# F-matrices in Cluster Algebra 

Yasuaki Gyoda

Nagoya University

September, 12th, 2019

## Quiver

Quiver: finite oriented graph

## Example:



- They do not have 1-loops and 2-cycles.



## Correspondence of Exchange Matrix and Quiver

$B$ : skew-symmetric

$$
B=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \longleftrightarrow 1 \longleftarrow 2 \longleftarrow 3
$$

## Quiver Mutations

## Definition

Let $Q$ be a quiver and $j$ be a vertex of $Q$. The quiver mutation $\mu_{j}(Q)$ at $j$ is the quiver obtained from $Q$ as follows:

1) reverse all arrows incident with $j$.
2) for each subquiver $i \xrightarrow{b_{i j}} j \xrightarrow{b_{j k}} k$, add new arrow $i \stackrel{b_{i j} b_{j k}}{\longleftrightarrow} k$.
3) remove all 2 -cycles.

Example: mutation at 2

$$
\begin{equation*}
1 \leftarrow 2 \longleftarrow 3 \stackrel{\mu_{2}}{\longrightarrow} 1 \leftrightarrows 2 \longrightarrow 3 \tag{3}
\end{equation*}
$$

## Seed and Seed Mutation

Example:


$$
\left(x_{1}, x_{2}, x_{3}\right) \quad \stackrel{\mu_{2}}{\longmapsto}\left(x_{1}, \frac{x_{1}+x_{3}}{x_{2}}, x_{3}\right)
$$

## Seed and Seed Mutation

Example:

$$
1 \longleftarrow 2 \longleftarrow 3 \stackrel{\mu_{2}}{\longmapsto}
$$

$$
1 \hookrightarrow 2 \longrightarrow 3
$$

$$
\left(x_{1}, x_{2}, x_{3}\right) \stackrel{\mu_{2}}{\longmapsto}\left(x_{1}, \frac{x_{1}+x_{3}}{x_{2}}, x_{3}\right)
$$


$\stackrel{\text { flip at } x_{2}}{\longmapsto}$


## Seed and Seed Mutation

Example:

$$
1 \longleftarrow 2 \longleftarrow 3 \stackrel{\mu_{2}}{\longleftrightarrow} 1 \overleftrightarrow{\longleftrightarrow} \text { ↔ }
$$

$$
\left(x_{1}, x_{2}, x_{3}\right) \quad \stackrel{\mu_{2}}{\longmapsto}\left(x_{1}, \frac{x_{1}+x_{3}}{x_{2}}, x_{3}\right)
$$



Ptolemy equation: $A C \times B D=A D \times B C+A B \times C D$

$$
x_{2}^{\prime} \cdot x_{2}=1 \cdot x_{1}+1 \cdot x_{3}
$$



## Seed and Seed Mutation

Example:

$$
1 \longleftarrow 2 \longleftarrow 3 \quad \stackrel{\mu_{2}}{\longleftrightarrow} 1 \longleftrightarrow 2 \longrightarrow 3
$$

$$
\left(x_{1}, x_{2}, x_{3}\right) \quad \stackrel{\mu_{2}}{\longmapsto}\left(x_{1}, \frac{x_{1}+x_{3}}{x_{2}}, x_{3}\right)
$$



Ptolemy equation: $A C \times B D=A D \times B C+A B \times C D$

$$
x_{2}^{\prime} \cdot x_{2}=1 \cdot x_{1}+1 \cdot x_{3}
$$



## Quiver of Marked Surface Type

Marked surface : Riemann surface with boundary and marked point

Marked surface type


NOT marked surface type

$$
1 \stackrel{3}{\leftarrow} 2
$$


(No exists)

## Uniqueness of $F$-polynomials

## Conjecture (G.-Yurikusa, 2019 $)$

For any $Q$,

$$
\left\{\mathbf{f}_{i ; t}\right\}_{1 \leq i \leq n}=\left\{\mathbf{f}_{i ; s}\right\}_{1 \leq i \leq n} \Rightarrow\left\{F_{i ; t}^{B ; t_{0}}(\mathbf{y})\right\}_{1 \leq i \leq n}=\left\{F_{i ; s}^{B ; t_{0}}(\mathbf{y})\right\}_{1 \leq i \leq n} .
$$

## Uniqueness of $F$-polynomials

## Conjecture (G.-Yurikusa, 2019 ${ }_{+}$)

For any $Q$,

$$
\left\{\mathbf{f}_{i ;\}}\right\}_{1 \leq i \leq n}=\left\{\mathbf{f}_{i ; s}\right\}_{1 \leq i \leq n} \Rightarrow\left\{F_{i ; t}^{B ; t_{0}}(\mathbf{y})\right\}_{1 \leq i \leq n}=\left\{F_{i ; s}^{B ; t_{0}}(\mathbf{y})\right\}_{1 \leq i \leq n} .
$$

We solve this conjecture partially:
Theorem (G.-Yurikusa, 2019_)
When the initial quiver $Q$ is a quiver of marked surface type, the conjecture is correct.

## Intersection Matrices and $F$-matrices



## Intersection Matrices and $F$-matrices



Let's count the number of intersection points of the initial and a fliped triangulation.

## Intersection Matrices and $F$-matrices



Let's count the number of intersection points of the initial and a fliped triangulation.
$x_{1}$ intersects $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}$ in $0,0,0$ point respectively. $x_{2}$ intersects $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}$ in $0,1,1$ point respectively. $x_{3}$ intersects $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}$ in $0,0,1$ point respectively.

## Intersection Matrices and $F$-matrices



Let's count the number of intersection points of the initial and a fliped triangulation.
$x_{1}$ intersects $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}$ in $0,0,0$ point respectively. $x_{2}$ intersects $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}$ in $0,1,1$ point respectively. $x_{3}$ intersects $x_{1}, x_{2}^{\prime}, x_{3}^{\prime}$ in $0,0,1$ point respectively.

$$
\operatorname{Int}_{t}^{B ; t_{0}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

## Intersection Matrices and $F$-matrices

Theorem (Yurikusa, 2018+)
We have the following equartion:

$$
\operatorname{lnt}_{t}^{B ; t_{0}}=F_{t}^{B ; t_{0}}
$$

## Sketch of Proof

## Theorem (G.-Yurikusa, 2019+)

For any quiver $Q$ of marked surface type,

$$
\left\{\mathbf{f}_{i ; t}\right\}_{1 \leq i \leq n}=\left\{\mathbf{f}_{i ; s}\right\}_{1 \leq i \leq n} \Rightarrow\left\{F_{i ; t}^{B ; t_{0}}(\mathbf{y})\right\}_{1 \leq i \leq n}=\left\{F_{i ; s}^{B ; t_{0}}(\mathbf{y})\right\}_{1 \leq i \leq n} .
$$


$\xrightarrow{\text { Expansion formula }} x_{i ; t}=\frac{y_{2}+x_{3}}{x_{2}} \xrightarrow{x_{i}=1} F_{i ; t}^{B ; t_{0}}(\mathbf{y})=y_{2}+1$

