

Relative geometric invariant theory

Alexander Schmitt Freie Universität Berlin

MS Seminar (Mathematics - String Theory), July 16, 2019

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Kummer's quartic

Relative geometric invariant theory

Alexander Schmitt

Surfaces in hreedimenbional projective space

The Kummer Quartic

In 1875, Eduard Kummer was the first person who explicitly asked the question of what the maximum number $\mu(d)$ of singularities on a surface of degree d are. In his case the degree was 4 and are called *quartics*.

He showed that $\mu(4) = 16$. After that he studied quartics with 16 singularities in detail. A particularly beautiful family of such surfaces is given by:

 $\left(x^2+y^2+z^2-\mu^2\right)^2-\lambda\,y_{0}\,y_{1}\,y_{2}\,y_{3},$

where μ is a free parameter. and $\lambda = \frac{3\pi^2-1}{2\pi^2}$: the y_1 are the sides of a regular tetrahedron $y_2=1-z-\sqrt{2\pi}$, $y_1=1-z+\sqrt{2\pi}$, $y_2=1-z+\sqrt{2\pi}$, $y_2=1-z+\sqrt{2\pi}$, in order to make the surface symmetric. Not all members of this family have exactly 10 real singularities, although most of them do:

For some special values of the parameters, several of the singularities may coincide.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Relative geometric invariant theory

Alexander Schmitt

Surfaces in threedimensional projective space

Theorem (Hilbert 1893)

A cubic form $f \in V_{3,3} \setminus \{0\}$ is semistable if and only if $V(f) \subset \mathbb{P}^3$ is smooth or has only isolated singuarities of type A_1 (conical nodes) and A_2 (binodes).

Double points of surfacesConical nodebinodeuninode A_1 $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical nodeImage: Conical nodeImage: Conical node A_1 $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical nodeImage: Conical nodeImage: Conical node A_1 $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical nodeImage: Conical nodeImage: Conical node A_1 $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical nodeImage: Conical nodeImage: Conical node A_1 $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical nodeImage: Conical nodeImage: Conical node A_1 $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical node $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical node $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical node $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$ Image: Conical node $A_k, k \ge 2$ $D_k, k \ge 4, E_6, E_7, E_8$

The most singular semistable surface

