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• we have several approaches to Quantum Gravity at hand 

• in order to decide which is the correct one, we need testable predictions 

• problem:  quantum-gravitational effects are suppressed by  

• best chances to find sizeable QG effects  ➔  inflationary universe 

➡ Can QG effects be observed in the Cosmic Microwave Background?

Tests of theories of Quantum Gravity
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• Schrödinger equation is the quantum wave equation that leads to the 
classical Hamilton–Jacobi equation in the semiclassical limit 
 

➡ What is the quantum wave equation that immediately gives Einstein’s 
equations (in their Hamiltonian form) in the semiclassical limit? 

➡    Wheeler–DeWitt equation: 

A conservative approach to Quantum Gravity
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• reformulate General Relativity as a Hamiltonian theory by means of the 
ADM formalism 

‣ 3+1 decomposition by foliating spacetime                  
into a set of three-dimensional space-like hypersurfaces        
with an induced spatial metric         

Derivation of the Wheeler–DeWitt equation
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2 What is quantum geometrodynamics?

2.1 The 3+1-decomposition

The usual starting point for developing the canonical formalism is the fo-
liation of spacetime into three-dimensional spacelike hypersurfaces. A pre-
requisite for this is the global hyperbolicity of the spacetime. Figure 1 shows
schematically two infinitesimally neighboured hypersurfaces. The vector Ẋµdt,
where

Ẋν ≡ tν = Nnν + NaXν
,a , (1)

denotes the connection between points with the same spatial coordinates xa.
This connection can be decomposed into a normal and a tangential part. The
amount of the normal separation is specified by the lapse function N (with
nµ denoting a unit normal vector); the tangential separation is quantified
by the components Na of the shift vector. The four-dimensional line element

Fig. 1 Two successive spacelike hypersurfaces in the 3+1-decomposition.

between a point with coordinates xa on the lower hypersurface to a point with
coordinates xa + dxa on the upper hypersurface can then be decomposed as
follows:

ds2 = gµνdxµdxν = −N2dt2 + hab(dxa + Nadt)(dxb + N bdt)

= (habN
aN b − N2)dt2 + 2habN

adxbdt + habdxadxb , (2)

where hab denotes the components of the three-dimensional metric, in brief:
the three-metric. In the canonical formalism, the three-metric will play the
role of the configuration variable. To quote again John Wheeler: “The formal-
ism of quantum gravity, in its best developed form, makes three-geometry a
central concept” [1]. Instead of considering a three-metric on each hypersur-
face, we can imagine a given three-manifold Σ and a t-dependent three-metric
on it. In fact, the canonical formalism depends on the chosen manifold Σ;
there is one canonical theory for each Σ.

This leads to a more fundamental viewpoint, cf. [3]. We can assume that
in the beginning only Σ is given, not a spacetime. Only after solving the
dynamical equations are we able to construct spacetime and interpret the

C. Kiefer, Quantum geometrodynamics: whence, whither?, arXiv: 0812.0295

(M, g)
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• canonical variables:          and its conjugate momentum 

• Hamiltonian: 

• dynamics classically given by constraints: 

➡ quantization: 

‣ Hamiltonian constraint: 

‣ diffeomorphism constraint: 

➡ Wheeler–DeWitt equation follows from Hamiltonian constraint: 

Derivation of the Wheeler–DeWitt equation
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• timeless  (GR:  dynamical time  vs.  QM:  absolute time  ➔  QG:  no time) 

• intrinsic time can be recovered in the semiclassical limit 
➔  Born–Oppenheimer approximation with respect to 

           :  Hamilton–Jacobi equation of General Relativity 

           :  functional Schrödinger equation for matter field;  WKB time 
              ➔  recovery of QFT in curved spacetime 

             :  quantum-gravitational correction terms to Schrödinger eq. 

➡  WDW equation might not hold at the most fundamental level, 
but can be used as an effective equation to study conceptual questions in QG

Wheeler–DeWitt equation
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details:  Kiefer and Singh, Phys. Rev. D 44, 1067 (1991).

"
� 16⇡G ~2 Gijkl

�2

�hij�hkl
�

p
h

16⇡G

⇣
(3)
R� 2⇤

⌘
+Hmat[hij ,�]

#
 [hij ,�] = 0

DeWitt metric 3-dim. Ricci scalar cosmol. constantdet(hij) matter field

m2
P / G�1

O(m2
P)

O(m0
P)

O(m�2
P )



• full Wheeler–DeWitt equation is mathematically difficult to handle 

➡ quantization of a symmetry-reduced model of the universe 

• consider a spatially flat homogeneous and isotropic universe 

with a minimally coupled scalar field       with potential  

• infinitely many degrees of freedom of “superspace” are reduced to two: 

➔  scale factor        and scalar field        ➔   minisuperspace 

➡ Wheeler–DeWitt equation:  

➡ How can one calculate QG effects in the CMB anisotropies from this?

The road to Quantum Cosmology
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• de Sitter universe with scale factor     ,                                                          ,  
constant scalar field leading to constant Hubble parameter        , 
with perturbations

Overview:  The WDW eq. and its semiclassical approx.
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• inflation modelled using a scalar field       with potential 

➔  slow roll:                             ➔  slow-roll parameters: 

  

• for a flat Friedmann–Lemaître universe 
with minimally coupled scalar field 

➡ Wheeler–DeWitt equation:  

• de Sitter background:  neglect     -kinetic term and set 

• slow-roll background:  rescale  

                                                     ➔

Background:  The WDW eq. for an inflationary universe
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• origin of CMB anisotropies: quantum fluctuations “amplified” by inflation 

‣ gauge-invariant scalar perturbations to the metric 
 
 
combined with perturbations of the scalar field  
  

• additionally:  tensor perturbations  ➔  primordial gravitational waves 
 

➡ gauge-invariant Mukhanov–Sasaki variable 

➡ for each mode (for both scalars and tensors), we get a WDW equation 

Adding scalar and tensor perturbations
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• Born–Oppenheimer approximation, WKB ansatz: 

‣ expansion of                   : 

‣ insert WKB ansatz into WDW eq. and equate terms of equal power of  

‣               :   Hamilton–Jacobi equation  ➔  Friedmann equation 

‣               :   define 

            ➔  introduce WKB conf. time       ➔  Schrödinger equation  
 

‣                  :   quantum-gravitationally corrected Schrödinger equation

Semiclassical approximation
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• Gaussian ansatz                                                                         ➔  Schrödinger eq. 

• we have to solve: 
  

➡ solution: 

• power spectrum for scalar perturbations can be obtained via 

• superhorizon limit                        ➔  
    

➡ power spectrum 
for scalar pert.:  

➡ tensor perturb.:

Derivation of the power spectra in the de Sitter case
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• slow-roll parameters enter in all kinds of expressions 

‣ conformal time: 
  

‣ “frequencies”: 

➡ power spectrum for scalar perturbations: 

 

➡ power spectrum for tensor perturbations: 
 
 

➡ tensor-to scalar ratio:

The uncorrected power spectra in the slow-roll case
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• also assume Gaussianity for corrected Schrödinger equation: 
 

• we have to solve: 
 
with 
  

• imaginary terms appear  ➔  problem with unitarity 

• additionally, numerical analysis of full equation with imaginary terms 
reveals that the solution oscillates heavily for early times 

➡ no way to implement initial conditions  ➔  neglect the imaginary terms 

➡ justification:  C. Kiefer and D. Wichmann, Gen. Rel. Grav. 50, 66 (2018).

Calculation of the quantum-gravitational corrections
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• equation we have to solve after removal of imaginary terms: 
  

• numerical solution with Bunch–Davies initial conditions  
➔  oscillation with constant amplitude around mean value    

➡ modified initial conditions:

The de Sitter case:  QG corrections – numerics
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• find analytical solution at late times (superhorizon limit) 

➡  linearization around           :  
  

• we have to solve:   

➡ behavior of the solution at 

                                                                                   ➔  agrees very well with 
 numerical solution 

The de Sitter case:  QG corrections – linearization
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• QG corrected 
power spectrum: 
  

➡ we get for both 
scalars and tensors: 
 
 
  

• QG corrections lead to an enhancement of power on large scales 

• upper bound on                  from tensor-to-scalar ratio 

➡ upper limit:

The de Sitter case:  QG corrections – power spectra
 18

H
2
0

m
2
P

=
2V
m

4
P

⇠ 2 r

0.01

✓
1016 GeV

mP

◆4

. 1.74⇥ 10�10

H
2
0/m

2
P r . 0.11

P
(1)
S (k) =

4⇡G

a2 ✏

k
3

4⇡2

⇣
<e⌦(0)

k + <ee⌦(1)
k

⌘�1

= P
(0)
S (k)

"
1�

<ee⌦(1)
k

<e⌦(0)
k

+O

✓
H

4
0

m
4
P

◆#

P
(1)
S,T(k) = P

(0)
S,T(k)


1 +

H
2
0

m
2
P

0.988

k3
+O

✓
H

4
0

m
4
P

◆�

�����
P(1)
S,T(k)� P(0)

S,T(k)

P(0)
S,T(k)

����� . 1.72⇥ 10�10

✓
k0
k

◆3



• QG corrected power spectra:  
 
 
 
 

• QG corrected tensor-to-scalar ratio: 
  
  

• upper bound on                     from tensor-to-scalar ratio  
  

•                                          implies                         and 

➡ upper limits:

The slow-roll case:  Summary of the results
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• What if the perturbations start their evolution in an excited state? 

• use number eigenstate for harm. oscillator with time-dep. frequency 

• excitation number  

➡ corrected power spectra for scalar and tensor perturbations:

Excited initial states
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•                                                             ➔  uncorr.: 

• QG correction: 

 
 

• for              : 

• cosmic variance:                                              ➔  

➡ for a measurable effect we would need

CMB temperature anisotropies
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• different method to realize the semiclassical approx. to the WDW eq. 
A. Kamenshchik, A. Tronconi, G. Venturi: 1305.6138 (PLB), 1403.2961 (PLB), 1501.06404 (JCAP). 

• decomposition of the wave function into an infinite set of moments 
D. Brizuela and U. Muniain, JCAP 04 (2019) 016 
 

➔  de Sitter:  same behavior               , same sign, slightly diff. prefactor  

• Loop Quantum Cosmology

Comparison with other approaches
 22

➡ inverse-volume corrections: 
M. Bojowald, G. Calcagni, and S. Tsujikawa, 
Phys. Rev. Lett. 107, 211302 (2011),                                                                                    
JCAP 1111, 046 (2011).

➡ pre-inflationary dynamics: 
I. Agulló, A. Ashtekar, and W. Nelson,  
Phys. Rev. Lett. 109, 251301 (2012),  
Phys. Rev. D 87, 043507 (2013),                                                                                   
Class. Quant. Grav. 30, 085014 (2013).

Initial conditions.—Since the big bang is replaced by the
big bounce, it is natural to specify initial conditions at the
bounce. The initial state can be taken to be of the form
!0 ! c because perturbations are treated as test fields.
This tensor product form prevails so long as the back
reaction remains negligible during evolution. To specify
the initial condition for !0 let us first recall that, in
effective LQC, all dynamical trajectories enter a slow roll
phase compatible with the 7 year WMAP data unless !B,
the value of the inflaton at the bounce, lies in a very small
region R of the constraint surface [6]. We will assume that,
at the bounce, the background quantum state!0 is sharply
peaked at a point on the constraint surface anywhere out-
side this R. In this sense, the initial data for!0 are generic.
For perturbations, we assume that the initial c is a 4th
order adiabatic ‘vacuum’ such that the expectation value of
the renormalized energy density in c is negligible com-
pared to that in the background. This is a large class of
initial data for test fields, selected by general symmetry
requirements.

Physically, we are assuming ‘initial quantum homo-
geneity,’ i.e., requiring that the region which expands to
become the observable Universe is homogeneous at the
bounce except for ‘vacuum fluctuations.’ While this is a
strong restriction, it may be naturally realized in LQG
because (i) in solutions of interest, the observable Universe
has a radius & 10‘Pl at the bounce, and, (ii) the strong
repulsive force due to quantum geometry that causes the
bounce has a ‘diluting effect.’ It could make this ‘quantum
homogeneity’ generic, ‘washing out’ the memory of the
prebounce dynamics at the scale & 10‘Pl.

Our remaining task is twofold, (i) starting from these
initial conditions, calculate the power spectrum for scalar
and tensor modes at the end of the slow roll inflation, and,
(ii) verify if the back reaction continues to remain negli-
gible all the way to the onset of the slow roll so that our
initial truncation is a self consistent approximation.

Power spectrum.—As noted above, in bounces with
kinetic energy domination on which we focus, the quantum
state !0ða;!Þ is known to remain sharply peaked on
effective trajectories. Therefore, in numerical simulations
a ‘mean field’ approximation was made by replacing ~að!Þ,
~"ð!Þ by the mean values of these operators. For the
background, several simulations were carried out with !B

in (0:93m Pl, 1:5m Pl), which, as we will see below, is the
most interesting range. For perturbations, we used three
different initial states c in the class specified above. The
power spectrum at the end of inflation was computed in
each case for both scalar and tensor modes. Results are all
very similar. Figure 1 shows how the LQC scalar power
spectrum relates to the prediction of standard inflation
for the case where !B ¼ 1:15m Pl, and the initial state c
is the ‘obvious’ or ‘standard’ 4th order adiabatic vacuum.
We found that the plot is largely insensitive to choices of
initial conditions within the class used in our simulations.

Recall, however, that the 7 year WMAP data [5] covers
only a window (kmin % k?=8:58, kmax % 2000kmin ) in the
comoving k space. Here the reference mode k? is the one
that exits the Hubble radius at time ~"k? when the Hubble
parameter is given by H ð ~"k?Þ ¼ 7:83 & 10' 6m Pl. In Fig. 1,
numerical values of the comoving k were calculated using
the scale factor convention aB ¼ 1, rather than atoday ¼ 1.
(The physical wave numbers are of course convention
independent.) In each simulation, we first locate the scale
factor ~að ~"k?Þ by setting H ¼ H ð ~"k?Þ, and then determine
k? via k? ¼ ~að ~"k?ÞH ð ~"k?Þ. Since we have ~aB ¼ 1, values
of ~að ~"k?Þ and k? depend on the preinflationary background
dynamics which turns out to be governed entirely by !B.
Therefore, in Fig. 1 the observationally relevant window
depends on the value of!B, moving steadily to right as!B

increases.
The plot has two interesting features. First, the LQG

power spectrum is virtually indistinguishable from that of
standard inflation if kmin * 9m Pl. This occurs when !B *
1:2m Pl. Second, for smaller values of kmin , the observatio-
nal window admits modes for which the two power spectra
are noticeably different. For concreteness, let us set !B ¼
1:15m Pl. Then kmin ’ 1:07m Pl and these modes correspond
to ‘ & 30 in the WMAP angular decomposition for which
observational error bars are large. Therefore, the LQG
power spectrum is also viable but the predicted quantum
state of perturbations at the onset of inflation is not the BD
vacuum for !B < 1:2m Pl.
Self consistency.—Whether the test field approximation

continues to hold in the Planck regime is an intricate issue
and had not been explored before. Figure 2 shows that we
have obtained explicit self-consistent solutions c in which
the renormalized energy density in perturbations remains
low compared to the background all the way from the
bounce to the onset of inflation. (Here, we have set kcutoff ¼
k0 ¼ 30m Pl, which corresponds to !B % 1:23m Pl.)
Furthermore, there is an analytical argument showing

FIG. 1 (color online). Ratio of our LQG power spectrum for
scalar perturbations to the standard inflationary power spectrum.
The (blue) crosses denote the data points. For small k, the ratio
oscillates rapidly with k. The solid (red) curve shows averages
over bins of width "k ¼ 0:5‘' 1

Pl . The inset shows a blow-up of
the interesting region around k ¼ 9.
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Table 1 Theoretical priors on the upper bound δmax
LQC and 95% C.L. upper limits of δLQC = α0δinv constrained by observations for a

quadratic potential with different values of σ and at the pivot scale k0 = 0.002 Mpc−1 [41]. The likelihood analysis is omitted for
σ = 6 since the signal is below the cosmic variance threshold already when σ = 2. For σ = 3, the parameter δLQC = ν0δinv has
been used.

σ 0.5 1 1.5 2 3 6

δmax
LQC 0.26 6.9 × 10−2 1.8 × 10−2 4.7 × 10−3 3.2 × 10−4 1.0 × 10−7

δLQC 0.27 3.5 × 10−2 1.7 × 10−3 6.8 × 10−5 4.3 × 10−7 –

Figure 3 Log-linear plot of the LQC primordial scalar spec-
trum Ps(ℓ) with inverse-volume quantum corrections for a
quadratic inflaton potential, with ϵV(k0) = 0.009 and for the pivot
wavenumber k0 = 0.002 Mpc−1, corresponding to ℓ0 = 29. The
classical case is represented by the dotted line, while solid curves
correspond to σ = 1, 1.5, 2 (decreasing thickness). The shaded re-
gion is affected by cosmic variance.

3.3 The model with holonomy corrections

Another type of quantum effect in the dynamics, holon-
omy corrections, is realized in a highly non-linear fash-
ion (by construction, from the exponentiation he of cur-
vature components) and it becomes important when the
Hubble radius is about the size of the lattice scale, H −1 ∼
L. From the classical Friedmann equation H 2 = 8πGρ/3,
this regime heuristically defines the critical energy den-
sity (2) and the holonomy correction

δhol := ρ

ρqg
. (60)

The homogeneous background is modified accordingly.
While Eq. (41b) remains the same, the Friedmann
equation (41a) is further corrected as

H 2 = κ2

3
ρ(α − δhol). (61)

Crucially, the Hubble parameter is not simply H = ȧ/a
but the “polymeric” expression

H = sin(2Lc/γ )
2La

. (62)

Even in a perfectly homogeneous background, ρqg is not
constant except for a specific choice of quantum am-
biguity parameters, such that the elementary closed-
holonomy area coincides with the Planck area L2 ∝ ℓ2

pl
(“improved dynamics” [5, 7, 8]). For this choice, and ig-
noring or removing inverse-volume corrections (α = 1),
the right-hand side of Eq. (61) vanishes at ρ = ρqg, where
the Hubble parameter H → 0 and the big-bang singular-
ity of classical cosmology is replaced by a bounce.

There are indications that holonomy corrections are
not significant in the energy regime of inflation, but
only at near-Planckian densities [70]. This is suggested
by effective equations for certain matter contents with a
dominating kinetic energy [71, 72]. Another argument is
the following [41]. Inverse-volume and holonomy correc-
tions are related to each other by

δinv =
(

8πG
3

ρqgℓ2
Pl

) m
2

∝
(

ρqg

ρPl

) m
2

=
(

ρ

ρPl
δ−1

hol

) m
2

. (63)

Inverse-volume corrections are sizable when the
quantum-gravity density (not the inflationary one)
is close to the Planck density. They can be still large
at small energy densities, where however holonomy
corrections are small. Thus, as the energy density de-
creases in an expanding universe there is a competition
of the relative size of inverse-volume and holonomy
corrections, the latter falling to small values when the
former can be still large. For instance, in the inflationary
regime (1) and for the typical value m = 4 Eq. (63) yields
δhol ∼ 10−8/

√
δinv, and having small holonomy correc-

tions of size δhol < 10−6 would require inverse-volume
corrections larger than δinv > 10−4.

This argument is only heuristic and a full cosmolog-
ical analysis is required to settle the issue. This is now
at hand because perturbation theory has been worked

C⃝ 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 333www.ann-phys.org

/ k�3
<latexit sha1_base64="/RLnq6HDR588Mp4sfX15v7GMIsA="></latexit>



• Loop Quantum Cosmology (cont.) 

➡ LQG-inspired initial conditions:  
A. Ashtekar and B. Gupt, 
Class. Quant. Grav. 34, 014002 (2017). 
 
 
 

➡ hybrid quantization: 
L. Castelló Gomar, G. A. Mena Marugán, 
D. Martín de Blas, and J. Olmedo, 
Phys. Rev. D 96, 103528 (2017).

Comparison with other approaches II
 23

33

FIG. 11: Temperature anisotropy spectrum C
TT
` in the CMB. The LQC prediction for the primordial power

spectrum of Fig. 10 translates to the solid (red) curve. The results for the standard inflation with Bunch-
Davies initial conditions is shown by black dashed curve and the PLANCK data is shown by green points
with errorbars. Clearly, the LQC curve shows suppression for ` . 30. At large `, both LQC and the standard
spectra agree well with the PLANCK data. The LQC curve provides a better fit to the Planck data with
��

2 = 3.15 (see eq. (4.16)). We have used logarithmic scale on the x-axis for ` > 40 because the non-trivial
e↵ects occur for ` < 30.

Boltzmann equations which govern the evolution of density perturbations in the post-inflationary
era. The primordial power spectrum (Fig. 10) provides the initial conditions for the Boltzmann
equations. The corresponding solution was obtained using the publically available code CAMB [54].
The resulting C

TT
` is shown in Fig. 11. It evident that in LQC there is power suppression for

` . 30 compared to the standard inflationary prediction. Moreover, the LQC predictions agree
better with the Planck data than the standard inflationary scenario with

��
2 := �

2
BD � �

2
LQC = 3.15 . (4.16)

Note that, we have not added any new parameter. The suppression in the primordial power also
a↵ects the E-mode polarization spectrum characterized by the EE and TE correlations in the
CMB. As shown in Fig. 11, we find that CEE

` and C
TT
` also show suppression at the scale ` . 30.

These predictions will be tested over the coming year when the PLANCK team releases the data
for TE and EE power spectra for ` < 30. If they are in clear conflict with the data, at least one of
the two principles introduced in section III will have to be abandoned. Thus, there is synergistic
interplay between fundamental theory and observations.

Remarks:
(i) The power spectrum predicted by standard inflation has a red tilt because the Hubble

parameter decreases during the slow-roll. In GR, there could be a very long slow-roll phase prior
to t = t?. If this occurs, the prediction of red tilt would hold for modes with k ⌧ k?. Although
this part of the growth in the power spectrum refers to modes way beyond the observable range, it
has some conceptually interesting ramifications. In particular, it served as the primary motivationFigure 7. TT angular power spectrum provided by Planck best fit and spectra computed for the non-

oscillating vacuum with different values of the scalar field at the bounce. Left panel: m = 1.20 · 10�6.
Right panel: m = 1.18 ·10�6. The corresponding cosmological parameters determined by Planck best
fit for TT+lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.

Figure 8. EE angular power spectrum provided by Planck best fit and spectra computed for the non-
oscillating vacuum with different values of the scalar field at the bounce. Left panel: m = 1.20 · 10�6.
Right panel: m = 1.18 ·10�6. The corresponding cosmological parameters determined by Planck best
fit for TT+lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.

the main contribution to the power spectrum comes from weak gravitational lensing, which
is known to be responsible of the large amplitude in that region (see, for instance, Ref. [55]).
However, lensing does not contribute significantly to the spectrum at low `. Indeed, the
BICEP Collaboration [58] studied some few years ago the BB-correlation function in the
interval 30 / ` / 150. This interval is actually in the region of multipole moments that is not
considerably contaminated by lensing. Consequently, the presence of power in this region,
had it not been explained eventually by other sources, would have been a strong evidence of
the presence of primordial tensor modes in the CMB.

In summary, if the suppression of power in the primordial power spectrum of the non-
oscillating vacuum is relevant for modes that are in the large scale sector today, such ef-
fect would translate into a decrease of power in the correlation functions at small multipole
moments. This is the main characteristic of the non-oscillating vacuum within our hybrid
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‣ we calculated quantum-gravitational corrections 
to the power spectra of scalar and tensor perturbations during inflation  
by performing a semiclassical approximation to the Wheeler–DeWitt eq. 

➡  specific enhancement of power on large scales, 
 too small to be measurable  (with current bounds from observation) 

‣ other QG approaches also lead to modification of power on large scales 

➡ behavior like                      universal feature for semiclassical approaches? 

➡ LQC and other approaches can also incorporate a suppression 

‣ Outlook:  ➔  non-Gaussianities  
 ➔  galaxy–galaxy correlations (no cosmic variance)  
 
   

‣ D. Brizuela, C. Kiefer, M. K.,   1511.05545  (de Sitter),   1611.02932  (slow-roll). 

‣ D. Brizuela, C. Kiefer, M. K., S. Robles-Pérez,   1903.01234  (excited states).
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