Characterization of quantum chaos using the quantum Lyapunov spectrum and two-point functions: the case of the Sachdev-Ye-Kitaev model as an example

MS Seminar, IPMU, University of Tokyo 13 May 2019 Masaki Tezuka 手塚真樹 (Kyoto University)

Collaborators (in SYK-related papers) and references

- Jordan Saul Cotler^a, Guy Gur-Ari^a (→Google), Masanori Hanada (YITP→Boulder→Southampton)
- Joseph Polchinski^b, Phil Saad^a, Stephen H. Shenker^a, Douglas Stanford^a, Alexandre Streicher^b
- Ippei Danshita (YITP→Kindai), Hidehiko Shimada (OIST), Hrant Gharibyan^a, Brian Swingle (Maryland)
- Antonio M. García-García (SJTU), Bruno Loureiro (Cambridge), Aurelio Romero-Bermúdez (Leiden)
 ^aStanford ^bUCSB

Danshita, Hanada, and MT, PTEP 2017, 083I01 (arXiv:1606.02454)

Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, and MT, JHEP 1705, 118 (2017) (arXiv:1611.04650)

Hanada, Shimada, and MT, Phys. Rev. E 97, 022224 (2018) (arXiv:1702.06935)

García-García, Loureiro, Romero-Bermudez, and MT, PRL **120**, 241603 (2018) (arXiv:**1707.02197**)

Gharibyan, Hanada, Swingle, and MT, JHEP 1904, 082 (2019) (arXiv:1809.01671), submitted (arXiv:1902.11086)

Collaborators in this work

arXiv:1809.01671 arXiv:1902.11086

Hrant Gharibyan Masanori Hanada Brian Swingle **スրաԼա Ղարիբյալ** 花田政範 (Stanford University) (University of Southampton) (University of Maryland)

Plan of the talk

- Characterization of many-body quantum chaos
- The Sachdev-Ye-Kitaev model
- The quantum Lyapunov spectrum
- The singular values of two-point correlators
- The case of the XXZ spin chain
- Summary

Chaos in deterministic classical dynamics

• Sensitivity to initial conditions: exponential growth of initial perturbation

"butterfly effect"

Bounded, nonperiodic dynamics with nonlinearity What happens in quantum mechanics?

How to characterize quantum chaos?

$$i\frac{d}{dt}|\psi\rangle = \hat{H}|\psi\rangle \quad |\psi(t)\rangle = \hat{T}\exp\left[-i\int_{0}^{t}\hat{H}(t')dt\right]|\psi(t=0)\rangle = \exp\left(-i\hat{H}t\right)|\psi(t=0)\rangle$$

Linear dynamics

Unitary time evolution

• Long time: energy level statistics

Correlation between levels, as in random matrices

P(*s*): normalized level P(s) separation distribution Uncorrelated: Poisson (e^{-s})

Numerically \rightarrow limited to very small systems

Short time: out-of-time correlator

Classically,

$$\{x_i(t), p_j(0)\}_{\text{PB}}^2 = \left(\frac{\partial x_i(t)}{\partial x_j(0)}\right)^2 \to e^{2\lambda_{\text{L}}t} \text{ for large } t$$

Quantum version:

OTOC:
$$C_T(t) = \left\langle \left| \left[\widehat{W}(t), \widehat{V}(t=0) \right] \right|^2 \right\rangle$$

= $\left\langle \widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0) \right\rangle + \cdots$

→ Hard to see exponential time dependence

Characterization of quantum many-body chaos

• Random-matrix like energy level correlation

• Exponential Lyapunov growth of outof-time-order correlators (OTOC) $\langle \widehat{W}^{\dagger}(t)\widehat{V}^{\dagger}(0)\widehat{W}(t)\widehat{V}(0)\rangle \sim C + \# e^{2\lambda_{L}t}$

The Sachdev-Ye-Kitaev model

$$\widehat{H} = \frac{\sqrt{3!}}{N^{3/2}} \sum_{1 \le a < b < c < d \le N} J_{abcd} \widehat{\chi}_a \widehat{\chi}_b \widehat{\chi}_c \widehat{\chi}_d$$

cf. Sachdev-Ye model (1993)

 $\hat{\chi}_{a=1,2,...,N}$: *N* Majorana fermions ({ $\hat{\chi}_{a}, \hat{\chi}_{b}$ } = δ_{ab}) J_{abcd} : Gaussian random couplings ($\langle J_{abcd}^{2} \rangle = J^{2} = 1$)

[A. Kitaev, talks at KITP (2015)]

Holographic connection to gravity?

Sachdev-Ye model

• Strongly interacting random systems: model with analytical solutions?

[S. Sachdev and J. Ye, PRL **70**, 3339 (1993)] cond-mat/9212030 (Submitted on 21 Dec 1992) N SU(M) spins \widehat{S} with all-to-all random coupling J_{ij} (notation below: from [Sachdev, PRX 2015])

$$H = \frac{1}{(NM)^{1/2}} \sum_{i,j=1}^{N} \sum_{\alpha,\beta=1}^{M} J_{ij} c_{i\alpha}^{\dagger} c_{i\beta} c_{j\beta}^{\dagger} c_{j\alpha}, \qquad \frac{1}{M} \sum_{\alpha} c_{i\alpha}^{\dagger} c_{i\alpha} = \mathcal{Q},$$

• Non-Fermi liquid with nonzero entropy at $T \rightarrow 0$ Local dynamic spin susceptibility $\bar{\chi}(\omega) = X \left[\ln \left(\frac{1}{|\omega|} \right) + i \frac{\pi}{2} \operatorname{sgn}(\omega) \right] + \cdots,$

cf. Dynamic neutron scattering experiments on disordered antiferromagnets [B. Keimer et al. PRL 1991 (LSCO); S.M. Hayden et al. PRL 1991 (LBCO); C. Broholm et al. PRL 1990 (Kagome planes of Cr³⁺ ions in Sr(Cr,Ga)₁₂O₁₉)]

s: molecular levels $\hat{H}_{m} = \sum_{s=1}^{n_{s}} \left\{ \nu_{s} \hat{m}_{s}^{\dagger} \hat{m}_{s} + \sum_{i,j} g_{s,ij} \left(\hat{m}_{s}^{\dagger} \hat{c}_{i} \hat{c}_{j} - \hat{m}_{s} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \right) \right\}.$ $|\nu_{s}| \gg |g_{s,ij}|$ Modified SYK model: $\hat{H}_{eff} = \sum_{s,i,j,k,l} \frac{g_{s,ij}g_{s,kl}}{\nu_{s}} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}.$ Setup:

[I. Danshita, M. Hanada, MT: arXiv:1606.02454;
PTEP **2017**, 083I01 (2017)]
(also a proceedings manuscript arXiv:1709.07189)

 $E_{a,3} + E_{a,4}$

 $\begin{array}{c} E_{a,2} + E_{a,4} \\ E_{a,2} + E_{a,3} \\ E_{a,1} + E_{a,4} \\ E_{a,1} + E_{a,3} \end{array}$

 $E_{a,1} + E_{a,2}$

PA lasers

• Quantum circuit

L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano, "Digital Quantum Simulation of Minimal AdS/CFT", PRL **119**, 040501 (2017)

arXiv:1702.04426

N quanta of magnetic flux through a nanoscale hole

Inhomogeneous wave functions due to the irregular shape of the hole

 $0.6 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ -0.6 \\ -0.6 \\ -100 \\ -50 \\ 0 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0 \\ -50 \\ 0 \\ -50 \\ 0 \\ -50 \\ 0 \\ -50 \\ 0 \\ -50 \\ 0 \\ -50 \\ -50 \\ 0 \\ -50$

Zero energy states: Majorana fermions

D. I. Pikulin and M. Franz, "Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System", PRX **7**, 031006 (2017)

arXiv:1703.06890 $\tilde{\gamma}_i$ (a) Β 2D disordered Majorana wire array quantum dot (b) (c) Dot levels 3 $\delta\epsilon_{ m typ}$ JMajorana Majorana _____ ____ zero modes zero modes

Aaron Chew, Andrew Essin, and Jason Alicea, "Approximating the Sachdev-Ye-Kitaev model with Majorana wires", PRB **96**, 121119(R) (2017)

arXiv:1802.00802

Review Article | Published: 29 November 2018

Mimicking black hole event horizons in atomic and solid-state systems

Marcel Franz 🖾 & Moshe Rozali

Nature Reviews Materials 3, 491–501 (2018) Download Citation 🛓

Anffany Chen, R. Ilan, F. de Juan, D.I. Pikulin, M. Franz, "Quantum holography in a graphene flake with an irregular boundary", arXiv:1802.00802 [PRL **121**, 036403 (2018)]

Sachdev-Ye-Kitaev model

N Majorana- or Dirac- fermions randomly coupled to each other

- Solvable in the large N limit, Sachdev-Ye "spin liquid" ground state
- Nearly conformal symmetric at low temperature ("emergent ...")
- Connection to topological phases of matter
- Holographically corresponds to a quantum black hole?
- Realizes the Maldacena-Shenker-Stanford chaos bound $\lambda_L = 2\pi k_B T/\hbar$

Classification and random matrix theory

$$\widehat{H} = \frac{\sqrt{3!}}{N^{3/2}} \sum_{1 \le a < b < c < d \le N} J_{abcd} \widehat{\chi}_a \widehat{\chi}_b \widehat{\chi}_c \widehat{\chi}_d$$

Introduce N/2 complex fermions

SPT phase classification for class BDI
$$\mathbb{Z} \rightarrow \mathbb{Z}_8$$
 due to interaction [L. Fidkowski and A. Kitaev, PRB 2010, PRB 2011]

ions
$$\hat{c}_j = \frac{(\hat{\chi}_{2j-1} + i\hat{\chi}_{2j})}{\sqrt{2}}$$

$$\hat{\chi}_a \hat{\chi}_b \hat{\chi}_c \hat{\chi}_d$$
 respects the complex fermion parity
Even (\hat{H}_E) and odd (\hat{H}_O) sectors: $L = 2^{N/2-1}$ dimensions

<i>N</i> mod 8	0	2	4	6
η	-1	+1	+1	-1
\widehat{X}^2	+1	+1	-1	-1
\widehat{X} maps H_{E} to	H_{E}	H_{O}	$H_{\rm E}$	H _O
Class	ΑΙ	A+A	All	A+A
Gaussian ensemble	GOE	GUE	GSE	GUE

$$\widehat{X} = \widehat{K} \prod_{j=1}^{N/2} (\widehat{c}_j^{\dagger} + \widehat{c}_j)$$
$$\widehat{X} \widehat{c}_j \widehat{X} = \eta \widehat{c}_j^{\dagger}$$

[You, Ludwig, and Xu, PRB 2017]

Sparse, but energy spectral statistics strongly resemble that of the corresponding (dense) Gaussian ensemble

[Cotler, ..., MT, JHEP 2017]

Gaussian random matrices

Gaussian distribution

Density
$$\propto e^{-\frac{\beta K}{4} \operatorname{Tr} H^2} = \exp\left(-\frac{\beta K}{4} \sum_{i,j}^{K} |a_{ij}|^2\right)$$

[F. J. Dyson, J. Math. Phys. **3**, 1199 (1962)

Real (β =1): Gaussian Orthogonal Ensemble (GOE) Complex (β =2): G. Unitary E. (GUE) Quaternion (β =4): G. Symplectic E. (GSE)

Eigenvalue distribution: semi-circle law

 $e_1 \leq e_2 \leq \cdots \leq e_L$ Δ : averaged level separation near e_i

P(s): Distribution of normalized level separation $s = \frac{e_{j+1} - e_j}{\Delta(\bar{e})}$

GOE/GUE/GSE: $P(s) \propto s^{\beta}$ at small s, has e^{-s^2} tail Uncorrelated: $P(s) = e^{-s}$ (Poisson distribution)

Gaussian random matrices

→ SYK model results: indistinguishable from corresponding Gaussian ensemble

20 Density of states SYK N = 1015 = 16N = 18 N = 20= 22 01 põ N = 2426 = 28 30 32 84 5 0 -0.06 -0.04 -0.02 0.02 0.04 0.06 0.08 0 E/N

Figure 15. Normalized density of states $\tilde{\rho}(E)$ for the SYK model with N = 10, 12, ..., 34. The bin width is $10^{-3}J$. Notice that the energy is measured in units of NJ. The numbers of samples are 21600000 (N = 10), 10800000 (N = 12), 5400000 (N = 14), 1200000 (N = 16), 600 000 (N = 18), 240 000 (N = 20), 120 000 (N = 22), 48 000 (N = 24), 10 000 (N = 26), 3 000 (N = 28), 1 000 (N = 30), 516 (N = 32), 90 (N = 34).

[Cotler, MT et al., JHEP05(2017)118]

[Cotler, MT et al., JHEP05(2017)118]

Correlation function
$$G(t) = \langle \hat{\chi}_a(t) \hat{\chi}_a(0) \rangle_{\beta} = \frac{1}{Z(\beta)} \sum_{m,n} e^{-\beta E_m} |\langle m | \hat{\chi}_a | n \rangle|^2 e^{i(E_m - E_n)t}$$

N dependence of the spectral form factor

Characterization of quantum many-body chaos

• Random-matrix like energy level correlation

• Exponential Lyapunov growth of outof-time-order correlators (OTOC) $\langle \widehat{W}^{\dagger}(t)\widehat{V}^{\dagger}(0)\widehat{W}(t)\widehat{V}(0)\rangle \sim C + \# e^{2\lambda_{L}t}$

We propose two new characterizations of quantum chaos

 Quantum Lyapunov spectrum: Quantum version of finite-time Lyapunov spectrum

 $\widehat{M}_{ab}(t)$: (anti)commutator of $\widehat{O}_a(t)$ and $\widehat{O}_b(0)$

$$\widehat{L}_{ab}(t) = \sum_{j=1}^{N} \widehat{M}_{ja}(t)^{\dagger} \widehat{M}_{jb}(t)$$

 $\begin{cases} \lambda_k(t) = \frac{\log s_k(t)}{2t} \end{cases} \text{ for singular values} \\ \{s_k(t)\}_{k=1}^N \text{ of } N \times N \text{ matrix } \langle \phi | \hat{L}_{ab}(t) | \phi \rangle. \end{cases}$

arXiv:1809.01671

• Two-point correlations:

 $G_{ab}^{(\phi)} = \langle \phi | \hat{O}_a(t) \hat{O}_b(0) | \phi \rangle \text{ as matrix,}$ log (singular values)

arXiv:1902.11086

Deviation from the chaos bound as SYK₂ component is introduced

1. Quantum Lyapunov spectrum

OTOCs have been intensively studied:

 $F(t) = \langle \hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0) \rangle$

- Measurement protocols
 - [B. Swingle, G. Bentsen, M. Schleier-Smith, P. Hayden, PRB 94, 040302 (2016)] and experimental proposal papers for the SYK model
- Experimental measurements
 - trapped ions [M. Gärttner et al. Nat. Phys. **13**, 781 (2017) 1608.08938]
 - NMR [J. Li et al. PRX 7, 031011 (2017) 1609.01246]
- Quantum information (scrambling, ...)
- Many-body localization
- Fluctuation-dissipation theorem
 - [N. Tsuji, T. Shitara, and M. Ueda, PRE 97, 012101 (2018)]

Q. Which operators should we use?

Lyapunov growth of phase space

- Just one direction?
- If more than one, what are relations between λ ?

[M. Hanada, H. Shimada, and M. Tezuka, PRE 97, 022224 (2018)]

Observation for classical chaos

Classical system with *K* degrees of freedom

(Usually $t \to \infty$ limit is taken for obtaining λ_L)

$$L = \left(\frac{\delta x_i(t)}{\delta x_j(0)}\right)^2 \qquad \{x(t), p(0)\}_{\rm PB}^2 = \left(\frac{\partial x(t)}{\partial x(0)}\right)^2 \to e^{2\lambda_{\rm L} t}$$

We consider finite t

Singular values of M_{ij} : $\{a_k(t)\}_{k=1}^K$ Time-dependent Lyapunov spectrum $\left\{\lambda_k(t) = \frac{\log a_k(t)}{t}\right\}_{k=1,2,\dots,K}$ obeys random matrix-like statistics

in several chaotic systems

- Logistic map
- Lorenz attractor
- D0 brane matrix model (without fermions)

Quantum Lyapunov spectrum

OTOC:
$$C_T(t) = \left\langle \left| \left[\widehat{W}(t), \widehat{V}(t=0) \right] \right|^2 \right\rangle = \left\langle \widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0) \right\rangle + \cdots$$

Quantum Lyapunov spectrum: Define $\widehat{M}_{ab}(t)$ as (anti)commutator of $\widehat{O}_a(t)$ and $\widehat{O}_b(0)$

$$\widehat{L}_{ab}(t) = \left[\widehat{M}(t)^{\dagger}\widehat{M}(t)\right]_{ab} = \sum_{j=1}^{N}\widehat{M}_{ja}(t)^{\dagger}\widehat{M}_{jb}(t)$$

For $N \times N$ matrix $\langle \phi | \hat{L}_{ab}(t) | \phi \rangle$, obtain singular values $\{s_k(t)\}_{k=1}^N$. The Lyapunov spectrum is defined as $\{\lambda_k(t) = \frac{\log s_k(t)}{2t}\}$. Quantum Lyapunov spectrum for SYK model + modification

$$\widehat{H} = \sum_{1 \le a < b < c < d}^{N} J_{abcd} \widehat{\chi}_{a} \widehat{\chi}_{b} \widehat{\chi}_{c} \widehat{\chi}_{d} + i \sum_{1 \le a < b}^{N} K_{ab} \widehat{\chi}_{a} \widehat{\chi}_{b} \qquad J_{abcd}: \text{s. d.} = \frac{\sqrt{6}}{N^{3/2}}$$

$$K_{ab}: \text{s. d.} = \frac{K}{\sqrt{N}}$$

- Define $\hat{L}_{ab}(t) = \sum_{j=1}^{N} \widehat{M}_{ja}(t) \widehat{M}_{jb}(t)$ for time-dependent anticommutator $\widehat{M}_{ab}(t) = \{\hat{\chi}_a(t), \hat{\chi}_b(0)\}.$
- Obtain the singular values $\{a_k(t)\}_{k=1}^K$ of $\langle \phi | \hat{L}_{ab}(t) | \phi \rangle$

• Quantum Lyapunov spectrum:
$$\left\{\lambda_k(t) = \frac{\log a_k(t)}{2t}\right\}_{k=1,2,...,K}$$

(also dependent on state ϕ)

Other possibilities: see Rozenbaum-Ganeshan-Galitski, 1801.10591; Hallam-Morley-Green: 1806.05204

Spectral statistics of quantum Lyapunov spectrum: SYK

Gharibyan, Hanada, Swingle, and MT, JHEP04(2019)082 (arXiv:**1809.01671**)

Growth of (largest Lyapunov exponent)*time

Gharibyan, Hanada, Swingle, and MT, JHEP04(2019)082 (arXiv:**1809.01671**)

Full Lyapunov spectrum

Sample- and state-averaged

Kolmogorov-Sinai entropy

Coarse-grained entropy

- = log(# of cells covering the region)
- ~ (sum of positive λ) t

Kolmogorov-Sinai entropy $h_{\rm KS}$

- = (sum of positive λ)
- = entropy production rate

Kolmogorov-Sinai entropy vs entanglement entropy production

Fastest entropy production?

SYK₄ limit

- λ_N and $\lambda_{OTOC} = \frac{1}{2t} \log \left(\frac{1}{N} \sum_{i=1}^{N} e^{2\lambda_i t} \right)$ approach each other; difference decreases as 1/N
- Same for λ_N and λ_1 :

all exponent \rightarrow single peak

- All saturate the MSS bound at strong coupling (low *T*) limit
- Growth rate of entanglement entropy $\sim h_{\rm KS} =$ sum of positive (all) λ_i

➔ [conjecture] SYK model: not only the fastest scramblers, but also fastest entropy generators

2. Singular value statistics of two-point functions

 $G_{ab}^{(\phi)} = \langle \phi | \hat{\chi}_a(t) \hat{\chi}_b(0) | \phi \rangle$

 $\lambda_j = \log \left[\text{singular values of} \left(G_{ab}^{(\phi)} \right) \right]$

2. Singular value statistics of two-point functions

Random matrix behavior \Leftrightarrow chaotic (also for XXZ model + random field)

Random-matrix like for **complex fermion number eigenstates**, even for non-chaotic regime

Empty state in complex fermion description: state without long-range entanglement

The case of the random field XXZ model

 $\widehat{H} = \sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1} + \sum_{i}^{N} h_{i} \widehat{S}_{i}^{Z} \qquad h_{i}: \text{ uniform distribution } [-W, W]$

Many-body localization transition at $W = W_c \sim 3.6$ (though recently disputed; e.g. $W_c \ge 5$ proposed in E. V. H. Doggen et al., [1807.05051] using large systems with time-dependent variational principle & machine learning)

Spectral statistics of QLS for random field XXZ

 $\widehat{H} = \sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1} + \sum_{i}^{N} h_{i} \widehat{S}_{i}^{Z}$ h_i : uniform distribution [-W, W] $\widehat{M}_{ab}(t) = \left[\widehat{S_a^+}(t), \widehat{S_b^-}(0)\right]$ N_{site} = 10, W = 0.5, 45-55% N_{site} = 10, W = 4, 45-55% 3 exponents 3 exponents 0.8 0.8 *V* = 0.5 W = 4.00.6 0.6 (delocalized) (Many-body P(s) o(s)

arXiv:1809.01671

 \times Exponential growth of the singular values is not observed, but the statistics approach GUE

Quantum Lyapunov spectrum distinguishes chaotic and non-chaotic phases

Two-point function

 $G_{ab}^{(\phi)} = \left\langle \phi \middle| \widehat{\sigma^+}_a(t) \widehat{\sigma^-}_b(0) \middle| \phi \right\rangle$

Energy eigenstates (not close to the spectral edges): GOE at short and long times for small W

 $\widehat{H} = \sum_{i}^{N} \widehat{S_{i}} \cdot \widehat{S_{i+1}} + \sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \qquad h_{i} \in [-W, W]$

Weak vs strong W

 $G_{ab}^{(\phi)} = \left\langle \phi \middle| \widehat{\sigma^+}_a(t) \widehat{\sigma^-}_b(0) \middle| \phi \right\rangle$

 $\widehat{H} = \sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1} + \sum_{i}^{N} h_{i} \widehat{S}_{i}^{Z} \qquad h_{i} \in [-W, W]$

Energy eigenstates GOE at short and long times for small W, close to Poisson at any time for large W

XXZ model: Spin eigenstates \rightarrow GUE

 $G_{ab}^{(\phi)} = \left\langle \phi \middle| \widehat{\sigma^+}_a(t) \widehat{\sigma^-}_b(0) \middle| \phi \right\rangle$

Singular value statistics of two-point correlation function

Model	Chaotic (small K / small W)	Not chaotic (large K / large W)
SYK ₄ + SYK ₂	Energy eig. \rightarrow GUE at late time except for $N \equiv 0 \pmod{8}$: GOE	Energy eig. → Poisson at any time
	Spin eig. → GUE at any time	Spin eig. → off from GUE at some time
XXZ + random field	Energy eig. \rightarrow off from GOE at some time $(G_{ab}^{(\phi)} = \langle \phi \widehat{\sigma^+}_a(t) \widehat{\sigma^-}_b(0) \phi \rangle$ is symmetric)	Energy eig. → close to Poisson
	Spin eig. \rightarrow converges to GUE $(G_{ab}^{(\phi)} = \langle \phi \widehat{\sigma}_{a}^{+}(t) \widehat{\sigma}_{b}^{-}(0) \phi \rangle$ is not symmetric)	Spin eig. → approaches Poisson from RMT-like

H. Gharibyan, M. Hanada, B. Swingle, and MT, arXiv:1902.11086

Outlook / related recent works

- Euclidean time; two-point correlations in classical dynamics; experiments?
 - In progress
- Time scale?
 - cf. "Onset of Random Matrix Behavior in Scrambling Systems"
 H. Gharibyan, M. Hanada, S. H. Shenker, and MT, JHEP07(2018)124 (1803.08050)
- Many-body localization (MBL) in other systems?
 - cf. MBL in a finite-range SYK model
 A. M. García-García and MT, PRB **99**, 054202 (2019) (1801.03204)
- Relation between randomness and chaos?
 - cf. SYK₂ model: "Randomness and chaos in qubit models" Pak Hang Chris Lau, Chen-Te Ma, Jeff Murugan, and MT, Phys. Lett. B in press (1812.04770)
- Holographic interpretation?
 - cf. "Effective Hopping in Holographic Bose and Fermi Hubbard Models" M. Fujita, R. Meyer, S. Pujari, and MT, JHEP01(2019)045 (1805.12584)

Summary

- Many-body quantum chaos: characterizations
- The Sachdev-Ye-Kitaev model
- <u>Quantum Lyapunov spectrum</u> defined from local operators: characterizes quantum chaos [1809.01671]
 - Random matrix behavior in chaotic systems
 - Lyapunov growth
 - Fastest entropy production in the SYK model?
- <u>Two-point correlation function</u>: singular values exhibit random matrix behavior in chaotic cases [1902.11086]
 - Experiments should be possible with phase-sensitive measurements
- Both characterizations of chaos demonstrated also for XXZ spin chain + random field

$$\begin{split} \hat{L}_{ab}(t) &= \sum_{j=1}^{N} \widehat{M}_{ja}(t) \widehat{M}_{jb}(t) \text{ for } \\ & \widehat{M}_{ab}(t) = \{ \hat{\chi}_{a}(t), \hat{\chi}_{b}(0) \} \\ \text{QLS: log(singular values of } \langle \phi | \hat{L}_{ab}(t) | \phi \rangle) / (2t) \end{split}$$

$$G_{ab}^{(\phi)} = \langle \phi | \hat{\chi}_a(t) \hat{\chi}_b(0) | \phi \rangle$$