2∆φ − (1− z)2∆φ
,

We can write∑
∆,`

C∆,`∂
2
zFd ,∆,`(z)|z=1/2 = 0 ,
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Unitarity Polytope and Crossing Plane N = 1: Bounds on scalar operator
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zFd,∆,`(z)|z=1/2 vs ∆ for d = 4

Figure

It is clear that ∂2
zFd ,∆,0(z)|z=1/2 changes its sign at indicated values. At

least there should be one operator below ∆+ (the larger value) in order to
satisfy equation

∑
∆,` C∆,`∂

2
zFd ,∆,`(z)|z=1/2 = 0 ,
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Unitarity Polytope and Crossing Plane Constraints on the first two operator ∆1, ∆2.

Constraints on the first two operator ∆1, ∆2.

For ∆1 < ∆− we should have ∆2 < ∆+,
since there should atleast one operator between (∆−,∆+)

as we observed in N = 1 case.

And also ∆1 > ∆+ not allowed if ∆1 is the leading operator.

Necessary conditions from N = 2 is
For ∆− < ∆1 < ∆+, ∆2 must be below the curve 〈X, 0,∆1,∆2〉 = 0

otherwise some of the sign rule of determinant will not satisfied.
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Unitarity Polytope and Crossing Plane Constraints on the first two operator ∆1, ∆2.
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Figure: Black solid line represents ∆+ and black dashed ∆−. The region below
the curve is allowed. Before the black dashed line, ∆1 < ∆− and hence ∆2 must
be smaller than ∆+. After the dashed line ∆− < ∆1, ∆2 must be below the
curve 〈X, 0,∆1,∆2〉 = 0. Finally ∆1 > ∆+ is ruled out.
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Unitarity Polytope and Crossing Plane Constraints on the first two operator ∆1, ∆2.
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0

2

4

6

8

10
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Figure: How the curve 〈X, 0,∆1,∆2〉 = 0 changes if we put the second operator
with spin? In figure we have taken 2D ising model ∆φ = 1

8 and used the spin
` = 2 block for the operator ∆2 i.e we used G2,∆2,2 instead of G2,∆2,0. One can
see the feature ∆ = 2 is allowed for ` = 2. Orange line is using spin-2 block for
∆2 and blue dashed line is using scalar block for ∆2.
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Unitarity Polytope and Crossing Plane Kink from Positive Geometry

Kink from Positive Geometry
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Unitarity Polytope and Crossing Plane Kink from Positive Geometry

Kink from Positive Geometry

We consider 10 scalar operators ∆i

where ∆0 is the identity operator and ∆9 is the infinity vector.

∆1 is the leading operator and ∆i , i ≥ 2 are chosen randomly to be above
∆1 (but ordered).

The intersection conditions are now checked.

For N = 1 we find essentially the same results as from ∆+

For N = 2, we find that there is a kink type feature in the plot as in the
figure,
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Unitarity Polytope and Crossing Plane Kink from Positive Geometry

Kink from Positive Geometry
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Thank You

Thank You
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Backup Polytopes

Polytopes

Computations

Given a polytopes in PD built out of {vi}
(vi1 , vi2 , . . . viD ) → facets

we need,

〈vi , vi1 , . . . viD 〉 have the same sign ∀ i .

vi or i we simply refer to Gd,∆,`
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Backup Polytopes

An example: 2d polygons.

Three points v1, v2, v3 in 2d plane projectively associated with
three-vectors v1, v2, v3.

If v1, v2, v3 collinear → 〈v1, v2, v3〉 = 0,
i.e.

det

 v
(x)
1 v

(y)
1 v

(z)
1

v
(x)
2 v

(y)
2 v

(z)
2

v
(x)
3 v

(y)
3 v

(z)
3

 = 0 .

If v3 is not on the line (v1v2) → 〈v1, v2, v3〉 > 0 or 〈v1, v2, v3〉 < 0,

If v4, v3 is on same side of (v1v2) → 〈v1, v2, v3〉 , 〈v1, v2, v4〉
same sign
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Backup Polytopes

This generalize to 2d convex n-gon
formed by the vectors v1, v2, . . . vn .

(vi1vi2) is a edge if

〈vi , vi1 , vi2〉 have same sign ; ∀ i .

In general D-dimension will be

〈vi , vi1 , vi2 . . . vid 〉 have same sign ; ∀ i .
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Backup Intersection explain

Backup Intersection explain

To see this
We again go back to 2d and ask what is the intersection the two lines

spanned by the point pairs (ab) and (cd).
Point of intersection is 〈c,d,b〉 a− 〈c,d, a〉b.

To prove that this point is indeed collinear with (ab) and (cd) one have to
use 〈v1, v2, v3〉 = 0.

A 2-plane v1, v2, v3 intersects a line va, vb in P3 at the point

va 〈vb, v1, v2, v3〉 − vb 〈va, v1, v2, v3〉 .
Generalization of it a k-plan X intersects with a D − k-face of the

polytope of D-dimension at a point, which is given as

v1 〈v2, v3, v4, · · · , vD−k ,X〉 − v2 〈v1, v3, v4, · · · , vD−k ,X〉+ v3 〈v1, v2, v4, · · · , vD−k ,X〉+ · · · ,

This point id interior of the polytope iff

〈v2, v3, v4, · · · , vD−k ,X〉 , − 〈v1, v3, v4, · · · , vD−k ,X〉 ,
〈v1, v2, v4, · · · , vD−k ,X〉 , · · · , have same sign
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Backup Positivity Criteria

Backup Positivity Criteria

〈i1, i2, · · · , iD+1〉 ≡ εI1I2···ID+1
G I1
d ,∆i1

,` · · ·G
ID+1

d ,∆iD+1
,` , same sign ,

The function

fD+1 = c1G
0
d ,∆,` + c2G

1
d ,∆,` + c3G

3
d ,∆,` + · · ·+ GD

d ,∆,` = 0

can’t have a solutions.
So what are the constrains that block should have ?
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Backup Positivity Criteria

By induction.

For D=1, f2 = c1 + c2G
1
d ,∆,` = 0 can not have a solutions.

⇒ g1 =
(
G 1
d ,∆,`

)′
> 0
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Backup Positivity Criteria

For D = 2
f3 = c1 + c2G

1
d ,∆,` + c3G

2
d ,∆,` = 0 can’t have solutions,

⇓

c2

(
G 1
d ,∆,`

)′
+ c3

(
G 2
d ,∆,`

)′
=
(
G 1
d ,∆,`

)′(
c2 + c3

(G2
d,∆,`)

′

(G1
d,∆,`)

′

)
= 0

can’t have solution.

⇒ g2 =

(
(G2

d,∆,`)
′

(G1
d,∆,`)

′

)′
> 0 if g1 =

(
G 1
d ,∆,`

)′
> 0.

Similarly for D=3, g3 =


 (

G3
d,∆,`

)′(
G1
d,∆,`

)′
′

 (
G2
d,∆,`

)′(
G1
d,∆,`

)′
′

′

> 0

and so on.
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Backup Positivity Criteria Positivity Criteria

We give a single shot verification for the positivity.
No need for induction method

We define,

Fm,n =
1

m!
∂∆

n ∂z
mGd ,∆,`(z)|z=1/2 (12.1)

Then construct K2N+1, (2N + 1)× (2N + 1) matrix,

K2N+1(d ,∆, `) =


F0,0 F1,0 .. .. F2N+1,0

F0,1 F1,1 .. .. ..
.. .. Fi,j .. ..
.. .. .. .. ..

F0,2N+1 .. .. .. F2N+1,2N+1


Condition for positivity discussed above,

can be written in a more generic format ,

gi =
|Ki (d ,∆, `)| |Ki−2(d ,∆, `)|

|Ki−1(d ,∆, `)|2
> 0 , (12.2)

This is results is equivalent to previous induction method results.
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Backup Positivity Criteria Positivity Criteria

Positivity criterion in ∆� d , ` limit

Block Vectors

∂mz Gd,∆,`(z)

m!

∣∣∣∣
z= 1

2

=

√
π
(

2 + 3√
2

)d/2 (
12
√

2 + 17
)−∆

2 ∆m2
−2d+2∆+ 3m

2
+3

Γ(d + `− 2)

Γ
(

d−1
2

)
(2)m−1Γ

(
d
2

+ `− 1
) [

1 + O

(
1

∆

)]
,

Fm,n matrix

Fm,n =

√
π
(

2 + 3√
2

)d/2 (
12− 8

√
2
)∆

2−2d+ 3m
2

+3∆m(−∆)−nΓ(d + `− 2)

Γ
(

d−1
2

)
(2)m−1Γ

(
d
2

+ `− 1
)

U
(
−n,m − n + 1,−∆ log

(
12− 8

√
2
))(

1 + O(
1

∆
)

)

computing gi analytically

gi ≈ 2
√

2 : ∀ i , ∆� d , ` .
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