Kavli IPMU セミナー 2019年11月5日

The semiclassical approximation to quantum gravity and its relation to cosmological observations

joint work with: David Brizuela, Claus Kiefer and Salvador Robles-Pérez

Phys. Rev. D **93**, 104035 (2016), arXiv:1511.05545 Phys. Rev. D **94**, 123527 (2016), arXiv:1611.02932 Phys. Rev. D **99**, 104007 (2019), arXiv:1903.01234

Manuel Krämer

Institute for Theoretical Physics KU Leuven, Belgium

Outline

- 1. Introduction and motivation
- 2. The Wheeler–DeWitt approach to Quantum Gravity
- 3. Inflation and perturbations within quantum cosmology
- 4. The semiclassical approximation
- 5. Calculation of quantum-gravitational effects
 - → de Sitter
 - → slow-roll approximation
 - \rightarrow excited initial states
- 6. Comparison with other approaches
- 7. Summary and Outlook

Tests of theories of Quantum Gravity

- we have several approaches to Quantum Gravity at hand
- in order to decide which is the correct one, we need testable predictions
- problem: quantum-gravitational effects are suppressed by $\propto \frac{1}{m_{\rm P}^2}$ $m_{\rm P} = \sqrt{\frac{\hbar c}{G}} \simeq 1.22 \times 10^{19} \,{\rm GeV}/c^2$
- best chances to find sizeable QG effects → inflationary universe
- ➡ Can QG effects be observed in the Cosmic Microwave Background?

A conservative approach to Quantum Gravity

 Schrödinger equation is the quantum wave equation that leads to the classical Hamilton–Jacobi equation in the semiclassical limit

$$i\hbar \frac{\partial}{\partial t}\Psi = \hat{H}\Psi \longrightarrow H + \frac{\partial S}{\partial t} = 0$$

- What is the quantum wave equation that immediately gives Einstein's equations (in their Hamiltonian form) in the semiclassical limit?
 - Wheeler–DeWitt equation:

$$\hat{\mathcal{H}} \Psi[h_{ij}(\mathbf{x}), \phi(\mathbf{x})] = 0$$
wave functional 3-metric matter field
$$\frac{1}{\sqrt{h}} \left(\frac{1}{2}h_{ij}h_{kl} - h_{ik}h_{jl}\right) \frac{\delta S}{\delta h_{ij}} \frac{\delta S}{\delta h_{kl}} + \sqrt{h}^{(3)}R = 0$$

B. S. DeWitt, Phys. Rev. 160, 113 (1967); J. A. Wheeler, in: Battelle rencontres, 242 (1968).

Derivation of the Wheeler–DeWitt equation

 reformulate General Relativity as a Hamiltonian theory by means of the ADM formalism

5

 3+1 decomposition by foliating spacetime (M, g) into a set of three-dimensional space-like hypersurfaces ∑_t with an induced spatial metric h_{ij}

Derivation of the Wheeler–DeWitt equation

- canonical variables: h_{ij} and its conjugate momentum p^{ij}
- Hamiltonian: $H^{g} = \int d^{3}x \left(N \mathcal{H}^{g}_{\perp} + N^{i} \mathcal{H}^{g}_{i} \right)$
- dynamics classically given by constraints: $\mathcal{H}^{\rm g}_{\perp} pprox 0$ $\mathcal{H}^{\rm g}_i pprox 0$
- → quantization: $\left[\hat{h}_{ij}(\mathbf{x}), \hat{p}^{kl}(\mathbf{y})\right] = i \hbar \delta_{(i}^k \delta_{j)}^l \delta(\mathbf{x}, \mathbf{y})$

$$\hat{h}_{kl} \Psi[h_{ij}] = h_{kl} \Psi[h_{ij}] \qquad \qquad \hat{p}^{kl} \Psi[h_{ij}] = -i\hbar \frac{\delta}{\delta h_{kl}} \Psi[h_{ij}]$$

- Hamiltonian constraint: $\mathcal{H}^{g}_{\perp}\Psi[h_{ij}(\mathbf{x})] = 0$
- diffeomorphism constraint: $\mathcal{H}_i^g \Psi[h_{ij}(\mathbf{x})] = 0$
- Wheeler–DeWitt equation follows from Hamiltonian constraint:

$$\begin{bmatrix} -16\pi G \hbar^2 G_{ijkl} & \frac{\delta^2}{\delta h_{ij} \delta h_{kl}} & - \sqrt{\frac{1}{16\pi G}} \begin{pmatrix} {}^{(3)}R - 2\Lambda \end{pmatrix} + \mathcal{H}_{mat}[h_{ij}, \phi] \end{bmatrix} \Psi[h_{ij}, \phi] = 0$$

DeWitt metric $\det(h_{ij})$ 3-dim. Ricci scalar cosmol. constant matter field

Wheeler–DeWitt equation

- timeless (GR: *dynamical time* **vs.** QM: *absolute time* → QG: <u>no</u> time)
- intrinsic time can be recovered in the semiclassical limit ------. → Born–Oppenheimer approximation with respect to $m_P^2 \propto G^{-1}$

 $\mathcal{O}(m_{\mathrm{P}}^2)$: Hamilton–Jacobi equation of General Relativity

 $\mathcal{O}(m_{\mathrm{P}}^{0})$: functional Schrödinger equation for matter field; WKB time \rightarrow recovery of QFT in curved spacetime

 $\mathcal{O}(m_{\rm P}^{-2})$: quantum-gravitational correction terms to Schrödinger eq. *details*: Kiefer and Singh, Phys. Rev. D **44**, 1067 (1991).

WDW equation might not hold at the most fundamental level, but can be used as an effective equation to study conceptual questions in QG

The road to Quantum Cosmology

- full Wheeler–DeWitt equation is mathematically difficult to handle
- quantization of a symmetry-reduced model of the universe
- consider a spatially flat homogeneous and isotropic universe

$$\mathrm{d}s^2 = -\,\mathrm{d}t^2 + a^2(t)\,\mathrm{d}\Omega_3^2$$

with a minimally coupled scalar field ϕ_{-} with potential $\mathcal{V}(\phi)$

- infinitely many degrees of freedom of *"superspace"* are reduced to two:
 - → scale factor a and scalar field ϕ → <u>minisuperspace</u>
- ➡ Wheeler–DeWitt equation:

$$\frac{\hbar^2}{2} \left(\frac{4\pi G}{3a^2} \frac{\partial}{\partial a} \left(a \frac{\partial}{\partial a} \right) - \frac{1}{a^3} \frac{\partial^2}{\partial \phi^2} \right) \Psi(a,\phi) + a^3 \mathcal{V}(\phi) \Psi(a,\phi) = 0$$

How can one calculate QG effects in the CMB anisotropies from this?

Overview: The WDW eq. and its semiclassical approx.

• de Sitter universe with scale factor a, $ds^2 = a^2(\eta) \left(-d\eta^2 + dx^2\right)$, constant scalar field leading to constant Hubble parameter H_0 , with perturbations v_k

Background: The WDW eq. for an inflationary universe

- inflation modelled using a scalar field ϕ with potential $\mathcal{V}(\phi)$
 - → slow roll: $\dot{\phi}^2 \ll |\mathcal{V}(\phi)|$ → slow-roll parameters:

- for a flat Friedmann–Lemaître universe with minimally coupled scalar field
- ➡ Wheeler–DeWitt equation:

$$\mathcal{H}_{0}\Psi(\alpha,\phi) = \frac{1}{2} e^{-2\alpha} \left[\frac{1}{m_{\rm P}^{2}} \frac{\partial^{2}}{\partial \alpha^{2}} - \frac{\partial^{2}}{\partial \phi^{2}} + 2 e^{6\alpha} \mathcal{V}(\phi) \right] \Psi(\alpha,\phi) = 0$$

- de Sitter background: neglect ϕ -kinetic term and set $\mathcal{V} = \frac{1}{2} m_{\rm P}^2 H_0^2$
- slow-roll background: rescale $\,\widetilde{\phi} = m_{
 m P}^{-2}\,\phi\,$

$$\mathcal{V} = \frac{1}{2} m_{\mathrm{P}}^2 H^2 \left(1 - \frac{\epsilon}{3} \right) \quad \Rightarrow \quad V = \frac{1}{H_k^2 \eta^4 (k\eta)^{2\epsilon}} \left(1 + \frac{11\epsilon}{3} \right) + \mathcal{O}(2)$$

$$\swarrow_{\text{at horizon crossing}}$$

 $\alpha := \ln(a/a_0)$

 $\epsilon = -\frac{H}{H^2} \qquad \delta = \epsilon - \frac{\dot{\epsilon}}{2H\epsilon} = -\frac{\phi}{H\dot{\phi}}$

Adding scalar and tensor perturbations

- origin of CMB anisotropies: quantum fluctuations "amplified" by inflation
 - gauge-invariant scalar perturbations to the metric

 $ds^{2} = a^{2}(\eta) \left\{ -(1-2A) d\eta^{2} + 2(\partial_{i}B) dx^{i} d\eta + \left[(1-2\psi) \delta_{ij} + 2\partial_{i} \partial_{j}E \right] dx^{i} dx^{j} \right\}$

combined with perturbations of the scalar field ϕ

$$\delta \phi^{(\mathrm{gi})}(\eta, \mathbf{x}) = \delta \phi + \phi' \left(B - E' \right)$$

additionally: tensor perturbations → primordial gravitational waves

$$\mathrm{d}s^2 = a^2(\eta) \left[-\mathrm{d}\eta^2 + (\delta_{ij} + h_{ij}) \,\mathrm{d}x^i \mathrm{d}x^j \right]$$

 \Rightarrow gauge-invariant *Mukhanov–Sasaki* variable $v_k \propto a \, \delta x_{
m S,T}^{
m (gi)}$

for <u>each</u> mode (for <u>both</u> scalars and tensors), we get a WDW equation

$$\left[\mathcal{H}_{0} + \sum_{\mathbf{S},\mathbf{T};k}^{\mathbf{S},\mathbf{T}}\mathcal{H}_{k}\right]\Psi_{k}(\alpha, v_{k}) = 0 \qquad \mathbf{S},\mathbf{T}\mathcal{H}_{k} = \frac{1}{2}\left[-\frac{\partial^{2}}{\partial v_{k}^{2}} + \mathbf{S},\mathbf{T}\omega_{k}^{2}(\eta) v_{k}^{2}\right]$$

Semiclassical approximation

- Born–Oppenheimer approximation, WKB ansatz: $\Psi_k(lpha, v_k) = e^{i S(lpha, v_k)}$
- expansion of $S(\alpha, f_k)$: $S = m_P^2 S_0 + m_P^0 S_1 + m_P^{-2} S_2 + \dots$
- insert WKB ansatz into WDW eq. and equate terms of equal power of $m_{
 m P}$
 - ▶ $\mathcal{O}(m_{\rm P}^2)$: Hamilton–Jacobi equation → Friedmann equation
 - $\mathcal{O}(m_{\mathrm{P}}^{0})$: define $\psi_{k}^{(0)}(\alpha, v_{k}) := \gamma(\alpha) e^{\mathrm{i} S_{1}(\alpha, v_{k})}$

→ introduce WKB conf. time → Schrödinger equation

$$\frac{\partial}{\partial \eta} := -e^{-2\alpha} \frac{\partial S_0}{\partial \alpha} \frac{\partial}{\partial \alpha}$$

$$\mathrm{i}\,\frac{\partial}{\partial\eta}\,\psi_k^{(0)} = \mathcal{H}_k\psi_k^{(0)}$$

• $\mathcal{O}(m_{\rm P}^{-2})$: quantum-gravitationally corrected Schrödinger equation

$$i\frac{\partial}{\partial\eta}\psi_k^{(1)} = \mathcal{H}_k\psi_k^{(1)} - \frac{\psi_k^{(1)}}{2m_{\rm P}^2\psi_k^{(0)}} \left[\frac{\left(\mathcal{H}_k\right)^2}{V}\psi_k^{(0)} + i\frac{\partial}{\partial\eta}\left(\frac{\mathcal{H}_k}{V}\right)\psi_k^{(0)}\right]$$

Derivation of the power spectra in the *de Sitter* case

- Gaussian ansatz $\psi_k^{(0)}(\eta, v_k) = \mathcal{N}_k^{(0)}(\eta) e^{-\frac{1}{2}\Omega_k^{(0)}(\eta) v_k^2} \rightarrow \text{Schrödinger eq.}$
- we have to solve: $i \Omega_k^{\prime(0)}(\eta) = \left(\Omega_k^{(0)}(\eta)\right)^2 {}^{\mathrm{S},\mathrm{T}}\omega_k^2(\eta)$
- ⇒ solution: $\Omega_k^{(0)}(\eta) = \frac{k^2 \eta}{i + k\eta} + \frac{i}{\eta}$ $(= k^2 \frac{2}{\eta^2})$
- power spectrum for scalar perturbations can be obtained via

$$\mathcal{P}_{\mathrm{S}}^{(0)}(k) = \frac{GH_0^2}{\pi \epsilon} \frac{k^3 \eta^2}{\Re \mathfrak{e} \Omega_k^{(0)}}$$

- superhorizon limit $-k\eta \to 0 \rightarrow \Re \Omega_k^{(0)}(\eta) = \frac{k^3 \eta^2}{k^2 \eta^2 + 1} \longrightarrow k^3 \eta^2$
- power spectrum for scalar pert.:

tensor perturb.:

$$\begin{split} \mathcal{P}_{\rm S}^{(0)}(k) &= \frac{G H_0^2}{\pi \,\epsilon} \bigg|_{k=H_0 a} \\ \mathcal{P}_{\rm T}^{(0)}(k) &= \frac{16 \, G \, H_0^2}{\pi} \, \frac{k^3 \eta^2}{\Re \mathfrak{e} \Omega_k^{(0)}} = \frac{16 \, G \, H_0^2}{\pi} \end{split}$$

The uncorrected power spectra in the slow-roll case

- slow-roll parameters enter in all kinds of expressions
 - conformal time: $\eta = -\frac{1}{Ha}(1+\epsilon) + \mathcal{O}(2)$
 - "frequencies": ${}^{\mathrm{S}}\omega_k^2(\eta) = k^2 \frac{2+6\epsilon-3\delta}{\eta^2}$ ${}^{\mathrm{T}}\omega_k^2(\eta) = k^2 \frac{2+3\epsilon}{\eta^2}$

 $\gamma := 2\epsilon - \delta$

power spectrum for scalar perturbations:

$$\mathcal{P}_{\rm S}^{(0)}(k) = \frac{G H_k^2}{\pi \epsilon} \left[1 - 2\epsilon + \gamma (4 - 2\gamma_{\rm E} - 2\ln(2)) \right]$$

power spectrum for tensor perturbations:

$$\mathcal{P}_{\rm T}^{(0)}(k) = \frac{16 \, G \, H_k^2}{\pi} \left[1 - 2\epsilon + \epsilon (4 - 2\gamma_{\rm E} - 2\ln(2)) \right]$$

→ tensor-to scalar ratio: $r^{(0)} = 16 \epsilon + O(2)$

Calculation of the quantum-gravitational corrections

$$i\frac{\partial}{\partial\eta}\psi_k^{(1)} = \mathcal{H}_k\psi_k^{(1)} - \frac{\psi_k^{(1)}}{2m_{\rm P}^2\psi_k^{(0)}} \left[\frac{\left(\mathcal{H}_k\right)^2}{V}\psi_k^{(0)} + i\frac{\partial}{\partial\eta}\left(\frac{\mathcal{H}_k}{V}\right)\psi_k^{(0)}\right]$$

• also assume Gaussianity for corrected Schrödinger equation:

$$\psi_k^{(1)}(\eta, v_k) = \mathcal{N}_k^{(1)}(\eta) e^{-\frac{1}{2} \Omega_k^{(1)}(\eta) v_k^2}$$

• we have to solve: $i \Omega_k^{\prime(1)}(\eta) = \left(\Omega_k^{(1)}(\eta)\right)^2 - \widetilde{\omega}_k^2(\eta)$

with
$$\widetilde{\omega}_k^2 := \omega_k^2 - \frac{1}{2m_{\rm P}^2 V} \left[\left(3\Omega_k^{(0)} - i(\ln V)' \right) \left(\omega_k^2 - (\Omega_k^{(0)})^2 \right) + 2i\omega_k \omega_k' \right]$$

- imaginary terms appear → problem with unitarity
- additionally, numerical analysis of full equation with imaginary terms reveals that the solution oscillates heavily for early times
- \rightarrow no way to implement initial conditions \rightarrow neglect the imaginary terms
- ➡ justification: C. Kiefer and D. Wichmann, Gen. Rel. Grav. 50, 66 (2018).

The de Sitter case: QG corrections – numerics

• equation we have to solve after removal of imaginary terms:

$$i \,\Omega_k^{\prime(1)} = \left(\Omega_k^{(1)}\right)^2 - \omega_k^2 + \frac{H_0^2 \eta^4}{2m_{\rm P}^2} \,\frac{k^3 (11 - k^2 \eta^2)}{(1 + k^2 \eta^2)^3}$$

• numerical solution with Bunch–Davies initial conditions → oscillation with constant amplitude around mean value $k + \frac{H_0^2}{4k m_D^2}$

The de Sitter case: QG corrections – linearization

- find analytical solution at late times (superhorizon limit) $-k\eta \rightarrow 0$
- → linearization around $\Omega_k^{(0)}$: $\Omega_k^{(1)} = \Omega_k^{(0)} + \widetilde{\Omega}_k^{(1)}$
- we have to solve: $i \widetilde{\Omega}_k^{\prime(1)} = 2 \Omega_k^{(0)} \widetilde{\Omega}_k^{(1)} (\widetilde{\omega}_k^2 \omega_k^2)$
- ➡ behavior of the solution at $-k\eta \rightarrow 0$

The de Sitter case: QG corrections – power spectra

• QG corrected \mathcal{P} power spectrum:

scalars and tensors:

➡ we get for both

$$\begin{aligned} \mathcal{P}_{\mathrm{S}}^{(1)}(k) &= \frac{4\pi G}{a^2 \epsilon} \frac{k^3}{4\pi^2} \left(\Re \mathfrak{e} \Omega_k^{(0)} + \Re \mathfrak{e} \widetilde{\Omega}_k^{(1)} \right)^{-1} \\ &= \mathcal{P}_{\mathrm{S}}^{(0)}(k) \left[1 - \frac{\Re \mathfrak{e} \widetilde{\Omega}_k^{(1)}}{\Re \mathfrak{e} \Omega_k^{(0)}} + \mathcal{O}\left(\frac{H_0^4}{m_{\mathrm{P}}^4}\right) \right] \end{aligned}$$

$$\mathcal{P}_{\rm S,T}^{(1)}(k) = \mathcal{P}_{\rm S,T}^{(0)}(k) \left[1 + \frac{H_0^2}{m_{\rm P}^2} \frac{0.988}{k^3} + \mathcal{O}\left(\frac{H_0^4}{m_{\rm P}^4}\right) \right]$$

- QG corrections lead to an *enhancement* of power on large scales
- upper bound on $H_0^2/m_{
 m P}^2$ from tensor-to-scalar ratio $~r \lesssim 0.11$

$$\frac{H_0^2}{m_{\rm P}^2} = \frac{2\mathcal{V}}{m_{\rm P}^4} \sim \frac{2r}{0.01} \left(\frac{10^{16}\,{\rm GeV}}{m_{\rm P}}\right)^4 \lesssim 1.74 \times 10^{-10}$$

→ upper limit:
$$\left| \frac{\mathcal{P}_{S,T}^{(1)}(k) - \mathcal{P}_{S,T}^{(0)}(k)}{\mathcal{P}_{S,T}^{(0)}(k)} \right| \lesssim 1.72 \times 10^{-10} \left(\frac{k_0}{k} \right)^3$$

The slow-roll case: Summary of the results

• **QG corrected power spectra:** $\mathcal{P}_{S,T}^{(1)}(k) = \mathcal{P}_{S,T}^{(0)}(k) \left\{ 1 + \Delta_{S,T} \right\}$

• QG corrected tensor-to-scalar ratio:

$$r^{(1)} := \frac{\mathcal{P}_{\rm T}^{(1)}(k)}{\mathcal{P}_{\rm S}^{(1)}(k)} \approx 16\epsilon \left(1 + 2.56 \frac{H_k^2}{m_{\rm P}^2} \left(\frac{\bar{k}}{\bar{k}}\right)^3 (\delta - \epsilon)\right)$$

• upper bound on $H_{
m inf}^2/m_{
m P}^2$ from tensor-to-scalar ratio $\,r \lesssim 0.11$

$$\frac{H_{\rm inf}^2}{m_{\rm P}^2} = \frac{2\mathcal{V}}{m_{\rm P}^4} \sim \frac{2r}{0.01} \left(\frac{10^{16}\,{\rm GeV}}{m_{\rm P}}\right)^4 \lesssim 1.7 \times 10^{-10}$$

• $n_{
m S} pprox 0.968 \pm 0.006$ implies $\epsilon \lesssim 0.007$ and $\delta pprox -0.002$

→ upper limits: $|\Delta_{S,T}| \lesssim 2 \times 10^{-10}$ $\frac{\Delta_S}{\Delta_T} \approx$

$$\approx 1.02 \qquad \frac{\Delta r}{r^{(0)}} \approx -4 \times 10^{-12}$$

Excited initial states

- What if the perturbations start their evolution in an excited state?
- use number eigenstate for harm. oscillator with time-dep. frequency

$$\psi_N^{\text{eig}}(y,t) \equiv \langle y|N \rangle = \frac{1}{\sqrt{\sigma(t)}} \exp\left(\frac{i\,m\,\sigma'(t)}{2\,\sigma(t)}\,y^2\right)\varphi_N(y,t)$$
$$\varphi_N(y,t) = \frac{e^{-i(N+\frac{1}{2})\tau(t)}}{\sqrt{2^N N!}\,\pi^{\frac{1}{4}}}\,e^{-\frac{y^2}{2\sigma^2(t)}}\,\mathrm{H}_N\left(\frac{y}{\sigma(t)}\right)$$

- excitation number N_k
- corrected power spectra for scalar and tensor perturbations:

$${}^{S}\mathcal{P}_{N_{k}}^{(1)}(k) = \frac{GH^{2}}{\pi\epsilon} \left(2N_{k}+1\right) \left(1 + \frac{2N_{k}+1}{k^{3}} \frac{H^{2}}{m_{P}^{2}} \beta_{N_{k}}\right)$$
$${}^{T}\mathcal{P}_{N_{k}}^{(1)}(k) = \frac{16GH^{2}}{\pi} \left(2N_{k}+1\right) \left(1 + \frac{2N_{k}+1}{k^{3}} \frac{H^{2}}{m_{P}^{2}} \beta_{N_{k}}\right)$$
$$\beta_{N_{k}} \approx \begin{cases} 0.9876\\ 0.104\\ N_{k} \text{ odd} \end{cases}$$

CMB temperature anisotropies

0.12

0.10

0.08

0.06

4

•
$$C_{\ell}^{(i)} = \int_0^\infty \frac{\mathrm{d}k}{k} \, \mathcal{P}_{\mathrm{S}}^{(i)}(k) \, \Theta_{\ell}^2(k) \, \rightarrow \text{uncorr.:} \quad C_{\ell}^{(0)} \approx \frac{1}{8\pi^2\epsilon} \left(\frac{H_k}{m_{\mathrm{P}}}\right)^2 \frac{1}{\ell(\ell+1)}$$

• QG correction:
$$\Delta C_{\ell} \approx \frac{1}{4\pi^2} \int_0^\infty \frac{\mathrm{d}k}{k\epsilon} \left(\frac{H_k}{m_{\mathrm{P}}}\right)^4 \left(\frac{\bar{k}}{k}\right)^3 j_{\ell}^2 (k[\eta_{\mathrm{hor}} - \eta_{\mathrm{rec}}])$$
$$p_{\ell} \coloneqq \frac{\Delta C_{\ell}}{C_{\ell}^{(0)}} \approx \frac{3}{4\pi\epsilon} \left(\frac{H_k}{m_{\mathrm{P}}}\right)^4 \frac{|\bar{k}(\eta_{\mathrm{hor}} - \eta_{\mathrm{rec}})|^3}{(2\ell - 3)(2\ell - 1)(2\ell + 1)(2\ell + 3)(2\ell + 5)}$$

• for
$$\ell = 2$$
: $\frac{\Delta C_2}{C_2^{(0)}} \approx 0.12 \left(\frac{H_k}{m_{\rm P}}\right)^2 \langle |\bar{k}(\eta_{\rm hor} - \eta_{\rm rec})|^3 \\ \langle |0.05\,{\rm Mpc}^{-1}(700\,{\rm Mpc})|^3 \approx 5 \times 10^4$

• cosmic variance:
$$\frac{\Delta C_{\ell}^{\text{CV}}}{C_{\ell}^{(0)}} = \sqrt{\frac{2}{2\ell+1}} \rightarrow \frac{\Delta C_{2}^{\text{CV}}}{C_{2}^{(0)}} \approx 0.63$$

8

$$\stackrel{0.04}{\longrightarrow} \text{ for a measurable effect we would need } \frac{H_k}{m_{\rm P}} \gtrsim 10^{-2}$$

6

l

10

Comparison with other approaches

- different method to realize the semiclassical approx. to the WDW eq. A. Kamenshchik, A. Tronconi, G. Venturi: 1305.6138 (PLB), 1403.2961 (PLB), 1501.06404 (JCAP).
- decomposition of the wave function into an infinite set of moments D. Brizuela and U. Muniain, JCAP 04 (2019) 016
 - \rightarrow de Sitter: same behavior $\propto k^{-3}$, same sign, slightly diff. prefactor
- Loop Quantum Cosmology
 inverse-volume corrections:
 M. Bojowald, G. Calcagni, and S. Tsujikawa,
 Phys. Rev. Lett. 107, 211302 (2011),
 JCAP 1111, 046 (2011).
- pre-inflationary dynamics:
 I. Agulló, A. Ashtekar, and W. Nelson,
 Phys. Rev. Lett. **109**, 251301 (2012),
 Phys. Rev. D **87**, 043507 (2013),
 Class. Quant. Grav. **30**, 085014 (2013).

Comparison with other approaches II

Comparison with other approaches III

 pre-inflationary phase from "third quantization" models:
 M. Bouhmadi-López, J. Morais, M.K. and Salvador Robles-Pérez,
 Eur. Phys. J. C 77, 718 (2017),
 Eur. Phys. J. C 78, 240 (2018),
 JCAP 02 (2019) 057.

stiff-matter-like, ~ a^{-6}

Summary

- we calculated *quantum-gravitational corrections* to the power spectra of *scalar* and *tensor* perturbations during *inflation* by performing a *semiclassical* approximation to the *Wheeler–DeWitt eq*.
 - → specific enhancement of power on large scales, too small to be measurable (with current bounds from observation)
- other QG approaches also lead to modification of power on large scales • behavior like $\propto \frac{1}{k^3} \frac{H^2}{m_P^2}$ universal feature for semiclassical approaches?
 - ➡ LQC and other approaches can also incorporate a suppression
- ▶ Outlook: → non-Gaussianities
 → galaxy-galaxy correlations (no cosmic variance)
- D. Brizuela, C. Kiefer, M. K., 1511.05545 (*de Sitter*), 1611.02932 (*slow-roll*).
- D. Brizuela, C. Kiefer, M. K., S. Robles-Pérez, 1903.01234 (excited states).