Characterization of quantum chaos using the quantum Lyapunov spectrum and two－point functions：the case of the Sachdev－Ye－Kitaev model as an example

MS Seminar，IPMU，University of Tokyo 13 May 2019
Masaki Tezuka 手塚真樹（Kyoto University）

Collaborators (in SYK-related papers) and references

- Jordan Saul Cotler ${ }^{a}$, Guy Gur-Ari ${ }^{a}$ (\rightarrow Google), Masanori Hanada (YITP \rightarrow Boulder \rightarrow Southampton)
- Joseph Polchinskib, Phil Saad ${ }^{a}$, Stephen H. Shenker ${ }^{a}$, Douglas Stanford ${ }^{a}$, Alexandre Streicher ${ }^{b}$
- Ippei Danshita (YITP \rightarrow Kindai), Hidehiko Shimada (OIST), Hrant Gharibyan ${ }^{a}$, Brian Swingle (Maryland)
- Antonio M. García-García (SJTU), Bruno Loureiro (Cambridge), Aurelio Romero-Bermúdez (Leiden)
${ }^{a}$ Stanford ${ }^{b}$ UCSB

Danshita, Hanada, and MT, PTEP 2017, 083 I01 (arXiv:1606.02454)
Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, and MT, JHEP 1705, 118 (2017)
(arXiv:1611.04650)
Hanada, Shimada, and MT, Phys. Rev. E 97, 022224 (2018) (arXiv:1702.06935)
García-García, Loureiro, Romero-Bermudez, and MT, PRL 120, 241603 (2018) (arXiv:1707.02197)
Gharibyan, Hanada, Swingle, and MT, JHEP 1904, 082 (2019) (arXiv:1809.01671), submitted (arXiv:1902.11086)

Collaborators in this work

Hrant Gharibyan
३
（Stanford University）

Masanori Hanada花田政範
（University of Southampton）

Brian Swingle
（University of Maryland）

Plan of the talk

- Characterization of many-body quantum chaos
- The Sachdev-Ye-Kitaev model
- The quantum Lyapunov spectrum
- The singular values of two-point correlators
- The case of the XXZ spin chain
- Summary

Chaos in deterministic classical dynamics

- Sensitivity to initial conditions: exponential growth of initial perturbation

"butterfly effect"
Bounded, nonperiodic dynamics with nonlinearity What happens in quantum mechanics?

How to characterize quantum chaos?

$$
i \frac{d}{d t}|\psi\rangle=\widehat{H}|\psi\rangle \quad|\psi(t)\rangle=\widehat{\mathrm{T}} \exp \left[-i \int_{0}^{t} \widehat{H}\left(t^{\prime}\right) d t\right]|\psi(t=0)\rangle=\exp (-i \widehat{H} t)|\psi(t=0)\rangle
$$

Linear dynamics

- Long time: energy level statistics

Correlation between levels, as in random matrices
$P(s)$: normalized level separation distribution Uncorrelated: Poisson $\left(e^{-s}\right)$

cf. Bohigas-Giannoni-Schmit conjecture

- Short time: out-of-time correlator

Classically,

$$
\left\{x_{i}(t), p_{j}(0)\right\}_{\mathrm{PB}}{ }^{2}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)^{2} \rightarrow e^{2 \lambda_{\mathrm{L}} t} \text { for large } t
$$

Quantum version:

$$
\begin{gathered}
\text { OTOC: } \left.C_{T}(t)=\left.\langle |[\widehat{W}(t), \widehat{V}(t=0)]\right|^{2}\right\rangle \\
=\left\langle\widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0)\right\rangle+\cdots
\end{gathered}
$$

\rightarrow Hard to see exponential time dependence

Characterization of quantum many-body chaos

- Random-matrix like energy level correlation
- Exponential Lyapunov growth of out-of-time-order correlators (OTOC) $\left\langle\widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0)\right\rangle \sim C+\# e^{2 \lambda_{\mathrm{L}} t}$

Example: the Sachdev-Ye-Kitaev model

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d} \begin{aligned}
& \left\{\begin{array}{l}
\left.\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b} \\
\left(\left\langle J_{a b c d}\right\rangle\right. \\
\left.\left.J_{a b c}^{2}\right\rangle=J^{2}=1\right)
\end{array}\right.
\end{aligned}
$$

[Cotler, MT et al., JHEP 1705, 118 (2017)]

Lyapunov exponent

$$
\lambda_{\mathrm{L}}=\frac{2 \pi k_{\mathrm{B}} T}{\hbar} \text { in low } T \text { limit }
$$

(Maldacena-Shenker-Stanford chaos bound)

The Sachdev-Ye-Kitaev model

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

$$
\hat{\chi}_{a=1,2, \ldots, N}: N \text { Majorana fermions }\left(\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b}\right)
$$

cf. Sachdev-Ye model (1993)
[A. Kitaev, talks at KITP (2015)]

$$
J_{a b c d}: \text { Gaussian random couplings }\left(\left\langle J_{a b c d}{ }^{2}\right\rangle=J^{2}=1\right)
$$

The SYK model

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

Analytically solvable in $N \gg 1$ limit

Figures from［I．Danshita，MT，and M．Hanada：
Butsuri 73（8）， 569 （2018）］
O（1）
$O\left(N^{-2}\right)$

$\left\langle J_{i j k l} J_{j k l m}\right\rangle=\delta_{i m}$

Only＂melon－type＂diagrams survive
Satisfies the＂chaos bound＂$\lambda_{\mathrm{L}} \leq \frac{2 \pi k_{\mathrm{B}} T}{\hbar}$ in the $T \rightarrow 0$ limit

Holographic connection to gravity?

$$
-\left\langle c_{i}(\tau) c_{i}^{\dagger}(0)\right\rangle \sim\left\{\begin{array}{cl}
-\tau^{-1 / 2} & , \tau>0 \\
e^{-2 \pi \mathcal{E}}|\tau|^{-1 / 2} & , \tau<0
\end{array}\right.
$$

Known "equation of state" determines \mathcal{E} as a function of \mathcal{Q}

Microscopic zero temperature entropy density \mathcal{S} obeys

$$
\frac{\partial \mathcal{S}}{\partial \mathcal{Q}}=2 \pi \mathcal{E}
$$

[S. Sachdev,
Phys. Rev. X 5, 041025 (2015)]

Sachdev-Ye model

- Strongly interacting random systems: model with analytical solutions?
[S. Sachdev and J. Ye, PRL 70, 3339 (1993)] cond-mat/9212030 (Submitted on 21 Dec 1992) $N S U(M)$ spins $\widehat{\boldsymbol{S}}$ with all-to-all random coupling $J_{i j}$ (notation below: from [Sachdev, PRX 2015])

$$
H=\frac{1}{(N M)^{1 / 2}} \sum_{i, j=1}^{N} \sum_{\alpha, \beta=1}^{M} J_{i j} c_{i \alpha}^{\dagger} c_{i \beta} c_{j \beta}^{\dagger} c_{j \alpha}, \quad \frac{1}{M} \sum_{\alpha} c_{i \alpha}^{\dagger} c_{i \alpha}=\mathcal{Q}
$$

- Non-Fermi liquid with nonzero entropy at $T \rightarrow 0$

$$
\text { Local dynamic spin susceptibility } \quad \bar{\chi}(\omega)=X\left[\ln \left(\frac{1}{|\omega|}\right)+i \frac{\pi}{2} \operatorname{sgn}(\omega)\right]+\cdots,
$$

cf. Dynamic neutron scattering experiments on disordered antiferromagnets
[B. Keimer et al. PRL 1991 (LSCO); S.M. Hayden et al. PRL 1991 (LBCO);
C. Broholm et al. PRL 1990 (Kagome planes of Cr^{3+} ions in $\mathrm{Sr}(\mathrm{Cr}, \mathrm{Ga})_{12} \mathrm{O}_{19}$)]

Proposals for experimental realization

Proposals for experimental realization

arXiv:1607.08560

- Quantum circuit

L. García-Álvarez, I. L. Egusquiza,
L. Lamata, A. del Campo, J.

Sonner, and E. Solano,
"Digital Quantum Simulation of
Minimal AdS/CFT",
PRL 119, 040501 (2017)

Proposals for experimental realization

N quanta of magnetic flux through a nanoscale hole

Inhomogeneous wave functions
due to the irregular shape of the hole

D. I. Pikulin and M. Franz, "Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System",
PRX 7, 031006 (2017)

Proposals for experimental realization

Aaron Chew, Andrew Essin, and Jason Alicea,
"Approximating the Sachdev-YeKitaev model with Majorana wires", PRB 96, 121119(R) (2017)

Proposals for experimental realization

Anffany Chen, R. Ilan, F. de Juan, D.I. Pikulin, M. Franz,
"Quantum holography in a graphene flake with an irregular boundary", arXiv:1802.00802 [PRL 121, 036403 (2018)]

Sachdev-Ye-Kitaev model

N Majorana- or Dirac- fermions randomly coupled to each other
[Majorana version]

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

[A. Kitaev: talks at KITP
(Feb 12, Apr 7 and May 27, 2015)]
[Dirac version]
$\widehat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j ; k l} J_{i j ; k l} \hat{c}_{i}{ }^{\dagger} \hat{c}_{j}{ }^{\dagger} \hat{c}_{k} \hat{c}_{l}$
[A. Kitaev's talk]
[S. Sachdev: PRX 5, 041025 (2015)]

- Solvable in the large N limit, Sachdev-Ye "spin liquid" ground state
- Nearly conformal symmetric at low temperature ("emergent ...")
- Connection to topological phases of matter
- Holographically corresponds to a quantum black hole?
- Realizes the Maldacena-Shenker-Stanford chaos bound $\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$

Classification and random matrix theory

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

SPT phase classification for class BDI:
$\mathbb{Z} \rightarrow \mathbb{Z}_{8}$ due to interaction
[L. Fidkowski and A. Kitaev, PRB 2010, PRB 2011]
Introduce $N / 2$ complex fermions $\quad \hat{c}_{j}=\frac{\left(\hat{\chi}_{2 j-1}+\hat{\mathrm{x}}_{2 j}\right)}{\sqrt{2}}$
$\hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}$ respects the complex fermion parity
 Even (\widehat{H}_{E}) and odd (\widehat{H}_{O}) sectors: $L=2^{N / 2-1}$ dimensions

N mod 8	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$
η	-1	$\mathbf{+ 1}$	$\mathbf{+ 1}$	-1
\hat{X}^{2}	$\mathbf{+ 1}$	+1	$\mathbf{- 1}$	-1
\hat{X} maps H_{E} to	H_{E}	H_{O}	H_{E}	H_{O}
Class	Al	A+A	All	A+A
Gaussian ensemble	GOE	GUE	GSE	GUE

$$
\begin{gathered}
\hat{X}=\widehat{K} \prod_{j=1}^{N / 2}\left(\hat{c}_{j}^{\dagger}+\hat{c}_{j}\right) \\
\hat{X} \hat{c}_{j} \hat{X}=\eta \hat{c}_{j}^{\dagger}
\end{gathered}
$$

[You, Ludwig, and Xu, PRB 2017]

Sparse, but energy spectral statistics strongly resemble that of the corresponding (dense) Gaussian ensemble

Gaussian random matrices

$$
a_{i j}=a_{j i}^{*}
$$

Gaussian distribution

Eigenvalue distribution: semi-circle law

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{L}
$$

Δ : averaged level separation near e_{j}

Density $\propto e^{-\frac{\beta K}{4} \operatorname{Tr} H^{2}}=\exp \left(-\frac{\beta K}{4} \sum_{i, j}^{K}\left|a_{i j}\right|^{2}\right)$
[F. J. Dyson, J. Math. Phys. 3, 1199 (1962)]
Real ($\beta=1$): Gaussian Orthogonal Ensemble (GOE) Complex ($\beta=2$): G. Unitary E. (GUE) Quaternion ($\beta=4$): G. Symplectic E. (GSE)

- $P(s)$: Distribution of normalized level separation $s=\frac{e_{j+1}-e_{j}}{\Delta(\bar{e})}$ GOE/GUE/GSE: $P(s) \propto s^{\beta}$ at small s, has $e^{-s^{2}}$ tail Uncorrelated: $P(s)=e^{-s}$ (Poisson distribution)

Gaussian random matrices

$$
\left(a_{i j}\right)_{i, j=1}^{L}
$$

$$
a_{i j}=a_{j i}^{*}
$$

Gaussian distribution

$$
r=\frac{\min \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}{\max \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}
$$

Density $\propto e^{-\frac{\beta K}{4} \operatorname{Tr} H^{2}}=\exp \left(-\frac{\beta K}{4} \sum_{i, j}^{K}\left|a_{i j}\right|^{2}\right)$
Real ($\beta=1$): Gaussian Orthogonal Ensemble (GOE)
Complex ($\beta=2$): G. Unitary E. (GUE)
Quaternion ($\beta=4$): G. Symplectic E. (GSE)

$$
\begin{aligned}
& \text { Joint distribution } \\
& p\left(e_{1}, e_{2}, \ldots, e_{K}\right) \propto \prod_{1 \leq i<j \leq K}\left|e_{i}-e_{j}\right|^{\beta} \prod_{i=1}^{K} e^{-\beta K e_{i}^{2} / 4}
\end{aligned}
$$

- $P(s)$: Distribution of normalized level separation $s=\frac{e_{j+1}-e_{j}}{\Delta(\bar{e})}$ GOE/GUE/GSE: $P(s) \propto s^{\beta}$ at small s, has $e^{-s^{2}}$ tail Uncorrelated: $P(s)=e^{-s}$ (Poisson distribution)
- $\langle r\rangle$: Average of neighboring gap ratio

Uncorrelated: $2 \log 2-1 \approx 0.386$
GOE/GUE/GSE: larger (e.g. 0.599 for GUE [Y. Y. Atas et al. PRL 2013])
\rightarrow SYK model results: indistinguishable from corresponding Gaussian ensemble

Density of states

Figure 15. Normalized density of states $\tilde{\rho}(E)$ for the SYK model with $N=10,12, \ldots, 34$. The bin width is $10^{-3} \mathrm{~J}$. Notice that the energy is measured in units of $N J$. The numbers of samples are $21600000(N=10), 10800000(N=12), 5400000(N=14), 1200000(N=16), 600000(N=18)$, $240000(N=20), 120000(N=22), 48000(N=24), 10000(N=26), 3000(N=28), 1000$ ($N=30$), $516(N=32), 90(N=34)$.

Correlation function $\left.G(t)=\left\langle\hat{\chi}_{a}(t) \hat{\chi}_{a}(0)\right\rangle_{\beta}=\frac{1}{Z(\beta)} \sum_{m, n} \mathrm{e}^{-\beta E_{m}}\left|\langle m| \hat{\chi}_{a}\right| n\right\rangle\left.\right|^{2} \mathrm{e}^{\mathrm{i}\left(E_{m}-E_{n}\right) t}$

Dip-ramp-plateau structure for $N \equiv 2(\bmod 8)$

$N \bmod 8$	0	2	4	6
\hat{X} maps H_{E} to	H_{E}	H_{0}	H_{E}	H_{0}
〈even\| χ \|odd 〉		finite		0
Gaussian ensemble	GOE	GUE	GSE	GUE

Spectral form factor

$$
\left.G(t)=\left\langle\hat{\chi}_{a}(t) \hat{\chi}_{a}(0)\right\rangle_{\beta}=\frac{1}{Z(\beta, t=0)} \sum_{m, n} \mathrm{e}^{-\beta E_{m}}\left|\langle m| \hat{\chi}_{a}\right| n\right\rangle\left.\right|^{2} \mathrm{e}^{\mathrm{i}\left(E_{m}-E_{n}\right) t}
$$

$$
g(\beta, t)=\left|\frac{Z(\beta, t)}{Z(\beta, t=0)}\right|^{2}=\frac{1}{Z(\beta, t=0)^{2}} \sum_{m, n} \mathrm{e}^{-\beta\left(E_{m}+E_{n}\right)} \mathrm{e}^{\mathrm{i}\left(E_{m}-E_{n}\right) t}
$$

$$
Z(\beta, t)=Z(\beta+\mathrm{i} t)=\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}-\mathrm{i} \hat{H} t}\right)
$$

$$
g_{\mathrm{c}}(\beta, t)=\frac{\left.\left.\langle | Z(\beta, t)\right|^{2}\right\rangle_{J}-\left|\langle Z(\beta, t)\rangle_{J}\right|^{2}}{\langle Z(\beta)\rangle_{J}{ }^{2}}
$$

$$
\sim \iint d \lambda_{1} d \lambda_{2}\left\langle\delta \rho\left(\lambda_{1}\right) \delta \rho\left(\lambda_{2}\right)\right\rangle e^{i t\left(\lambda_{1}-\lambda_{2}\right)}
$$

$$
R(\lambda)=\left\langle\delta \rho\left(\lambda_{1}\right) \delta \rho\left(\lambda_{1}-\lambda\right)\right\rangle=-\frac{\sin ^{2} L \lambda}{(\pi L \lambda)^{2}}+\frac{1}{\pi L} \delta(\lambda)
$$

$$
(\pi L)^{-1} \text { (}
$$

N dependence of the spectral form factor

Characterization of quantum many-body chaos

- Random-matrix like energy level correlation
- Exponential Lyapunov growth of out-of-time-order correlators (OTOC) $\left\langle\widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0)\right\rangle \sim C+\# e^{2 \lambda_{\mathrm{L}} t}$

Example: the Sachdev-Ye-Kitaev model

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d} \begin{aligned}
& \left\{\begin{array}{l}
\left.\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b} \\
\left(\left\langle J_{a b c d}\right\rangle\right. \\
\left.\left.J_{a b c}^{2}\right\rangle=J^{2}=1\right)
\end{array}\right.
\end{aligned}
$$

[Cotler, MT et al., JHEP 1705, 118 (2017)]

Lyapunov exponent

$$
\lambda_{\mathrm{L}}=\frac{2 \pi k_{\mathrm{B}} T}{\hbar} \text { in low } T \text { limit }
$$

(Maldacena-Shenker-Stanford chaos bound)

We propose two new characterizations of quantum chaos

- Quantum Lyapunov spectrum: Quantum version of finite-time Lyapunov spectrum
$\widehat{M}_{a b}(t)$: (anti)commutator of $\widehat{O}_{a}(t)$ and $\widehat{O}_{b}(0)$

$$
\hat{L}_{a b}(t)=\sum_{j=1}^{N} \widehat{M}_{j a}(t)^{\dagger} \widehat{M}_{j b}(t)
$$

$\left\{\lambda_{k}(t)=\frac{\log s_{k}(t)}{2 t}\right\}$ for singular values
$\left\{s_{k}(t)\right\}_{k=1}^{N}$ of $N \times N$ matrix $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$.

- Two-point correlations:
$G_{a b}^{(\phi)}=\langle\phi| \hat{O}_{a}(t) \hat{O}_{b}(0)|\phi\rangle$ as matrix, log (singular values)

Modified SYK model: Large-N calculation for OTOC

Deviation from the chaos bound as SYK_{2} component is introduced

1. Quantum Lyapunov spectrum

OTOCs have been intensively studied:
$F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle$

- Measurement protocols
- [B. Swingle, G. Bentsen, M. Schleier-Smith, P. Hayden, PRB 94, 040302 (2016)] and experimental proposal papers for the SYK model
- Experimental measurements
- trapped ions [M. Gärttner et al. Nat. Phys. 13, 781 (2017) 1608.08938]
- NMR [J. Li et al. PRX 7, 031011 (2017) 1609.01246]
- Quantum information (scrambling, ...)
- Many-body localization
- Fluctuation-dissipation theorem
- [N. Tsuji, T. Shitara, and M. Ueda, PRE 97, 012101 (2018)]

Q. Which operators should we use?

Lyapunov growth of phase space

Coarse-grained phase space

- Just one direction?
- If more than one, what are relations between λ ?

Observation for classical chaos

Classical system with K degrees of freedom

Deviation at t initial infinitesimal deviation

$$
\begin{gathered}
\delta x_{i}(t)=M_{i j} \delta x_{j}(0) \\
M_{i j}=\frac{\delta x_{i}(t)}{\delta x_{j}(0)}=\{x(t), p(0)\}_{\mathrm{PB}}
\end{gathered}
$$

(Usually $t \rightarrow \infty$ limit is taken for obtaining λ_{L})

$$
L=\left(\frac{\delta x_{i}(t)}{\delta x_{j}(0)}\right)^{2} \quad\{x(t), p(0)\}_{\mathrm{PB}}^{2}=\left(\frac{\partial x(t)}{\partial x(0)}\right)^{2} \rightarrow e^{2 \lambda_{\mathrm{L}} t}
$$

We consider finite t
Singular values of $M_{i j}:\left\{a_{k}(t)\right\}_{k=1}^{K}$
Time-dependent Lyapunov spectrum

$$
\left\{\lambda_{k}(t)=\frac{\log a_{k}(t)}{t}\right\}_{k=1,2, \ldots, K}
$$

obeys random matrix-like statistics
in several chaotic systems

- Logistic map
- Lorenz attractor
- D0 brane matrix model (without fermions)

Quantum Lyapunov spectrum

Gharibyan, Hanada, Swingle, and MT, JHEPO4(2019)082 (arXiv:1809.01671)

Finite-time classical Lyapunov spectrum: obeys RMT statistics for chaos
Singular values of $M_{i j}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)$ at finite $t:\left\{s_{k}(t)\right\}=\left\{e^{\lambda_{k} t}\right\}$

$$
L=\left\{x_{i}(t), p_{j}(0)\right\}_{\mathrm{PB}}^{2}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)^{2} \rightarrow e^{2 \lambda_{\mathrm{L}} t} \text { for large } t
$$

$$
\text { Отос: } \left.C_{T}(t)=\left.\langle |[\widehat{W}(t), \widehat{V}(t=0)]\right|^{2}\right\rangle=\left\langle\widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0)\right\rangle+\cdots
$$

Quantum Lyapunov spectrum: Define $\widehat{M}_{a b}(t)$ as (anti)commutator of $\widehat{O}_{a}(t)$ and $\widehat{O}_{b}(0)$

$$
\widehat{L}_{a b}(t)=\left[\widehat{M}(t)^{\dagger} \widehat{M}(t)\right]_{a b}=\sum_{j=1}^{N} \widehat{M}_{j a}(t)^{\dagger} \widehat{M}_{j b}(t)
$$

For $N \times N$ matrix $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$, obtain singular values $\left\{s_{k}(t)\right\}_{k=1}^{N}$.
The Lyapunov spectrum is defined as $\left\{\lambda_{k}(t)=\frac{\log s_{k}(t)}{2 t}\right\}$.

Quantum Lyapunov spectrum for SYK model + modification

$$
\widehat{H}=\sum_{1 \leq a<b<c<d}^{N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{1 \leq a<b}^{N} K_{a b} \hat{\chi}_{a} \hat{\chi}_{b} \quad \begin{aligned}
& J_{a b c d}: \text { s. d. }=\frac{\sqrt{6}}{N^{3 / 2}} \\
& K_{a b}: \text { s. d. }=\frac{K}{\sqrt{N}}
\end{aligned}
$$

- Define $\hat{L}_{a b}(t)=\sum_{j=1}^{N} \widehat{M}_{j a}(t) \widehat{M}_{j b}(t)$ for time-dependent anticommutator $\widehat{M}_{a b}(t)=\left\{\hat{\chi}_{a}(t), \hat{\chi}_{b}(0)\right\}$.
- Obtain the singular values $\left\{a_{k}(t)\right\}_{k=1}^{K}$ of $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$
- Quantum Lyapunov spectrum: $\left\{\lambda_{k}(t)=\frac{\log a_{k}(t)}{2 t}\right\}_{k=1,2, \ldots, K}$ (also dependent on state ϕ)

Spectral statistics of quantum Lyapunov spectrum: SYK

$K=0.01(\bigcirc):$
Remains GUE for long time

Exponents are nearly constant until the singular values of $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$ saturate: Lyapunov growth

$$
K=10(>):
$$

Approaches Poisson
$\langle r\rangle$: average of
$\frac{\min \left(\epsilon_{i+1}-\epsilon_{i}, \epsilon_{i+2}-\epsilon_{i+1}\right)}{\max \left(\epsilon_{i+1}-\epsilon_{i}, \epsilon_{i+2}-\epsilon_{i+1}\right)}$
(fixed-i unfolding: unfold each gap $\lambda_{i+1}-\lambda_{i}$ using its average)

Growth of (largest Lyapunov exponent)*time

Full Lyapunov spectrum

Sample- and state-averaged

Close to constant between red lines (20% and 80% of the saturated value of $\lambda_{N} t$)

Kolmogorov-Sinai entropy

Coarse-grained entropy
$=\log$ (\# of cells covering the region)
$\sim($ sum of positive $\lambda) t$

Kolmogorov-Sinai entropy $h_{\text {KS }}$
= (sum of positive λ)
= entropy production rate

Kolmogorov-Sinai entropy vs entanglement entropy production

e-grained entropy
$=\log$ (\# of cells covering the region)
$\sim($ sum of positive $\lambda) t$
Initial state with $S_{\mathrm{EE}}=0$:
$|\psi(t=0)\rangle=|000 \ldots 000\rangle$ in the complex fermion basis

Kolmogorov-Sinai entropy h_{KS} = (sum of positive λ)
= entropy production rate

Fastest entropy production?

SYK_{4} limit

- λ_{N} and $\lambda_{\text {OTOC }}=\frac{1}{2 t} \log \left(\frac{1}{N} \sum_{i=1}^{N} e^{2 \lambda_{i} t}\right)$ approach each other; difference decreases as $1 / N$
- Same for λ_{N} and λ_{1} :

$$
\text { all exponent } \rightarrow \text { single peak }
$$

- All saturate the MSS bound at strong coupling (low T) limit
- Growth rate of entanglement entropy

$\sim h_{\mathrm{KS}}=$ sum of positive (all) λ_{i}
\rightarrow [conjecture] SYK model: not only the fastest scramblers, but also fastest entropy generators

2. Singular value statistics of two-point functions

$$
\begin{aligned}
G_{a b}^{(\phi)} & =\langle\phi| \hat{\chi}_{a}(t) \hat{\chi}_{b}(0)|\phi\rangle \\
& \lambda_{j}=\log \left[\text { singular values of }\left(G_{a b}^{(\phi)}\right)\right]
\end{aligned}
$$

H. Gharibyan, M. Hanada, B. Swingle, and MT, arXiv:1902.11086

2. Singular value statistics of two-point functions

$$
\begin{aligned}
& G_{a b}^{(\phi)}=\langle\phi| \hat{\chi}_{a}(t) \hat{\chi}_{b}(0)|\phi\rangle \\
& \quad \lambda_{j}=\log \left[\text { singular values of }\left(G_{a b}^{(\phi)}\right)\right]
\end{aligned}
$$

$\langle r\rangle$: average of the adjacent gap ratio $\frac{\min \left(\lambda_{i+1}-\lambda_{i}, \lambda_{i+2}-\lambda_{i+1}\right)}{\max \left(\lambda_{i+1}-\lambda_{i}, \lambda_{i+2}-\lambda_{i+1}\right)}$
Uncorrelated (Poisson): $2 \log 2-1 \approx 0.386$
Correlated: larger (GOE: 0.5307, GUE: 0.5996 etc.) [Atas et al., PRL 2013]

SYK, larger $N / 2$ exponents ϕ : energy eigenstates

At late time,
$N \bmod 8=0:$ GOE (the matrix is symmetric)

$$
G_{a b}^{(\phi)}=\langle\phi| \hat{\chi}_{a}(t) \hat{\chi}_{b}(0)|\phi\rangle
$$

$$
\begin{gathered}
\lambda_{j}=\log \left[\text { singular values of }\left(G_{a b}^{(\phi)}\right)\right]
\end{gathered}
$$

$$
\text { fixed- } i \text { unfolded }
$$

Random-matrix like for complex fermion number eigenstates, even for non-chaotic regime

Empty state in complex fermion description: state without long-range entanglement

The case of the random field XXZ model

$$
\widehat{H}=\sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \quad h_{i}: \text { uniform distribution }[-W, W]
$$

Many-body localization transition at $W=W_{\mathrm{c}} \sim 3.6$
(though recently disputed; e.g. $W_{\mathrm{c}} \geq 5$ proposed in E. V. H. Doggen et al., [1807.05051] using large systems with time-dependent variational principle \& machine learning)
e.g. M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. X 5, 041047 (2015) (arXiv:1507.01635)

Matrix element of local perturbation

$$
\mathcal{G}(\varepsilon, L)=\ln \frac{\left|V_{n, n+1}\right|}{E_{n+1}^{\prime}-E_{n}^{\prime}}
$$

Energy separation of neighboring energy eigenstates

Spectral statistics of QLS for random field XXZ

$$
\widehat{H}=\sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \quad h_{i}: \text { uniform distribution }[-W, W] \quad \widehat{M}_{a b}(t)=\left[\widehat{S_{a}^{+}}(t), \widehat{S_{b}^{-}}(0)\right]
$$

※ Exponential growth of the singular values is not observed, but the statistics approach GUE

Two-point function

$$
\widehat{H}=\sum_{i}^{N} \widehat{S_{i}} \cdot \widehat{S_{i+1}}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \quad h_{i} \in[-W, W]
$$

$$
G_{a b}^{(\phi)}=\langle\phi|{\widehat{\sigma^{+}}}_{a}(t){\widehat{\sigma^{-}}}_{b}(0)|\phi\rangle
$$

Energy eigenstates (not close to the spectral edges): GOE at short and long times for small W

Weak vs strong W

$$
\widehat{H}=\sum_{i}^{N} \widehat{S_{i}} \cdot \widehat{S_{i+1}}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \quad h_{i} \in[-W, W]
$$

$$
G_{a b}^{(\phi)}=\langle\phi|{\widehat{\sigma^{+}}}_{a}(t) \widehat{\sigma}_{b}^{-}(0)|\phi\rangle
$$

Energy eigenstates GOE at short and long times for small W, close to Poisson at any time for large W

XXZ model: Spin eigenstates \rightarrow GUE

$$
G_{a b}^{(\phi)}=\langle\phi|{\widehat{\sigma^{+}}}_{a}(t){\widehat{\sigma^{-}}}_{b}(0)|\phi\rangle
$$

Singular value statistics of two-point correlation function

Model	Chaotic (small K / small W)	Not chaotic (large K / large W)
$\mathrm{SYK}_{4}+\mathrm{SYK}_{2}$	Energy eig. \rightarrow GUE at late time except for $N \equiv 0(\bmod 8):$ GOE Spin eig. \rightarrow GUE at any time	Energy eig. \rightarrow Poisson at any time Spin eig. \rightarrow off from GUE at some time
XXZ + random field	Energy eig. \rightarrow off from GOE at some time $\left(G_{a b}^{(\phi)}=\langle\phi\| \widehat{\sigma}^{\dagger}{ }_{a}(t) \widehat{\sigma}{ }_{b}(0)\|\phi\rangle \text { is symmetric }\right)$ Spin eig. \rightarrow converges to GUE $\left(G_{a b}^{(\phi)}=\langle\phi\| \widehat{\sigma^{\top}}{ }_{a}(t) \widehat{\sigma^{\circ}}{ }_{b}(0)\|\phi\rangle\right.$ is not symmetric)	Energy eig. \rightarrow close to Poisson Spin eig. \rightarrow approaches Poisson from RMT-like

H. Gharibyan, M. Hanada, B. Swingle, and MT, arXiv:1902.11086

Outlook / related recent works

- Euclidean time; two-point correlations in classical dynamics; experiments?
- In progress
- Time scale?
- cf. "Onset of Random Matrix Behavior in Scrambling Systems"
H. Gharibyan, M. Hanada, S. H. Shenker, and MT, JHEP07(2018)124 (1803.08050)
- Many-body localization (MBL) in other systems?
- cf. MBL in a finite-range SYK model
A. M. García-García and MT, PRB 99, 054202 (2019) (1801.03204)
- Relation between randomness and chaos?
- cf. SYK $_{2}$ model: "Randomness and chaos in qubit models"

Pak Hang Chris Lau, Chen-Te Ma, Jeff Murugan, and MT, Phys. Lett. B in press (1812.04770)

- Holographic interpretation?
- cf. "Effective Hopping in Holographic Bose and Fermi Hubbard Models"
M. Fujita, R. Meyer, S. Pujari, and MT, JHEP01(2019)045 (1805.12584)

Summary

- Many-body quantum chaos: characterizations
- The Sachdev-Ye-Kitaev model
- Quantum Lyapunov spectrum defined from local operators:
characterizes quantum chaos [1809.01671]
- Random matrix behavior in chaotic systems
- Lyapunov growth
- Fastest entropy production in the SYK model?

$$
\begin{aligned}
\hat{L}_{a b}(t)= & \sum_{j=1}^{N} \widehat{M}_{j a}(t) \widehat{M}_{j b}(t) \text { for } \\
& \widehat{M}_{a b}(t)=\left\{\hat{\chi}_{a}(t), \hat{\chi}_{b}(0)\right\}
\end{aligned}
$$

QLS: log(singular values of $\left.\langle\phi| \hat{L}_{a b}(t)|\phi\rangle\right) /(2 \mathrm{t})$

- Two-point correlation function: singular values exhibit random matrix behavior in chaotic cases [1902.11086]
- Experiments should be possible with phase-sensitive measurements
- Both characterizations of chaos demonstrated also for XXZ spin chain + random field

