Modularity from Monodromy

String Theory and Mathematics seminar - Kavli IPMU

Thorsten Schimannek
based on [1902.08215], T.S.
and [1910.01988], C. F. Cota, A. Klemm, T.S.
8.10.2019

Topological string partition function on

 elliptic/genus one fibered Calabi-Yau $X \rightarrow B$dual via F-theory
[Klemm,Mayr,Vafa'96],...

Elliptic genera of strings from D3-branes wrapping curves in B

Exhibit modular properties!

Question: Can we understand the modularity directly within topological string theory on X ?
(Goes back to [Candelas,Font,Katz,Morrison'94]!)

Outline

1. Topological strings and branes on Calabi-Yau 3-folds
-break-
2. The quantum geometry of genus one fibered CY 3-folds

Part I:

Topological strings and topological branes on Calabi-Yau 3-folds

Topological string theory

© Consider string compactification: $\mathrm{X}=\mathcal{M}_{1,3} \times \underbrace{\mathrm{CY}_{3}}$
(eg. Type IIA/B strings)

$$
N=(2,2) S C F T
$$

* Worldsheet path integral over all embeddings

$$
Z=\sum_{g=0}^{\infty} \int \mathcal{D} \phi \mathcal{D} \psi e^{-S_{g}}, \quad \phi: \infty \rightarrow \mathrm{X}
$$

- Supersymmetric path integral localizes on $\delta_{Q} \psi=0$ (elsewhere fermions can be gauged away $\rightarrow \int \mathcal{D} \psi 1=0$)
∞ Consider string compactification: $\mathrm{X}=\mathcal{M}_{1,3} \times \underbrace{C Y_{3}}$
Z is the partition function
ϕ are maps from worldsheet into target space X
∞ World heet path integr rld heet path integra
$Z=\sum_{g=0}^{\infty} \int \mathcal{D} \phi \mathcal{D} \psi e^{-S_{g}}, \phi:$

g is the worldsheet genus

Topological string theory

© Consider string compactification: $\mathrm{X}=\mathcal{M}_{1,3} \times \underbrace{\mathrm{CY}_{3}}$
(eg. Type IIA/B strings)

$$
N=(2,2) S C F T
$$

* Worldsheet path integral over all embeddings

$$
Z=\sum_{g=0}^{\infty} \int \mathcal{D} \phi \mathcal{D} \psi e^{-S_{g}}, \quad \phi: \infty \rightarrow \mathrm{X}
$$

- Supersymmetric path integral localizes on $\delta_{Q} \psi=0$ (elsewhere fermions can be gauged away $\rightarrow \int \mathcal{D} \psi 1=0$)

Topological string theory

Problem

- Variation of the action under SUSY transformation

$$
\delta S=\int_{\Sigma} d z d \bar{z} \sqrt{h}\left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu}+\text { c.c }\right)
$$

* No covariantly constant spinors on riemann surface $g \neq 1$
© Global supersymmetry is broken

But

- Sub-sectors of the theory localize!

Two different sub-sectors / restrictions / "twists"

Topological string theory

Problem

∞ Variation of the action under SUSY transformation

$$
\delta S=\int_{\Sigma} d z d \bar{z} \sqrt{h}\left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu}+\text { c.c }\right)
$$

∇_{μ} : Covariant derivative w.r.t. worldsheet metric
suld-sectors of the theory locanze?

Two different sub-sectors / restrictions / "twists"

Topological string theory

Problem

∞ Variation of the action under SUSY transformation

$$
\delta S=\int_{\Sigma} d z d \bar{z} \sqrt{h}\left(\nabla_{y} \epsilon^{i} G_{i}^{\mu}+\mathrm{c.c}\right)
$$

ϵ^{i} : Variational parameter, worldsheet spinor
suld-sector's of the theory locanize!

Topological string theory

Problem

- Variation of the action under SUSY transformation

$$
\delta S=\int_{\Sigma} d z d \bar{z} \sqrt{h}\left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu}+\text { c.c }\right)
$$

$G_{i}^{\mu}: \quad$ Superpartner(s) of energy-momentum tensor

Topological string theory

Problem

* Variation of the action under SUSY transformation

$$
\delta S=\int_{\Sigma} d z d \bar{z} \sqrt{h}\left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu}+\mathrm{c.c}\right)
$$

- No covariantly constant spinors on riemann surface $g \neq 1$
© Global supersymmetry is broken

But

- Sub-sectors of the theory localize!

Two different sub-sectors / restrictions / "twists"

The closed B-model

B-twisted SUSY transformation

$$
\delta_{Q_{B}} \psi \sim \epsilon_{1} \partial \phi+\epsilon_{2} \bar{\partial} \phi
$$

Z localizes on constant maps (easy to count, at least for $g<2$)

- Only depends on the complex structure of Calabi-Yau
∞ Does not receive worldsheet instanton corrections
\propto Genus 0 contributions \sim variation of Hodge structure

The closed A-model

A-twisted SUSY transformation

$$
\delta_{Q_{A}} \psi \sim \epsilon_{1} \bar{\partial} \phi+\epsilon_{2} \partial \bar{\phi}
$$

localizes on holomorphic maps (always hard to count)

* Only depends on the Kähler structure of Calabi-Yau
∞ Receives w.s. instanton corrections \rightarrow stringy geometry

The closed A-model

$Z_{\text {top. }}$ encodes highly non-trivial enumerative invariants!
Mathematically it can be defined as generating function of Gromov-Witten invariants, i.e. integrals over moduli stack of stable maps into CY (see e.g. book by [Katz,Cox]).
Those invariants are not integral!

Physically it encodes multiplicities of BPS states
in 5d theory from M-theory on CY [Gopakumar,Vafa'98].
Those are integral!
Mathematical definition only in special cases, e.g. via stable pair invariants.

$$
\log \left(Z_{\text {top. }}\right)=\sum_{\beta \in H_{2}(M, \mathbb{Z})} \sum_{g=0}^{\infty} \sum_{m=1}^{\infty} \frac{n_{\beta}^{g}}{m}\left(2 \sin \left(\frac{m \lambda}{2}\right)\right)^{2 g-2} q^{\beta m}
$$

The closed A-model

n_{β}^{g} are the Gopakumar-Vafa invariants
\sim weighted sum of BPS multiplicities

Sum over m due to multi-coverings
[Huang,Katz,Klemm'15]:
If Calabi-Yau 3-fold X is particular type of elliptic fibration, then $Z_{\text {top. }}$ can be expressed in terms of Jacobi forms.
(more on this later)

Interlude: The stringy Kähler moduli space

- String theories have anti-symmetric 2-form field $B_{\mu \nu}$ \rightarrow combines into complexified Kähler class
* Kähler cone is extended with cones of birational CY's and moduli cones of non-geometric worldsheet SCFTs (e.g. Landau-Ginzberg models or Hybrid phases)
* Points can be non-trivially identified via string dualities

In contrast, closed B-model only sees classical geometry!

Mirror symmetry

* There exist pairs of Calabi-Yau manifolds X, Y such that

* From SCFT perspective "trivial" (choice of sign)
∞ Geometrically highly non-trivial

Loops in complex structure moduli space of B-model can be identified with very paths between dual points in stringy Kähler moduli space

What about open strings?

Open strings have boundaries that are mapped into branes.

Admissible topological branes depend on twist!

A brief reminder of topological B-branes

Naively, wrap holomorphic cycles in CY and carry gauge field

* IR equivalent to finite complexes of vector bundles

$$
\begin{gathered}
\mathcal{F}^{\bullet}=0 \rightarrow V_{1} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0 \\
(\cdots \rightarrow \text { brane } \rightarrow \text { anti-brane } \rightarrow \text { brane } \rightarrow \ldots)
\end{gathered}
$$

Objects of derived category of quasi-coherent sheaves $D^{b}(X)$
[Douglas'01]

- Central charge depends on Kähler class ω [Iritani’09]

$$
Z\left(\mathcal{F}^{\bullet}\right)=\int_{X} e^{\omega} \Gamma(X)\left(\operatorname{ch} \mathcal{F}^{\bullet}\right)^{\vee}+(\text { instanton corr. })
$$

\rightarrow For 2-branes just volume of support (no instantons!)

Homological mirror symmetry:

Monodromies in stringy Kähler moduli space act as autoequivalences on $D^{b}(X)$! [Kontsevich'96], [Horja'99]

Autoequivalences of $D^{b}(X)$ are always expressible as Fourier-Mukai transformations [Orlov'96]

$$
\Phi_{\mathcal{E}}: \mathcal{F}^{\bullet} \mapsto R \pi_{1 *}\left(\mathcal{E} \otimes_{L} L \pi_{2}^{*} \mathcal{F}^{\bullet}\right), \quad \mathcal{E} \in D^{b}(X \times X)
$$

The complex \mathcal{E} is called the Fourier-Mukai kernel.
Physical intuition:

* Kernel \mathcal{E} corresponds to defect between two non-linear sigma models with target space X
* FM-transformation \approx fusing defect with boundary e.g. [Brunner,Jockers,Roggenkamp'08]

How does HKK relate to monodromies?

Idea: Interpret Kähler moduli as central charges of 2-branes

1. Identify actions on D-branes that generate modular group
2. Show that those actions arise from monodromies, i.e. they identify dual points in the stringy Kähler moduli space!
3. Use general automorphic properties of $Z_{\text {top }}$.

Part II:

The quantum geometry of genus one fibered Calabi-Yau 3-folds

Geometry of elliptic Calabi-Yau 3-folds

Consider elliptically fibered Calabi-Yau 3-fold $\pi: X \rightarrow B$
\propto Birationally equivalent to Weierstrass model $\pi^{\prime}: \tilde{X} \rightarrow B$

$$
\left\{y^{2}=x^{3}+f x z^{4}+g z^{6}\right\} \subset \mathbb{P}_{231}\left(K_{B}^{-2} \oplus K_{B}^{-3} \oplus \mathcal{O}\right)
$$

- Fiber of X degenerates over discrimininant locus

$$
\left\{4 f^{3}+27 g^{2}=0\right\} \subset B
$$

Degenerations classified by Kodaira (not quite true for 3 -folds, see [Esole, Yau'11])

$$
\text { e.g. } I_{2} \text { singularity }
$$

Theorem (Shioda-Tate-Wazir):

$$
h^{1,1}(X)=h^{1,1}(B)+\#(\text { sections })+\#(\text { fibral divisors })
$$

Geometry of elliptic Calabi-Yau 3-folds

Sections form group

- If fibration has section σ, construct fibers as $\mathbb{C} /(a \tau+b)$
* Identify $\sigma \cap$ fiber with $0 \in \mathbb{C}$

- Addition in \mathbb{C} lifts to group law on sections:

$$
\text { Mordell-Weil group } \quad \mathbb{Z}^{N} \times \mathbb{Z}_{M}
$$

Geometry of elliptic Calabi-Yau 3-folds

Consider elliptically fibered Calabi-Yau 3-fold $\pi: X \rightarrow B$
\propto Birationally equivalent to Weierstrass model $\pi^{\prime}: \tilde{X} \rightarrow B$

$$
\left\{y^{2}=x^{3}+f x z^{4}+g z^{6}\right\} \subset \mathbb{P}_{231}\left(K_{B}^{-2} \oplus K_{B}^{-3} \oplus \mathcal{O}\right)
$$

- Fiber of X degenerates over discrimininant locus

$$
\left\{4 f^{3}+27 g^{2}=0\right\} \subset B
$$

Degenerations classified by Kodaira (not quite true for 3 -folds, see [Esole, Yau'11])

$$
\text { e.g. } I_{2} \text { singularity }
$$

Theorem (Shioda-Tate-Wazir):

$$
h^{1,1}(X)=h^{1,1}(B)+\#(\text { sections })+\#(\text { fibral divisors })
$$

Not all genus one fibrations are elliptic fibrations!
Some only have N-sections:

- An N-section intersects the generic fiber N times
- Points experience monodromy around loops in the base

Theorem (Shioda-Tate-Wazir-Braun-Morrison):

$$
h^{1,1}(X)=h^{1,1}(B)+\#(N \text {-sections })+\#(\text { fibral divisors })
$$

By abuse of terminology:
"with N-sections" \leftrightarrow there is no N^{\prime}-section with $N^{\prime}<N$

There are four types of curves on a genus 1 fibered Calabi-Yau:

1. Curves in the base
2. The generic fiber
3. Fibers of fibral divisors
4. Isolated components
of reducible fibers

There are four types of curves on a genus 1 fibered Calabi-Yau:

1. Curves in the base
2. The generic fiber
3. Fibers of fibral divisors
4. Isolated components of reducible fibers

There are four types of curves on a genus 1 fibered Calabi-Yau:

1. Curves in the base
2. The generic fiber
3. Fibers of fibral divisors
4. Isolated components of reducible fibers

There are four types of curves on a genus 1 fibered Calabi-Yau:

1. Curves in the base
2. The generic fiber
3. Fibers of fibral divisors
4. Isolated components of reducible fibers

There are four types of curves on a genus 1 fibered Calabi-Yau:

1. Curves in the base
2. The generic fiber
3. Fibers of fibral divisors
4. Isolated components of reducible fibers

Geometry of elliptic Calabi-Yau 3-folds

30 second introduction to F-theory

(as an economic way to describe elliptic fibrations)

Topological strings and weak Jacobi forms

Conjecture: For trivial G (i.e. no reducible fibers!) [Huang,Katz,Klemm'15]

$$
\begin{aligned}
& Z_{\mathrm{top}}(\underline{t}, \lambda)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})} Z_{\beta}(\tau, \lambda) Q^{\beta}\right) \\
& Z_{\beta>0}(\tau, \lambda)=\frac{\phi_{\beta}(\tau, \lambda)}{\eta(\tau)^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
\end{aligned}
$$

\rightarrow All-genus results for compact CY 3-folds!

Topological strings and weak Jacobi forms

Conjecture: For trivial G (i.e. no reducible fibers!) [Huang,Katz,Klemm'15]

$$
Q^{\beta}=\exp \left(2 \pi i \beta_{j} t^{j}\right)
$$

$$
t^{j}: \text { (shifted) volumes of base curves }
$$

$$
Z_{\mathrm{top}}(\underline{t}, \lambda)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})} Z_{\beta}(\tau, \lambda) Q^{\beta}\right)
$$

$$
Z_{\beta>0}(\tau, \lambda)=\frac{\phi_{\beta}(\tau, \lambda)}{\eta(\tau)^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

τ : fiber volume
\rightarrow All-genus results for compact CY 3-folds!

Topological strings and weak Jacobi forms

Conjecture: For trivial G (i.e. no reducible fibers!) [Huang,Katz,Klemm'15]

$$
Q^{\beta}=\exp \left(2 \pi i \beta_{j} t^{j}\right)
$$

t^{j} : (shifted) volumes of base curves

$$
Z_{\mathrm{top}}(\underline{t}, \lambda)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})} Z_{\beta}(\tau, \lambda) Q^{\beta}\right)
$$

$$
Z_{\beta>0}(\tau, \lambda)=\frac{\phi_{\beta}(\tau, \lambda)}{\eta(\tau)^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

τ : fiber volume

\rightarrow All-genus results for compact CY 3-folds!

Topological strings and weak Jacobi forms

Conjecture: For trivial G (i.e. no reducible fibers!) [Huang,Katz,Klemm'15]

$$
Q^{\beta}=\exp \left(2 \pi i \beta_{j} t^{j}\right)
$$

t^{j} : (shifted) volumes of base curves

$$
Z_{\mathrm{top}}(\underline{t}, \lambda)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})} Z_{\beta}(\tau, \lambda) Q^{\beta}\right)
$$

$$
Z_{\beta>0}(\tau, \lambda)=\frac{\phi_{\beta}(\tau, \lambda)}{\eta(\tau)^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

τ : fiber volume

\rightarrow All-genus results for compact CY 3-folds!

Topological strings and weak Jacobi forms

A weak Jacobi form $\phi(\tau, z)$

 of weight k and index $m$$\propto$ Admits a Fourier expansion

$$
\phi(\tau, z)=\sum_{n \geq 0} \sum_{r \in \mathbb{Z}} c(n, r) e^{2 \pi i(n \tau+r z)}
$$

- Satisfies "Modular Transformation Law" (MTL)

$$
\phi\left(-\frac{1}{\tau}, \frac{z}{\tau}\right)=\tau^{k} e^{\frac{2 \pi i m z^{2}}{\tau}} \phi(\tau, z)
$$

- MTL implies "Elliptic Transformation Law" (ETL)

$$
\phi(\tau, z+\tau)=e^{-2 \pi i m(\tau+2 z)} \phi(\tau, z)
$$

Topological strings and weak Jacobi forms

Conjecture: For trivial G (i.e. no reducible fibers!) [Huang,Katz,Klemm'15]

$$
Q^{\beta}=\exp \left(2 \pi i \beta_{j} t^{j}\right)
$$

t^{j} : (shifted) volumes of base curves

$$
Z_{\mathrm{top}}(\underline{t}, \lambda)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})} Z_{\beta}(\tau, \lambda) Q^{\beta}\right)
$$

$$
Z_{\beta>0}(\tau, \lambda)=\frac{\phi_{\beta}(\tau, \lambda)}{\eta(\tau)^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

τ : fiber volume

\rightarrow All-genus results for compact CY 3-folds!

Topological strings and weak Jacobi forms

Conjecture: For trivial G (i.e. no reducible fibers!) [Huang,Katz,Klemm'15]

$$
\begin{aligned}
& Z_{\mathrm{top}}(\underline{t}, \lambda)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})} Z_{\beta}(\tau, \lambda) Q^{\beta}\right) \\
& Z_{\beta>0}(\tau, \lambda)=\frac{\phi_{\beta}(\tau, \lambda)}{\eta(\tau)^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
\end{aligned}
$$

Z_{β} has weight 0 and index $\frac{1}{2} \beta \cdot\left(\beta-c_{1}(B)\right)$
\rightarrow All-genus results for compact CY 3-folds!

gHKK conjecture:

1. For a "general" elliptic Calabi-Yau threefold, $Z_{\beta}(\tau, \lambda, \vec{m})$ is a lattice Jacobi form

$$
Z_{\beta>0}(\tau, \lambda, \vec{m})=\frac{\phi_{\beta}(\tau, \lambda, \vec{m})}{\eta^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

2. The index matrix is encoded in the anomaly polynomial of the 6 d F-theory effective action
3. Z_{β} is invariant under the action of the affine Weyl groups
[DelZotto, Gu,Huang,Kashani-Poor,Klemm,Lockhart'17],
2x[Lee,Lerche,Weigand'18]
(can be made more precise!)

gHKK conjecture:

1. For a "general" elliptic Calabi-Yau threefq $Z_{\beta}(\tau, \lambda, \vec{m})$ is a lattice Jacobi form

$$
Z_{\beta>0}(\tau, \lambda, \vec{m})=\frac{\phi_{\beta}(\tau, \lambda, \vec{m})}{\eta^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

2. The index matrix is encoded in the anomaly polynomial of the 6d F-theory effective action
3. Z_{β} is invariant under the action of the affine Weyl groups
[DelZotto, Gu,Huang,Kashani-Poor,Klemm,Lockhart'17], 2x[Lee,Lerche,Weigand'18]
(can be made more precise!)

A lattice Jacobi form $\phi\left(\tau, z_{1}, \ldots, z_{n}\right)$ of weight k and index matrix M

\propto Admits a Fourier expansion and transforms as

$$
\phi\left(-\frac{1}{\tau}, \frac{z_{1}}{\tau}, \ldots, \frac{z_{n}}{\tau}\right)=\tau^{k} e^{\frac{2 \pi i M_{i j} j^{i} z^{j}}{\tau}} \phi\left(\tau, z_{1}, \ldots, z_{n}\right)
$$

- Again, this implies elliptic transformation law

gHKK conjecture:

1. For a "general" elliptic Calabi-Yau threefold, $Z_{\beta}(\tau, \lambda, \vec{m})$ is a lattice Jacobi form

$$
Z_{\beta>0}(\tau, \lambda, \vec{m})=\frac{\phi_{\beta}(\tau, \lambda, \vec{m})}{\eta^{12 \beta \cdot K_{B}} \prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \phi_{-2,1}(\tau, s \lambda)}
$$

2. The index matrix is encoded in the anomaly polynomial of the 6d F-theory effective action
3. Z_{β} is invariant under the action of the affine Weyl groups
[DelZotto, Gu,Huang,Kashani-Poor,Klemm,Lockhart'17],
2x[Lee,Lerche,Weigand'18]
(can be made more precise!)

Can we see this directly from topological strings?

- $Z_{\text {top. }}$. is wave function on moduli space of Calabi-Yau [Witten'93]
- Can we understand modular properties as consequence of monodromies in the stringy Kähler moduli space (SKM)?

Note: Invariance under $T: \tau \rightarrow \tau+1$ trivial (B-field shifts) (B-field shifts are also monodromies!)

Need to establish duality between τ and $-\frac{1}{\tau}$ in SKM!
Basically 2-fold T-duality, but what about the singular fibers?
What about genus one fibrations without sections?
Let's study monodromies!

Can we see this directly from topological strings?

- $Z_{\text {top. }}$. is wave function on moduli space of Calabi-Yau [Witten'93]
- Can we understand modular properties as consequence of monodromies in the stringy Kähler moduli space (SKM)?

Note: Invariance under $T: \tau \rightarrow \tau+1$ trivial (B-field shifts) (B-field shifts are also monodromies!)

Need to establish duality between τ and $\frac{\tau}{\tau+1}$ in SKM!
Basically 2-fold T-duality, but what about the singular fibers?
What about genus one fibrations without sections?
Let's study monodromies!

Warmup: Generic conifold monodromy
A-MODEL: Monodromy around boundary of geometric cone where 6 -brane becomes massless

B-MODEL: Monodromy around principal component of the discriminant where base of SYZ fibration collapses

Topological B-branes:

- 0-brane transforms into 0-brane and anti-6-brane
\rightarrow FM-kernel is ideal sheaf \mathcal{I}_{Δ} of diagonal in $X \times X$

$$
\mathcal{I}_{\Delta} \sim 0 \rightarrow \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{\Delta} \rightarrow 0 \quad \text { in } D^{b}(X \times X)
$$

Calculate induced action on brane charges from

$$
\Phi_{\mathcal{I}_{\Delta}}: \mathcal{F}^{\bullet} \mapsto R \pi_{1 *}\left(\mathcal{I}_{\Delta} \otimes_{L} L \pi_{2}^{*} \mathcal{F}^{\bullet}\right)
$$

Grothendieck-Riemann-Roch implies that

$$
\operatorname{ch}\left(f_{*} \mathcal{F}^{\bullet}\right)=f_{*}\left[\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \cdot f^{*} \operatorname{Td}(X)\right]
$$

Therefore

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta}}\left(\mathcal{F}^{\bullet}\right)\right)=\pi_{1 *}\left(\operatorname{ch}\left(\mathcal{I}_{\Delta}\right) \cdot \pi_{2}^{*}\left[\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}(X)\right]\right)
$$

Using $\Phi_{\mathcal{O}_{\Delta}}\left(\mathcal{F}^{\bullet}\right)=\mathcal{F}^{\bullet}$ this leads to

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta}}\left(\mathcal{F}^{\bullet}\right)\right)=\operatorname{ch}\left(\mathcal{F}^{\bullet}\right)-\pi_{1 *} \pi_{2}^{*}\left(\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}(X)\right)
$$

Calculate induced action on brane charges from

$$
\Phi_{\mathcal{I}_{\Delta}}: \mathcal{F}^{\bullet} \mapsto R \pi_{1 *}\left(\mathcal{I}_{\Delta} \otimes_{L} L \pi_{2}^{*} \mathcal{F}^{\bullet}\right)
$$

Grothendieck-Riemann-Roch implies that

$$
\operatorname{ch}\left(f_{*} \mathcal{F}^{\bullet}\right)=f_{*}\left[\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \cdot f^{*} \operatorname{Td}(X)\right]
$$

Calculate induced action on brane charges from

$$
\Phi_{\mathcal{I}_{\Delta}}: \mathcal{F}^{\bullet} \mapsto R \pi_{1 *}\left(\mathcal{I}_{\Delta} \otimes_{L} L \pi_{2}^{*} \mathcal{F}^{\bullet}\right)
$$

Grothendieck-Riemann-Roch implies that

$$
\operatorname{ch}\left(f_{*} \mathcal{F}^{\bullet}\right)=f_{*}\left[\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \cdot f^{*} \operatorname{Td}(X)\right]
$$

Therefore

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta}}\left(\mathcal{F}^{\bullet}\right)\right)=\pi_{1 *}\left(\operatorname{ch}\left(\mathcal{I}_{\Delta}\right) \cdot \pi_{2}^{*}\left[\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}(X)\right]\right)
$$

Using $\Phi_{\mathcal{O}_{\Delta}}\left(\mathcal{F}^{\bullet}\right)=\mathcal{F}^{\bullet}$ this leads to

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta}}\left(\mathcal{F}^{\bullet}\right)\right)=\operatorname{ch}\left(\mathcal{F}^{\bullet}\right)-\pi_{1 *} \pi_{2}^{*}\left(\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}(X)\right)
$$

For elliptic CY 3-folds without reducible fibers it is known that ideal sheaf of relative diagonal $\mathcal{I}_{\Delta_{B}}$ acts as $\tau \rightarrow \frac{\tau}{\tau+1}$ (when normalizing with 0-brane charge)

\rightarrow "fiberwise conifold monodromy"

* Evaluation on brane charges uses singular Riemann Roch This requires suitable embedding into ambient space ("l.c.i. morphism") [Baum,Fulton,MacPherson'75], [Andreas,Curio,Ruipérez,Yau'00], reviewed in [Andreas,Ruipérez'04]
$\cdots \mathcal{I}_{\Delta_{B}}$ auto-equivalence of $D^{b}(X)$ for any genus one fibrations [Ruipérez,López Martín,Sancho de Salas’06]

Idea: • Use toric geometry, CY as complete intersection

- get l.c.i. morphism for free!
- evaluate action of $\mathcal{I}_{\Delta_{B}}$ on charges

Assume X is genus one fibered CY with N-sections that is a complete intersection in toric ambient space with compatible fibration. Then

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta_{B}}}\left(\mathcal{F}^{\bullet}\right)\right)=\operatorname{ch}\left(\mathcal{F}^{\bullet}\right)-\pi_{1 *} \pi_{2}^{*}\left(\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}_{M / B}\right)
$$

and

$$
\operatorname{Td}_{M / B}=1-\frac{1}{2} c_{1}(B)+\ldots
$$

Moreover, the fiberwise conifold transformation acts as

$$
U:\left\{\begin{aligned}
\tau & \mapsto \tau /(1+N \tau) \\
m_{i} & \mapsto m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(G) \\
Q_{i} & \mapsto(-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} m^{b} C_{a b}^{i}+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}
\end{aligned}\right.
$$

[T.S.'19], [Cota,Klemm,T.S.'19]

Assume X is genus one fibered CY with N-sections that is a complete intersection in toric ambient space with compatible fibration. Then

[T.S.'19], [Cota,Klemm,T.S.'19]

Assume X is genus one fibered CY with N-sections that is a complete intersection in toric ambient space with compatible fibration. Then

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta_{B}}}\left(\mathcal{F}^{\bullet}\right)\right)=\operatorname{ch}\left(\mathcal{F}^{\bullet}\right)-\pi_{1 *} \pi_{2}^{*}\left(\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}_{M / B}\right),
$$

"Todd class of virtual relative tangent bundle"

[T.S.'19], [Cota,Klemm,T.S.'19]

Assume X is genus one fibered CY with N-sections that is a complete intersection in toric ambient space with compatible fibration. Then

$$
\operatorname{ch}\left(\Phi_{\mathcal{I}_{\Delta_{B}}}\left(\mathcal{F}^{\bullet}\right)\right)=\operatorname{ch}\left(\mathcal{F}^{\bullet}\right)-\pi_{1 *} \pi_{2}^{*}\left(\operatorname{ch}\left(\mathcal{F}^{\bullet}\right) \operatorname{Td}_{M / B}\right)
$$

and

$$
\operatorname{Td}_{M / B}=1-\frac{1}{2} c_{1}(B)+\ldots
$$

Moreover, the fiberwise conifold transformation acts as

$$
U:\left\{\begin{aligned}
\tau & \mapsto \tau /(1+N \tau) \\
m_{i} & \mapsto m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(G) \\
Q_{i} & \mapsto(-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} m^{b} C_{a b}^{i}+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}
\end{aligned}\right.
$$

[T.S.'19], [Cota,Klemm,T.S.'19]

Assume X is genus one fibered CY with N-sections that is a complete intersection in toric ambient space with compatible fibration. Then
τ is $\frac{1}{N}$ times volume of generic fiber
For $N \leq 4, U$ and T generate action of $\Gamma_{1}(N)$
$\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{Z}): a, d \equiv 1(\bmod n), c \equiv 0(\bmod n)\right\}$

Moreover, he fiberwise conifold transformation acts as
$U:\left\{\begin{aligned} & \tau \rightarrow \\ & \tau /(1+N \tau) \\ & \alpha_{i} \mapsto \\ & m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(G) \\ & Q_{i} \mapsto \\ &(-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} m^{b} C_{a b}^{i}+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}\end{aligned}\right.$
[T.S.'19], [Cota,Klemm,T.S.'19]
complete intersection in toric ambient space with compatible fibration. Then
$m_{i}, i=1, \ldots, \operatorname{rk}(G)$ are volumes of fibral curves
They transform like elliptic parameters

Moreover, the fiberwise conifold transformation acts as

$$
U: \begin{cases}f & \mapsto \tau /(1+N \tau) \\ m_{i} & \rightarrow m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(G) \\ Q_{\imath} & \mapsto \\ (-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} m^{b} C_{a b}^{i}+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}\end{cases}
$$

[T.S.'19], [Cota,Klemm,T.S.'19]

$$
\begin{gathered}
Q_{i}=\exp \left(2 \pi i \cdot t_{i}\right), \quad i=1, \ldots, h^{1,1}(B) \\
t_{i} \text { are shifted volumes of base curves } \\
t_{i}=\tilde{t}_{i}+\frac{\tilde{a}_{i}}{2 N} \tau \text { (for } \tilde{a}_{i} \text { see paper) }
\end{gathered}
$$

Q_{i} transforms like Jacobi form with index $-C_{a b}^{i}!$

Moreover, the fiberwise conifold transformation acts as

$$
U:\left\{\begin{aligned}
& \tau \mapsto \\
& m_{i} \mapsto /(1+N \tau) \\
&\left.Q_{i}\right) \rightarrow \\
& m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(G) \\
&(-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} m^{b} C_{a b}^{i}+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}
\end{aligned}\right.
$$

[T.S.'19], [Cota,Klemm,T.S.'19]

Assume X is genus one fibered CY with N-sections that is a complete intersection in toric ambient space with compatible fibration. Then

$$
\begin{gathered}
C_{a b}^{\beta}=-\frac{1}{N} \cdot \pi\left(D_{a} \cdot D_{b}\right) \cdot C_{\beta}, \quad C_{\beta} \in H_{2}(X) \\
D_{a, b} \text { are Shioda maps/fibral divisors }
\end{gathered}
$$

Moreover, the fiberwise conifold transfigrmation acts as

$$
U:\left\{\begin{aligned}
\tau & \mapsto \tau /(1+N \tau) \\
m_{i} & \mapsto m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(\underset{1}{ }) \\
Q_{i} & \left.\mapsto(-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} r b^{b} C_{a b}^{i}\right)+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}
\end{aligned}\right.
$$

[T.S.'19], [Cota,Klemm,T.S.'19]
$\operatorname{ggHKK} \Rightarrow Q^{\beta} Z_{\beta}(\tau, \lambda, \vec{m})$ transforms as
Jacobi form of index 0 w.r.t. \vec{m}
under $\Gamma_{1}(N)$ action generated by U, T

Moreover, the fiberwise conifold transformation acts as

$$
U:\left\{\begin{aligned}
\tau & \mapsto \tau /(1+N \tau) \\
m_{i} & \mapsto m_{i} /(1+N \tau), \quad i=1, \ldots, \operatorname{rk}(G) \\
Q_{i} & \mapsto(-1)^{a_{i}} \exp \left(-\frac{N}{1+N \tau} \cdot \frac{1}{2} m^{a} m^{b} C_{a b}^{i}+\mathcal{O}\left(Q_{i}\right)\right) Q_{i}
\end{aligned}\right.
$$

[T.S.'19], [Cota,Klemm,T.S.'19]

But is U induced by a monodromy?

Should come from wall of geometric cone where fibre collapses
© Branes that wrap $\pi^{-1}(V)$ for some $V \subset B$ become massless this includes the 6-brane! [Aspinwall,Horja,Karp’02]

- Mirror \subset principal component of discriminant
- It has to have tangency with intersection of other large complex structure divisors (otherwise get generic conifold monodromy)

Let us study example using the GLSM
[Herbst,Hori,Page'08], [Hori,Romo'13], [Knapp,Erkinger'17]

GLSM branes
Matrix factorization of superpotential

RG-flow
A-brane central charge

$$
Z(\Gamma)=\int_{\Gamma} \Omega
$$

depends on complex structure
Ω : (3,0)-form on W
B-branes on M
$\mathcal{F}^{\bullet} \in D^{b}(M)$
Mirror symmetry

$$
\longleftrightarrow
$$

$$
\frac{\text { A-branes on W }}{\Gamma \in H_{3}(W)}
$$

Fayet-Iliopoulos space of F_{4} GLSM
(genus one fibration w/ 2 -sections over \mathbb{P}^{2})

How does this look in the B-model (open A-model)?

* Limit large base/small fiber coincides with triple tangency between discriminant and large base divisor
* Consider small 3-sphere around tangency [Aspinwall'01]

This implies the relation

$$
U=T_{b}^{-1} \cdot C \cdot T_{b}^{-1} \cdot C \cdot T_{b}^{-1} \cdot C \cdot T_{b}^{3} .
$$

How does this look in the B-model (open A-model)?

* Limit large base/small fiber coincides with triple tangency between discriminant and large base divisor
- Consider small 3-sphere around tangency [Aspinwall'01]

This implies the relation

$$
U=T_{b}^{-1} \cdot C \cdot T_{b}^{-1} \cdot C \cdot T_{b}^{-1} \cdot C \cdot T_{b}^{3}
$$

More generally:

Consider any genus fibration over \mathbb{P}^{2}.
Denote by C the generic conifold monodromy and by T_{b} the action of a shift of the "base" B-field by $t \rightarrow t+1$.

Then

$$
U=T_{b}^{-1} \cdot C \cdot T_{b}^{-1} \cdot C \cdot T_{b}^{-1} \cdot C \cdot T_{b}^{3} .
$$

[Cota,Klemm,TS'19]

More generally:

Consider any genus fibration over $\mathbb{F}_{n}, n \in \mathbb{N}$.
Denote by C the generic conifold monodromy and by T_{i} the action of a shift of the B-field by $t_{i} \rightarrow t_{i}+1$.

Then

$$
U=\left(T_{1}^{-1} \cdot C \cdot T_{2}^{-1} \cdot C\right)^{2} \cdot T_{1}^{2} \cdot T_{2}^{2} .
$$

t_{1} : volume of \mathbb{F}_{n} fiber, $\quad t_{2}$: volume of \mathbb{F}_{n} base
[Cota,Klemm,TS'19]

What properties does this imply for $Z_{\text {top }}$?

* $Z_{\text {top }}$ wave function on quantisation of phase space $H^{3}(Y)$ [Witten'93]
- Monodromies interpretable as canonical transformations

If $C=0$, then $Z_{\text {top }}(\vec{t})$ is invariant under M!
[Aganagic,Bouchard,Klemm'06], [Gunaydin,Neitzke,Pioline'06]

Which monodromies don't mix momenta and positions?

- Large volume monodromies

$$
T: \tau \mapsto \tau+1, \quad M_{a}: m_{a} \mapsto m_{a}+1, \quad T_{i}: t_{i} \mapsto t_{i}+1
$$

\rightarrow Fourier expansion

- Generators of Weyl group [Katz,Morrison,Plesser'96], [Klemm,Mayr'96], [Horja'99], [Aspinwall'01], [Szendroi,02]
\rightarrow Weyl invariance
\propto Furthermore, $E_{a}=M_{a} \cdot U^{-1} \cdot M_{a}^{-1} \cdot U$ acts as
\rightarrow Elliptic transformation law!

Note: Elliptic fibrations with torsional sections have restricted $\Gamma_{1}(N)$ monodromy of fiber complex structure over base.

Conjecture:
[Klevers,Pena,Oehlmann,Piragua,Reuter'14], [Oehlmann,Reuter,T.S.'16] T-dualizing fiber exchanges torsional sections and multi-sections

Fiber cplx structure monodromy \leftrightarrow Monodromy of Kähler class?

How do we obtain the ansatz for the modular bootstrap on genus one fibrations with N-sections?

How do we obtain the ansatz for the modular bootstrap on genus one fibrations with N-sections?

> By cheating!

Higgsing in F -theory relates $Z_{\text {top. }}$ s!

$$
\tau \mapsto N \cdot \tau, \quad m \mapsto \tau
$$

Can use relations among Jacobi/modular forms to obtain ansatz

Examples

Fibrations from fibers

Engineering elliptic Calabi-Yau

see e.g. [Cvetic,Klevers,Piragua'13],
[Klevers,Pena,Oehlmann,Piragua,Reuter'14]

1. Obtain family of tori via Batyrev construction
2. Promote coefficients to sections of line bundles over base

- Properties of the fibration can be "tuned"

Fibrations from fibers

Fibrations from fibers

Example: F_{4} with base $B=\mathbb{F}_{1}$
Toric data:

Let us perform the modular bootstrap!

$$
\begin{gathered}
Z_{d_{B}, d_{F}}=\frac{\Delta_{4}^{2 d_{F}+\frac{1}{2} d_{B}}}{\eta(2 \tau)^{24 d_{F}+12 d_{B}} \frac{\phi_{d_{B}, d_{F}}(\tau, \lambda, m)}{\prod_{k_{1}=1}^{d_{F}} \phi_{-2,1}\left(2 \tau, k_{1} \lambda\right) \prod_{k_{2}=1}^{d_{B}} \phi_{-2,1}\left(2 \tau, k_{2} \lambda\right)}} \begin{array}{c}
\phi_{F}=\frac{2}{9}\left(\Delta_{4}\right)^{2}\left[-8 A^{2} g+A B\left(4 g^{2}+h\right)+B^{2} g\left(18 g^{2}-5 h\right)\right] \\
\phi_{B}=-2 \sqrt{\Delta_{4}} g \\
\phi_{2 B}= \\
\phi_{B+F}=\frac{\Delta_{4}}{288}\left[16 A^{2} g^{2}+8 A B g\left(h-2 g^{2}\right)+B^{2} h\left(3 h-11 g^{2}\right)\right] \\
\\
\quad B\left(-4 C^{2} g\left(4 g^{2}+33 h\right)+8 C D\left(-4 g^{4}+14 g^{2} h+h^{2}\right)\right. \\
\\
\left.\left.-D^{2} g\left(4 g^{4}-331 g^{2} h+91 h^{2}\right)\right)\right], \\
A=\phi_{0,1}(2 \tau, \lambda), \quad B=\phi_{-2,1}(2 \tau, \lambda), \\
C=\phi_{0,1}(2 \tau, m), \quad D=\phi_{-2,1}(2 \tau, m), \quad g=E_{2}^{(2)}(\tau), \quad h=E_{4}(\tau)
\end{array} .
\end{gathered}
$$

$$
Z_{d_{B}, d_{F}}=\frac{\Delta_{4}^{2 d_{F}+\frac{1}{2} d_{B}}}{\eta(2 \tau)^{24 d_{F}+12 d_{B}}} \frac{\phi_{d_{B}, d_{F}}(\tau, \lambda, m)}{\prod_{k_{1}=1}^{d_{F}} \phi_{-2,1}\left(2 \tau, k_{1} \lambda\right) \prod_{k_{2}=1}^{d_{B}} \phi_{-2,1}\left(2 \tau, k_{2} \lambda\right)}
$$

2

- Expressions for $Z_{\beta=n \cdot B}$ can be refined
\rightarrow E-string w/ Wilson lines
- Expressions for $Z_{\beta=n \cdot F}$ can be matched with one-loop calculation in heterotic strings on $\left(K 3 \times T^{2}\right) / \mathbb{Z}_{2}$
* $Z_{\beta=n \cdot B+m \cdot F}$ gives non-perturbative prediction!

$$
\begin{aligned}
& A=\phi_{0,1}(2 \tau, \lambda), \quad B=\phi_{-2,1}(2 \tau, \lambda) \\
& C=\phi_{0,1}(2 \tau, m), \quad D=\phi_{-2,1}(2 \tau, m), \quad g=E_{2}^{(2)}(\tau), \quad h=E_{4}(\tau)
\end{aligned}
$$

A Higgs chain: $F_{10} \rightarrow F_{6} \rightarrow F_{4}$

$$
S U(2) \xrightarrow[\text { higgsing }]{\text { adjoint }} U(1) \xrightarrow[\text { higgsing }]{\text { charge 2 }} \mathbb{Z}_{2}
$$

A Higgs chain: $F_{10} \rightarrow F_{6} \rightarrow F_{4}$

restriction of
c.s. moduli

$Z_{\text {top }}$ is equal!

$U(1)$

Bonus:

Get X_{18} from F_{6} via $m=0$

A Higgs chain: $F_{10} \rightarrow F_{6} \rightarrow F_{4}$

Relation between $F_{10} \rightarrow \mathbb{P}_{2}$ and $F_{6} \rightarrow \mathbb{P}_{2}$

$F_{10} \rightarrow \mathbb{P}_{2}$
∞ Genus $\mathbf{g}=\mathbf{1 0}$ curve of I_{2} fibers
© $n=72$ isolated fibral curves \rightarrow fundamental matter

- 101 polynomial +10 non-polynomial c.s. deformations
$F_{6} \rightarrow \mathbb{P}_{2}$
- No fibral divisors but two sections
$\boldsymbol{2 g} \mathbf{g} \mathbf{2}=18$ charge two loci, $2 n=144$ charge one loci
- 111 polynomial $+\mathbf{0}$ non-polynomial c.s. deformations

Toric manifestation of discussion in [Katz,Morrison,Plesser'96]

Ansatz $F_{4} \rightarrow \mathbb{P}^{2}$:

$$
\begin{aligned}
& Z_{d}(\tau, \lambda)=\frac{\Delta_{4}^{3 d}}{\eta(2 \tau)^{36 d}} \frac{\phi_{d}(\tau, \lambda)}{\prod_{k=1}^{d} \phi_{-2,1}(2 \tau, k \lambda)} \\
& \phi_{1}(\tau, \lambda)=192\left[12\left(E_{2}^{(2)}\right)^{2}+E_{4}\right] \\
& E_{2}^{(N)}(\tau)=- \frac{1}{N-1} \partial_{\tau} \log \left(\frac{\eta(\tau)}{\eta(N \tau)}\right), \quad \Delta_{4}(\tau)=\frac{1}{192}\left(E_{4}(\tau)-E_{2}^{(2)}(\tau)^{2}\right) \\
& \phi_{2}(\tau, \lambda)= \frac{32}{9} A^{4} \cdot\left(12 g^{2}+h\right)^{2}+A^{3} B \frac{4}{27} g\left(1072 g^{4}-7832 g^{2} h-797 h^{2}\right) \\
&-\frac{1}{54} A^{2} B^{2} \cdot\left(4 g^{2}-h\right)\left(25504 g^{4}+6924 g^{2} h+227 h^{2}\right) \\
&+A B^{3} \cdot \frac{g\left(1425683 g^{6}+7311527 g^{4} h-733303 g^{2} h^{2}-154563 h^{3}\right)}{1728} \\
&+B^{4} \cdot \frac{2550099 g^{8}-20848992 g^{6} h+2131870 g^{4} h^{2}+885304 g^{2} h^{3}+8887 h^{4}}{6912} \\
& A= \phi_{0,1}(2 \tau, \lambda), \quad B=\phi_{-2,1}(2 \tau, \lambda), \quad g=E_{2}^{(2)}(\tau), \quad h=E_{4}(\tau)
\end{aligned}
$$

How does this relate to Heterotic strings?

1. Heterotic on $K 3 \times T^{2}$ dual to Type IIA on CY 3-fold [Kachru,Vafa'95]
2. Dualities of Heterotic strings on $K 3 \times T^{2}$ contain $S L(2, \mathbb{Z})$
3. Realized as monodromies of dual Calabi-Yau [Klemm,Lerche,Mayr'95]
4. Dualities of Het. strings on $\left(K 3 \times T^{2}\right) / \mathbb{Z}_{N}$ contain $\Gamma_{1}(N)$
\rightarrow Dual CY should be genus one fibration with N-sections
For $N=2$ we use modular bootstrap for genus one fibrations to perform all order checks against heterotic calculation by [Chattopadhyaya,David'16]

Summary

- Related absolute and relative conifold monodromy for any genus one fibration over $\mathbb{P}^{2}, \mathbb{F}_{n \in \mathbb{N}}$
- Derived elliptic transformation law for $Z_{\text {top }}$. w.r.t. geometric elliptic parameters
* Generalized modular bootstrap to genus one fibrations with N -sections
- Obtained new Type II duals to heterotic compactifications on $\left(K 3 \times T^{2}\right) \mathbb{Z}_{2}$
* Using modular bootstrap, performed all order checks against heterotic one-loop amplitudes

Outlook

* What about genus one fibrations with N-sections, $N>4$? More generators for $\Gamma_{1}(N)$ and modularity of $Z_{\beta=0}$ puzzling Potential source of swampland?
* BPS spectra of twisted compactifications of 6d SCFTs [Bhardwaj,Jefferson,Kim,Tarazi,Vafa'19]
\Leftrightarrow Find heterotic duals for $N>2$

Thank you for your attention!

