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In the late ‘60’s, Migdal and Polyakov" developed a “bootstrap” formulation

K. G. Wilson 121

of critical phenomena based on a skeleton Feynman graph expansion, in which
all parameters including the expansion parameter inself would be determined
self-consistently. They were unable to solve the bootstrap equations because of
their complexity, although after the €& expansion about four dimensions was
discovered, Mack showed that the bootstrap could be solved to lowest order in
¢ . If the 1971 renormalization group ideas had not been developed, the Migdal-
Polyakov bootstrap would have been the most promising framework of its time
for trying to further understand critical phenomena. However, the renor-
malization group methods have proved both easier to use and more versatile,
and the bootstrap receives very little attention today.

Wilson-Nobel lecture 1982
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FIG. 2. (a) Diagrams determining up to order u,’.

FIG. 1. (a) Diagram giving the lowest-order correc- (b) Diagrams determining D(q) to order u’.
tion to the propagator. The two lines with internal
index & form a loop; the sum over & gives a factor of
N. (b) Diagram giving the leading correction to the
four-point function (¢ is summed over). (c) Bubble
graphs for vertex function involving ¢ or §¥. The
wavy line represents ¢? or J¢; the straight lines refer
to the elementary fields ¢, ¥, or ¥. The indicesk and I
are summed over.



Epsilon expansion

Epsilon-expansion; Wilson;Wilson-Fisher; Wilson-Kogut; Polyakov;.Mack.....Rychkov, Tan

O(N) model /d4_€£13 [(a,u¢z)2 _|_>\(¢Z¢Z)2}

® Wilson-Fisher fixed point.

® 3d Ising model (critical point of water)

N=1e=1
® 2d Ising model

N=1e=2
® XY model

N=2e=1



This is an asymptotic series!

N +2 N + 2
€ (
N + 38 2(N + 8)3

Agz =d— 2+ 13N + 44)€”

d=2—1.136 actual = 1

Ising
d=3— 1.45 numerics ~ 1.41
expts ~ 1.41
XY d=3—1.54 expt~1.51

International
space station
superfluid He

Wilson, Wilson-Fisher experiment

1970’s: RG
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Conformal scream




A new Iincarnation of the conformal bootstrap will
enable us to produce the Wilson-Fisher results
algebraically, including yielding new results for
OPE. No Feynman diagrams will be needed.



Time Logic diagram




Review of standard bootstrap

Operator Product Expansion

D(0)9(x) ~ Y cap(a?)Bol2 BTt 40y, L, (0)

® Operator relation. |
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Review of standard bootstrap

Operator Product Expansion

5(0)6(x) ~ Zaﬂ@ﬂmxm 250y (0

® Operator relation. |
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Review of standard bootstrap

Operator Product Expansion

5(0)6(x) ~ Zaﬂ@ﬂmxm 250y (0

® Operator relation. |



Review of standard bootstrap

Operator Product Expansion

o(000x) ~ S a 2fadelodengn . oo, . 0)

® Operator relation. éq E
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“direct- “crossed-
channel” channel”
Crossing

Early work: Ferrara, Gatto, Grillo; Polyakov; Modern revival: Rattazzi, Rychkov, Tonni,Vichi; Many, many others
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Ti0x i T
“Cross- u= 222ty = 2

SPRY L7139y L7349y
ratios

u=zz,v=(1-—2)(1-2)

($(1)9(22)9(3)6(24)) = —5——55—Alu, )

L9 L3y

CROSSING EQUATION

A(u,v) = (2)A% A(v, u)

U

NON-PERTURBATIVE!!
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(+0,A>d—2+/ ¢ =0 A>
FA ¢ : Combination of conformal blocks

Observe shape around mid-point. With non-zero spins satisfying unitarity
bounds, it is impossible to satisfy the bootstrap constraints.VVe need at least
one scalar in the OPE with some bounded conformal dimension. Plot
allowed dimension of lightest scalar in OPE vs dimension of external scalar.



Numerical bounds in fractional
dimensions

1309.5089, EI-Showk, Paulos, Poland,
Rychkov, Simmons-Duffin,Vichi
building on 2008 work by Rattazzi,
Rychkov, Tonni and Vichi



Islands from multiple correlators

1.60 | 0(3)
1551
0(2)
vV "'SO>
<
» Do islands shrink to
1457 point?
+|sin
1.40: .
0514 0516 0518 0520 0522 0524
A

o
Kos, Poland, Simmons-Duffin,Vichi

2016



Numerical vs Analytical

u
z v

)2 A(v, u)




The simplest question: 2d Ising model

1d-bootstrap
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The simplest question: 2d Ising model

1d-bootstrap

A(u,v) = \/ilv% \/1—|—\/ﬂ+\/5

Diagonal limit : z — Z

1
A(Z) — 1 — ZCAZAQFl(/\,/\,Q/\,Z)
(1—2)1 X




The simplest question: 2d Ising model

1d-bootstrap

A(u,v) = \/ilv% \/1—|—\/ﬂ+\/5

Diagonal limit : z — Z
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The simplest question: 2d Ising model

1d-bootstrap

A(u,v) = \/ilv% \/1—|—\/ﬂ+\/5

Diagonal limit : z — Z

Az) = —— =3 Caz (AL A 24, 2) AcZ
(1—2)1 X

o= 1 11 1 7 29 107 277 4183 48337 184837
277473273847 10240 286720 4128768 60555264 ° 3598712832 215922769920 3262832967630



The simplest question: 2d Ising model

1d-bootstrap

A(u,v) = %\/1—%\/_4—\/_

Diagonal limit : z — Z

1
A
A(Z) — 1 E CAZ 2F1(/\7/\72/\72) A & Z
(1—2)3
Or =11 1 1 1 7 29 107 277 4183 48337 184837
AT "47327 3847 102407 286720 4128768 60555264 35987128327 215922769920 3262832967680
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Mellin transform of
correlator
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Mellin transform of
correlator

s —>1/4—s



CA:n ’
vl (§)
| L[
Mellin transform of A(z) = _/ ds( © ) M (s)
correlator 270 J i 1 -2
(-1 - -
Vs - I 4+szr( 5) s—1/4—s
I'(=1)

Mellin transform of FO oy — L/m ds( - )S M (s
block a ) )i als)




CA:n ’
vmnT (3)
Mellin transform of A(2) = _/ ds( - ) M (s)
correlator 2 ) _ino 1=z
1 _
]\[(S):F( 4+82F( 8)' s 1/d=s
['(—7)

100 S
Mellin transform of 2, — L/ d - Mo
block S als)




Mellin transform of A(z) = _/ ds ( - ) M (s)
correlator

[(—s) s—1/4—s

- @,y L [ >\
Mellin transform of FA (2) = 2_7”/ ds( ) M4 (s)

block —ico A1 =2
M (s) = D(2A) T2(s)T(A — s)
AV T2(A) (A + )

n—0oo ~—2s—1/2 Does not converge
\
CA:TL MA:TL (S) r T everywhere. Needed to

generate the s=1/4 pole



C — 0} 4
A vrnl (3
Mellin transform of Az) = _/ e ( 2 ) M(s)
correlator 2T ) o 1 -2
ko | Ml
F _l ( F B O o
]\[(S): ( i TS ( 9). >_<9%1/4 S
(-4 J ¢ ¢
Mellin transform of @y 1 /1oc ds [ 2 S M- (;
block AW =5m )L P ims) Mal)
['(2A) T?(s)I'(A -
M (s) = D2 TN — )
I2(A) T(A+s)
n—0oo ~—2s—1/2 Does not converge
CA:TLMA:TL(S) r T everywhere. Needed to

generate the s=1/4 pole



Mellin transform of A(z) = _/ ds ( - ) M (s)
correlator
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Mellin transform of FA (2) = 2_7”/ ds( ) M4 (s)
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Mellin transform of A(z) = _/ ds( © ) M(s)

correlator 2T ) i 1 -2
SN <
;‘i ) F(—ﬁ + s>3<—s> s—1/4—s
N T Iy

Mellin transform of F@(z) — L /m ds ( - ) MK (s)

block A 2mt Joioo \1—2
A) T2 (s)T(A —
M (s) = LCA) TA = 5)
[2(A)  T(A +s)

n—0oo ~—2s—1/2 Does not converge
\
CA:TL MA:TL (S) r T everywhere. Needed to

generate the s=1/4 pole



Z CaMa(s

stmple poles

Position space:
power law

Z CAMA(2A¢ — 8)

double poles

Position space:
logs

Close
on right



['(—3 4+ s)['(—s)

IS

M(s) =

)
F(=7)

Symmetric under s — Z — S



[(—%+s

M(s) = I‘(—i

['(—s)
)

Symmetric under s — Z — S

1. Can we expand using a basis that makes this symmetry
manifest: a crossing symmetric basis?



[(—%+s

M(s) = I‘(—i

['(—s)
)

Symmetric under s — Z — S

. Can we expand using a basis that makes this symmetry
manifest: a crossing symmetric basis?

. Cannot just add the crossed block as it has double poles on

the right which would be incompatible with s-channel OPE.



1.

(=5 +9)
[(—3

V(s = §<—s>

Symmetric under s — Z — S

Can we expand using a basis that makes this symmetry
manifest: a crossing symmetric basis?

Cannot just add the crossed block as it has double poles on
the right which would be incompatible with s-channel OPE.
This gives a hint: we should add these spurious poles also
In the s-channel with the hope that together with the
crossed channel, they will cancel.



Can we use a crossing symmetric Witten diagram-like
basis? A potential advantage is that in order to get
something that is manifestly crossing symmetric we will
not have to sum over an infinite number of operators. Flip
side: check consistency with OPE.

d(za) S(z1) ¢(z4) ﬁf’(wl)fi’(m)
+ ’4 + &}
#(23) ¢(12>¢($3) ¢(x2>¢(rcs)

Mellin amplitude ?=7? Sum over exchange Witten diagrams




Polyakov-Mellin bootstrap

Non-Hamiltonian approach to conformal quantum field theory

A. M. Polyakov

L. D. Landau Theoretical Physics Institute, USSR Academy of Sciences
(Submitted July 9, 1973)
Zh. Eksp. Teor. Fiz. 66, 23-42 (January 1974)

The completeness requirement for the set of operators appearing in field theory at short distances is
formulated, and replaces the S-matrix unitarity condition in the usual theory. Explicit expressions are
obtained for the contribution of an intermediate state with given symmetry in the Wightman
function. Together with the “locality” condition, the completeness condition leads to a system of
algebraic equations for the anomalous dimensions and coupling constants; these equations can be |
regarded as sum rules for these quantities. The approximate solutions found for these equations in a X
space of 4—¢ dimensions give results equivalent to those of the Hamiltonian approach.




Polyakov-Mellin bootstrap

Non-Hamiltonian approach to conformal quantum field theory

A. M. Polyakov

L. D. Landau Theoretical Physics Institute, USSR Academy of Sciences
(Submitted July 9, 1973)
Zh. Eksp. Teor. Fiz. 66, 23-42 (January 1974)

The completeness requirement for the set of operators appearing in field theory at short distances is
formulated, and replaces the S-matrix unitarity condition in the usual theory. Explicit expressions are
obtained for the contribution of an intermediate state with given symmetry in the Wightman
function. Together with the “locality” condition, the completeness condition leads to a system of
algebraic equations for the anomalous dimensions and coupling constants; these equations can be
regarded as sum rules for these quantities. The approximate solutions found for these equations in a
space of 4—¢ dimensions give results equivalent to those of the Hamiltonian approach.

What does this have to do with Witten
diagrams?!!



® 1510.07770 (w K. Sen)

® [609.00572,1611.08407(w R. Gopakumar,
A. Kaviraj and K. Sen), 1612.05032 (w A.
Kaviraj and P. Dey), 1709.06110 (w P. Dey
and Kausik Ghosh)

e [809.10975 (w R. Gopakumar)

23



® This new approach is connected to using tree
level exchange Witten diagrams as a kinematical
basis.

® You should think about this as a crossing
symmetric kinematical basis. Suggestive of a dual
AdS description.



dsdt

(271)?

Hjalmar Mellin (Finnish
mathematician)

f@= | T Feye as

— 200

[D(—1)°T (s + t)°T'(Agy — 8)°M(s, t)uv’

M(s,t) : Mellin amplitude

25



Witten diagrams in 1974

MELLIN SPACE

PRESENT

1 Pz(Aq',-l—%) [ 1—A¢,+%,1—A¢+%,é—8.1]
DAY

— .F 2
=  25-AT(I+A-h) *° 1+28-51+A—h
Mack; Penedones: Paulos

1 100
miD(Ay — 5)2 / dvqlvlgl=v]

— 17200

U 2A 4 —h-+v
D(2FY — s)T?(=25)

(A—h)+v

Spectral function. Polyakov gave a
_ o different physical argument for the
1974 M (V) o Q[V]Q[ V] double poles. Exactly the same form!!
Momentum/position space are not
ideal to see the simplification we see in
Mellin space.



Conformal

block—Dolan polynicnlzials
& Osborn
S L(85E —)T(F— —s)
GA’g(u, U) = /_ dsdt u ’UtFQ(—t)FQ(S -+ t)F2(A¢ — S) 2 F2(A¢ — 82) PA’g(S, t)

Alu,v) = Z CreGae(u,v) d = 2h
AL

Impose crossing symmetry as a constraint.



AdS-Witten 1 T2(A,+ 2520 [ 1—A¢,+%,1—A¢+%,é—8.1]

) 2
diagram 2s—A T(1+A—h) 3k 1+5 —51+A—h

[(z —s)T'(5 — s)

[2 (A¢ — S)

Conformal block

Do not look anything like each otherl!!



A quick derivation of the Witten
diagram meromorphic piece

B(t/2 —5,Ap —7/2)['(T/2 — s)

D(r/2-s)D(F/2-s) L5
F2(A¢ — 8) F(A¢ — T/Z)F(A¢ — 8)
—Z (Ap —7/2—n), T(7/2—7/2—n) regular

7'/2 +n —s)['(Ay —7/2) I'(Ap — 7/2 — n) |

_ I'(h—A) SiﬂQW(A¢—S)3F2 _7/2_577_/2_A¢ +A177/2_A¢+1;1-
T/2 — 5 Sinzﬂ(Aqg—%) i T/2—=s+LA-h+1

This gets multiplied by

+regular .
the Mack polynomial

29



A quick derivation of the Witten
diagram meromorphic piece

B(t/2 —5,Ap —7/2)['(T/2 — s)

D(r/2-s)D(F/2-s) L5
F2(A¢ — 8) F(A¢ — T/Q)F(A¢ — 8)
—Z (Ap —7/2—n), T(7/2—7/2—n) regular

7'/2 + n—s)I'(Ay —7/2) I'(Ay — 7/2 —n) |

_ I'(h—A) SiﬂQW(A¢—S)3F2 _7/2_577_/2_A¢ +A177/2_A¢+1;1-
T/2 — 5 Sil’l27T(A¢—%) i T/2—=s+LA-h+1

7B This gets multiplied by
T gt .
the Mack polynomial




M(s) (5,1) = W(s) sin” m(Ay — s) | exp(m|s|)
{sin® m(Ag — T)

® Polyakov’s observation (our modern
interpretation copakumarAs‘i8) is that to have a
better behaviour at large imaginary s, it is
better not to have this factor.

® However, we will now have spurious poles
which will be inconsistent with OPE.

30



Galu,v) = / dsdt u®v' T2 (—t)T%(s + T2 (Ay — s) (W@(S, £ + p(s, t)) sin?(Ay — s)

—100

WA (U, V) = / dsdtu®v'T?(—t)[%(s + t)[?(Ay — 5) (W(S) + WO w4y (s, t))

— 100

Removal of zeroes introduces spurious poles. Demanding that these cancel gives
consistency conditions.



Key point in the logic then....

® |n the traditional approach we expand in

terms of partial waves which are consistent

with OPE.

® |mpose crossing symmetry as constraint.

dia/v\g

32



Key point in the logic then....

® |n the traditional approach we expand in

terms of partial waves which are consistent

with OPE.

® |mpose crossing symmetry as constraint.

Spurious pole cancellation conditions as consistency conditions

demg

32
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A
(gif;r(—t)%(s +1)"T(Ag — s)QS; Y

— uPeT logu, ute T

— incompatible with s — channel OPE

— conditions needed to cancel

NB: log u is genuinely spurious as it comes singly
and not due to expanding some u-power

34



® Find it convenient to decompose the t dependence in terms of
continuous Hahn polynomials (orthogonal polys in t).

g

M(s,t) = qv()Qp " (1)




Holographic bootstrapicopauumar, 4s:1s)

=D amnls(s 1 = D)™ [t(s + 1)+ 5(s — Ag)]"

® Number of contact terms are exactly the same as the number of
local AdS vertices that can be added for a given spin exchange.

® This provides a straightforward derivation of the results in
Heemskerk, Penedones, Polchinski and Sully using our
techniques.

®* However, the point is that for a CFT an arbitrary set of contact
terms cannot be added and further restrictions have to be put in
place. This is the current challenge: what principle constrains the

contact terms?



Wilson-Fisher epsilon expansion

ilson-Fisher _ (n) n
o oalon Ap2 = 2+ Z 0y "€
expansion n
Age =4+ 51"
d=4—¢ Ap—4— ¢
( )

Never been computed
using diagrams.



Kind of equations to solve

D

16
The difference between the s = A, and s = Ay + 1 condition to leading order in € leads to

(e + (02 - 1200755) =0.

1
- (—C8 1+ 6y (7 + 1085") + 720875 = 0.

D

0 1 0) ¢(2
= (" + 05 - 12078 ) = 0.

11 +21605" — 38885 = 0

103 + 10845') — 118867 + 38886 = 0

Agrees with Feynman diagram higher loop results!! And gives new results
for OPE coefficients which have not been computed so far.



Structure of equations

spin

I"=O ¢2
r=1I B4
%
=
— ¢°
G,
¢8
\'( $9.60'%"

$90,0°¢
S

390,
$9,0,¢°
4T,

??

uids abue)

Large Spin,
Large twist

??



free

Sampling of results

T T T T T T T T T T T T T T T T

stress tensor OPE
2nd order was known earlier

233¢3
8748

cT 5€2

_1___

+ O(e*)

N

Cfree B 324




4 Anumerics Ae—expzmsion % variation
4 | 5.02267 | 5.02495 0.0454992
6 | 7.02849 7.03091 0.0344653
8 | 9.03192 9.03332 0.0154195
10 | 11.0324 11.0345 0.0192799
12 | 13.0333 13.0353 0.015114
14 | 15.0338 15.0357 0.0124619
16 | 17.0343 17.036 0.0103496
Table 1: Comparison of A from € expansion with numerical estimates
Spin £ | fss0,|DSD food,|e=1 Percentage Deviation
=2 0.326 0.328 0.33
=4 0.069 0.070 0.86
=6 | 1.57 x1072 | 1.61 x102 2.9
{=8 | 3.69 x10~* | 3.76 x10~3 2.04
¢=10 8.76x10~* | 8.82 x10~* 0.79
=12 | 2.10 x10~% | 2.06x10~4 1.86
{=14| 5.06x107° | 4.79 x10~° 5.52
=16 | 1.22x107° | 1.10 x10—° 10.6

Table 2 : Comparison of OPE

Numerics from
Simmons-Duffin:
1612.0847 1

1609.00572 Gopakumar,
Kaviraj, Sen,AS in PRL

O(€’)



Sampling of results

Conductivity superfluid-insulator quantum
critical point O(2)

O(OO) — 0.36 \2/\gi|t§cak-Krempa, Sorensen, Sachdev—Nature Physics
9Q
o(oo) w 3 5 9 4
= —(1 = 0.363
oo 83T 100¢ " 200 )

P. Dey, A. Kaviraj,A.S.—1612.05032



Higher orders?

® Problem is that we will need to fix contact diagrams.
Without contact diagrams, we would get an answer
that does not agree with Feynman diagram results
at O(&3) for P2[Gopakumar,As,2018].

® A puzzle is that we do not see any reason a priori
why we need to add these contact diagrams. One
would have hoped that some inconsistency would
tell us the need to add them. May be mixed
correlators will help.

® | eaves open the interesting possibility that solutions
other than pQFT exist: either ways would be
important to rule in/rule out. 43



1d-fixing of contact terms

® Need to find a way to constrain contact terms in
our basis—surely not arbitrary set of contact

terms are possible.

® Recently, Paulos and Mazac (1 1/2018) have made
an important observation which claims to solve

this problem for d=1.

® They find constraints by demanding the
completeness of the basis. Let me summarise

their logic.

44



® The idea is to construct a “complete” set of
functionals to act on the usual bootstrap equations
(basically a kernel to integrate the u,v dependence).
These functionals by design “isolate” the Mean Field
solution by having zeros at the operator locations.

® The existence of these functionals is non-trivial.
One can use these to act on the Witten diagram
expansion. VWhat happens is that for the boson
case, one of the equations is ill-defined as sum over
the spectrum does not converge. Regulating this is
the same as adding a specific contact Witten
diagram!



® |n our language, this is simply to add a phi*4
contact interaction.

® Operationally, we simply work with
subtracted pair of equations—effectively
we lose one equation.

® |nh d=I, we can understand this by
observing that derivative contact
interactions would make anomalous
dimensions grow “too quickly” and would
need an infinite number of contact
interactions to make finite.

[K. Ghosh,A. Zahed, L. F Alday, P. Ferrero, work in progress]

46



What is the "simplest” bootstrap?

with L. F Alday, P Ferrero, K. Ghosh and A. Zahed in progress

® Turns out that the simplest bootstrap that
we can hope to solve analytically with

current techniques is not the 2d Ising model.

For 2d Ising you need other methods.

® Thereis a |d problem.We can consider
bootstrap in |1d (3 generators, no boosts).

® You can think of this as the diagonal limit of

the bootstrap problem in higher dimensions.

[Also Mazac, Paulos 201 8]

47



Steps to set up

® Start with Polyakov-Mellin bootstrap.

® |n |d there is no spin. To deform away from
free theory add scalar contact term.

® Solve!!

Equivalently we could have computed loops in AdS. but that is rather hard and even
2 loops have not been calculated!!

48



Structure of equations

spin
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goes away
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L here is the loop order — (L)  L+1
in AdS: Ap =204 +2n + Z Tn 'Y

L=0
C, = C«T(LGFF) 4 Z CT(LL)gL—H
L=0

Expect this to be true 1
at any loop which is ¥, ~ 0(—2)
the reason no further n
contact terms are

necessary.



Ag=1 | Apg=1 | Apg=2 | Ay=2 | Ay=3
i) 1.2 257143 | 4.44444 | 6.81818 | 9.69231
C\" | -0.246667 | -0.487147 | -0.629136 | -0.577572 | -0.261218
V] 02487 | -0.4413 | -0.5112 | -0.4374 | -0.1752
Ag=1 | Ag=BTA,=2[A;=B] A;=3
MO 10.166667 | 0.234375 | 0.28 | 0.3125 | 0.336735
MU 10.19796 | 0.24196 | 0.25656 | 0.26362 | 0.26795
A2 0.2570 | 01932 | 0.1822 | 0.1791 | 0.1789
GFF L) L+1
204 + 2n + Z ’Y?(?JL)QL—H Chn = Cq(q, ) + E Cfr(z )g "

L=0



»  PM bootstrap numerics
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Peculiarities: In contrast to usual numerics (only upper bound) we get an allowed band
—more constraining. Curiously a similar feature exists for the cyclic polytope approach
(yesterday’s talk!).
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Peculiarities: As a function of external operator dimension, the 1-loop anomalous
dimensions seem to asymptote to a fixed value.



Effective AdS,

ly(n,0)|
0.00007 |
0.00006 |
Physics from an
0.00005 - exchange interaction
0.00004 | + 3 _ _
X With large dim %
0.00003 |
0.00002
0.00001 |
1 | 1 1 1 | 1 1 1 —_—— ] " I I J An
20 40 60 80 100

Fitzpatrick et al 1007.0412— Effective field theory in AdS. Bootstrap
produces exactly this thereby giving a derivation of EFT from bootstrap.

[K. Ghosh,A. Zahed, L. F Alday, P. Ferrero, work in progress]



Way ahead

® | ots of open questions. Need to understand the

crossing symmetric contact diagrams in higher d.

® A systematic perturbative method seems to cry
out for a way to project out higher twist
operators as well—what is so special about
double trace (twist) ops!?

® Bootstrapping composite operators in any
approach seems to be lacking a systematic
algorithm.
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Rich mathematics ahead
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Rich mathematics ahead

® The intermediate building blocks appear to be
very rich in Mathematics. The key element appears
to be very well poised 7F¢ hypergeometric
functions [GopakumarAsS, 2018].
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® The intermediate building blocks appear to be
very rich in Mathematics. The key element appears
to be very well poised 7F¢ hypergeometric
functions [GopakumarAsS, 2018].

Wia;b,c,d,e, f) =

P (a, 1+ %a, b, c, d, e, f 1)
716 ;
Y %a, l+a—b, 14a—¢c, 14+a—d, 14+a—e, 1+a—Ff

'l4+a—-bI'l+a—c)l'(1+a—d)Il'(1+a—e)l'(1+a—f)
'l+a)l'G)e)l(dI'(l+a—c—d)Il'{l+a—-b—d)Il'(l+a—b—c)['(14+a—e— f)
1 [ TI(-o)ll+a-b—c—d—o)'(b+o)(c+o)[(d+o)(1+a—e— f+0)

X — 1
2mi _,-x(a 'l+a—e+o)l'(1+a—f+o0)
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very rich in Mathematics. The key element appears
to be very well poised 7F¢ hypergeometric
functions [GopakumarAsS, 2018].

56
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® The intermediate building blocks appear to be
very rich in Mathematics. The key element appears
to be very well poised 7F¢ hypergeometric
functions [GopakumarAsS, 2018].

® Very well poised 7F¢ hypergeometric functions are
generalised 6j symbols for non-compact groups [e;

Raynal 1979].
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Rich mathematics ahead

® The intermediate building blocks appear to be
very rich in Mathematics. The key element appears
to be very well poised 7F¢ hypergeometric
functions [GopakumarAsS, 2018].

® Very well poised 7F¢ hypergeometric functions are
generalised 6] symbols for non-compact groups [e;
Raynal 1979].

® Will have more role to play eventually—curiously
one of Ramanujan’s work in his “lost notebook”
was on very well poised 7F¢!
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Thank you.



Backup slides



Large spin asymptotics

2
ALl -

Am gm Am gm ]
o S T At 1= ) 4

- A+L A+Y ]
ZCA,EU¥ {2171( - : ;L A+L1—v)+O0(u)

e Assume operator of minimum twist
® |n small u,v limit, lhs has log v while rhs has log u.To produce log u, we can expand
power of u on lhs by assuming a small anomalous dimension

¢ A finite number of log v’s cannot resum to a power of v.So we need infinite number of
operators.

* To produce identity operator we will need double trace ops A =2A, + ¢

1
u(A—f)/Q — qub‘l"YE — UA¢(1 -+ 97, logu -+ §fy§(10g u)z + ... )



® By focusing on the u=0, v=0 limit, we can develop a systematic

1.01

1.021

large spin asymptotic expansion for the anomalous dimensions
of double trace operators which are supported by a single

leading twist operator in the crossed channel.komargodski-zhiboedoy;
Fitzpatrick et al; Alday et al; Kaviraj, Sen, AS]

T[ oTly (F)

&
L 4 \ 4

——s—o—o—s 3d Ising model data from Simmons-
duffin 2016 and asymptotic expansion
in large spin (LSPT) from Alday-
Zhiboedov 2015. Seems to point at an
analytic formula in spin. Conformal
Froissart Gribov formula by Caron-

stress huot 2017.
/ tensor

10 20 30 40 2




Enter Mellin’s advisor!

Gosta Mittag-Leffler
(Swedish mathematician)

Thm: Existence of meromorphic
functions with prescribed poles
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Mellin’s
advisor!

Gosta Mittag-Leffler
(Swedish mathematician)

Thm: Existence of meromorphic
functions with prescribed poles
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[Ext ]

Construct a function with residue n, poles
at z=n for all positive integers n.

Z n Naive guess: Does not work as sum does

. _n not converge.
n

Z n (3)2 This works. Same as adding polynomials in

—z—n n z. [not unique]



D) =) n'(—l)” + I ()

n=0 Entire function

no extra entire
function piece
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D) =) n'(—l)” + I ()

n=0 Entire function

oo . famous
F(Z‘)F(y) Z (—1) F(y) formula.
At Tly—n) e
of string
theory!

no extra entire
function piece
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Thank you for listening!
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