Modularity from Monodromy

String Theory and Mathematics seminar - Kavli IPMU

Thorsten Schimannek

based on [1902.08215], T.S.

and [1910.01988], C. F. Cota, A. Klemm, T.S.

8.10.2019

QUESTION: Can we understand the modularity directly within topological string theory on X?

(Goes back to [Candelas,Font,Katz,Morrison'94]!)

- 1. Topological strings and branes on Calabi-Yau 3-folds -break-
- 2. The quantum geometry of genus one fibered CY 3-folds

Part I:

Topological strings and topological branes on Calabi-Yau 3-folds

• Consider string compactification: $X = \mathcal{M}_{1,3} \times \underline{CY_3}$

(eg. Type IIA/B strings)

N=(2,2) SCFT

✤ Worldsheet path integral over all embeddings

$$Z = \sum_{g=0}^{\infty} \int \mathcal{D}\phi \mathcal{D}\psi e^{-S_g}, \quad \phi : \bigcirc \frown X$$

• Supersymmetric path integral localizes on $\delta_Q \psi = 0$ (elsewhere fermions can be gauged away $\rightarrow \int \mathcal{D}\psi \, 1 = 0$)

• Consider string compactification: $X = \mathcal{M}_{1,3} \times \underline{CY_3}$

(eg. Type IIA/B strings)

N=(2,2) SCFT

✤ Worldsheet path integral over all embeddings

$$Z = \sum_{g=0}^{\infty} \int \mathcal{D}\phi \mathcal{D}\psi e^{-S_g}, \quad \phi : \bigcirc \frown X$$

• Supersymmetric path integral localizes on $\delta_Q \psi = 0$ (elsewhere fermions can be gauged away $\rightarrow \int \mathcal{D}\psi \, 1 = 0$)

✤ Variation of the action under SUSY transformation

$$\delta S = \int_{\Sigma} dz d\bar{z} \sqrt{h} \left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu} + \text{c.c} \right)$$

No covariantly constant spinors on riemann surface g ≠ 1
Global supersymmetry is broken

But

✤ Sub-sectors of the theory localize!

✤ Variation of the action under SUSY transformation

$$\delta S = \int_{\Sigma} dz d\bar{z} \sqrt{h} \left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu} + \text{c.c} \right)$$

• No covariantly constant spino on riemann surface $q \neq 1$

Global supersymmetry is broken

 ∇_{μ} : Covariant derivative w.r.t. worldsheet metric

Sub-sectors of the theory localize!

✤ Variation of the action under SUSY transformation

$$\delta S = \int_{\Sigma} dz d\bar{z} \sqrt{h} \left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu} + \text{c.c} \right)$$

• Global supersymmetry is broken

 $\epsilon^i~:~$ Variational parameter, worldsheet spinor

 \bullet No covariantly constant spinor on riemann surface $a \neq 1$

Sub-sectors of the theory localize!

✤ Variation of the action under SUSY transformation

$$\delta S = \int_{\Sigma} dz d\bar{z} \sqrt{h} \left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu} + \text{c.c} \right)$$

No covariantly constant spinors on domain surface $a \neq 1$ Global supersymmetry is broken G_i^μ : Superpartner(s) of energy–momentum tensor But

 \bullet Variation of the action under SUSY transformation

$$\delta S = \int_{\Sigma} dz d\bar{z} \sqrt{h} \left(\nabla_{\mu} \epsilon^{i} G_{i}^{\mu} + \text{c.c} \right)$$

No covariantly constant spinors on riemann surface g ≠ 1
Global supersymmetry is broken

But

➡ Sub-sectors of the theory localize!

$\mathbf{B}\text{-twisted}$ SUSY transformation

$$\delta_{Q_B}\psi\sim\epsilon_1\partial\phi+\epsilon_2\overline{\partial}\phi$$

Z localizes on constant maps (easy to count, at least for g < 2)

$$\phi:$$
 \bigcirc $\bullet \in X$

- ◆ Only depends on the *complex structure* of Calabi-Yau
- ✤ Does not receive worldsheet instanton corrections
- Genus 0 contributions \sim variation of Hodge structure

A-twisted SUSY transformation

$$\delta_{Q_A}\psi\sim\epsilon_1\overline{\partial}\phi+\epsilon_2\partial\overline{\phi}$$

localizes on holomorphic maps (always hard to count)

$$\phi: \underbrace{\bigcirc} & \overset{hol.}{\frown} & C \subset X$$

◆ Only depends on the *Kähler structure* of Calabi-Yau

• Receives w.s. instanton corrections \rightarrow stringy geometry

 $Z_{\text{top.}}$ encodes highly non-trivial enumerative invariants!

Mathematically it can be defined as generating function of Gromov-Witten invariants, i.e. integrals over moduli stack of stable maps into CY (see e.g. book by [Katz,Cox]). Those invariants are not integral!

Physically it encodes multiplicities of BPS states in 5d theory from M-theory on CY [Gopakumar, Vafa'98]. Those are integral!

Mathematical definition only in special cases, e.g. via stable pair invariants.

$$\log(Z_{\text{top.}}) = \sum_{\beta \in H_2(M,\mathbb{Z})} \sum_{g=0}^{\infty} \sum_{m=1}^{\infty} \frac{n_{\beta}^g}{m} \left(2\sin\left(\frac{m\lambda}{2}\right)\right)^{2g-2} q^{\beta m}$$

Sum over m due to multi-coverings

[Huang,Katz,Klemm'15]:

If Calabi-Yau 3-fold X is particular type of elliptic fibration, then $Z_{\text{top.}}$ can be expressed in terms of Jacobi forms.

(more on this later)

INTERLUDE: The stringy Kähler moduli space

- String theories have anti-symmetric 2-form field $B_{\mu\nu}$ \rightarrow combines into complexified Kähler class
- ➡ K\"ahler cone is extended with cones of birational CY's and moduli cones of non-geometric worldsheet SCFTs (e.g. Landau-Ginzberg models or Hybrid phases)
- ✤ Points can be non-trivially identified via string dualities

In contrast, closed B-model only sees classical geometry!

✤ There exist pairs of Calabi-Yau manifolds X, Y such that

A-MODEL on X $\xleftarrow{}$ mirror symmetry B-MODEL on Y

- ✤ From SCFT perspective "trivial" (choice of sign)
- ➡ Geometrically highly non-trivial

Loops in complex structure moduli space of B-model can be identified with very paths between dual points in stringy Kähler moduli space What about open strings?

Open strings have boundaries that are mapped into branes.

Admissible topological branes depend on twist!

A brief reminder of topological B-branes

Naively, wrap holomorphic cycles in CY and carry gauge field

• IR equivalent to finite complexes of vector bundles

$$\mathcal{F}^{\bullet} = 0 \to V_1 \to \cdots \to V_n \to 0$$
$$(\cdots \to \text{brane} \to \text{anti-brane} \to \text{brane} \to \dots)$$

Objects of derived category of quasi-coherent sheaves $D^b(X)$ [Douglas'01]

 \bullet Central charge depends on Kähler class ω [Iritani'09]

$$Z(\mathcal{F}^{\bullet}) = \int_{X} e^{\omega} \Gamma(X) \left(\operatorname{ch} \mathcal{F}^{\bullet} \right)^{\vee} + (\text{instanton corr.})$$

 \rightarrow For 2-branes just volume of support (no instantons!)

Homological mirror symmetry:

Monodromies in stringy Kähler moduli space act as autoequivalences on $D^{b}(X)$! [Kontsevich'96], [Horja'99]

Autoequivalences of $D^b(X)$ are always expressible as Fourier-Mukai transformations [Orlov'96]

 $\Phi_{\mathcal{E}}: \mathcal{F}^{\bullet} \mapsto R\pi_{1*} \left(\mathcal{E} \otimes_L L\pi_2^* \mathcal{F}^{\bullet} \right), \quad \mathcal{E} \in D^b(X \times X).$

The complex \mathcal{E} is called the *Fourier-Mukai kernel*.

Physical intuition:

- Kernel \mathcal{E} corresponds to *defect* between two non-linear sigma models with target space X
- ▶ FM-transformation ≈ fusing defect with boundary e.g. [Brunner,Jockers,Roggenkamp'08]

How does HKK relate to monodromies?

Idea: Interpret Kähler moduli as central charges of 2-branes

- 1. Identify actions on D-branes that generate modular group
- 2. Show that those actions arise from monodromies, i.e. they identify dual points in the stringy Kähler moduli space!
- 3. Use general automorphic properties of $Z_{\text{top.}}$

PART II:

The quantum geometry of genus one fibered Calabi-Yau 3-folds

Consider elliptically fibered Calabi-Yau 3-fold $\pi : X \to B$ Birationally equivalent to Weierstrass model $\pi' : \tilde{X} \to B$ $\{y^2 = x^3 + fxz^4 + gz^6\} \subset \mathbb{P}_{231}(K_B^{-2} \oplus K_B^{-3} \oplus \mathcal{O})$

•• Fiber of X degenerates over *discriminiant locus*

$$\{4f^3 + 27g^2 = 0\} \subset B$$

Degenerations classified by Kodaira

(not quite true for 3-folds, see [Esole,Yau'11])

e.g. I_2 singularity

Theorem (Shioda-Tate-Wazir):

 $h^{1,1}(X) = h^{1,1}(B) + \#(\text{sections}) + \#(\text{fibral divisors})$

Consider elliptically fibered Calabi-Yau 3-fold $\pi : X \to B$ Birationally equivalent to Weierstrass model $\pi' : \tilde{X} \to B$ $\{y^2 = x^3 + fxz^4 + gz^6\} \subset \mathbb{P}_{231}(K_B^{-2} \oplus K_B^{-3} \oplus \mathcal{O})$

•• Fiber of X degenerates over *discriminiant locus*

$$\{4f^3 + 27g^2 = 0\} \subset B$$

Degenerations classified by Kodaira

(not quite true for 3-folds, see [Esole,Yau'11])

e.g. I_2 singularity

Theorem (Shioda-Tate-Wazir):

 $h^{1,1}(X) = h^{1,1}(B) + \#(\text{sections}) + \#(\text{fibral divisors})$

Not all genus one fibrations are elliptic fibrations!

Some only have *N*-sections:

- \bullet An N-section intersects the generic fiber N times
- ✤ Points experience monodromy around loops in the base

Theorem (Shioda-Tate-Wazir-Braun-Morrison):

 $h^{1,1}(X) = h^{1,1}(B) + \#(N\text{-sections}) + \#(\text{fibral divisors})$

By abuse of terminology:

"with N-sections" \leftrightarrow there is no N'-section with N' < N

- 1. Curves in the base
- 2. The generic fiber
- 3. Fibers of fibral divisors
- 4. Isolated components of reducible fibers

- 1. Curves in the base
- 2. The generic fiber
- 3. Fibers of fibral divisors
- 4. Isolated components of reducible fibers

- 1. Curves in the base
- 2. The generic fiber
- 3. Fibers of fibral divisors
- 4. Isolated components of reducible fibers

- 1. Curves in the base
- 2. The generic fiber
- 3. Fibers of fibral divisors
- 4. Isolated components of reducible fibers

- 1. Curves in the base
- 2. The generic fiber
- 3. Fibers of fibral divisors
- 4. Isolated components of reducible fibers

Topological strings and weak Jacobi forms

Conjecture: For trivial *G* (*i.e.* no reducible fibers!) [Huang,Katz,Klemm'15]

$$Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_\beta(\tau,\lambda) Q^\beta \right)$$
$$Z_{\beta>0}(\tau,\lambda) = \frac{\phi_\beta(\tau,\lambda)}{\eta(\tau)^{12\beta \cdot K_B} \prod_{l=1}^{b_2(B)} \prod_{s=1}^{\beta_l} \phi_{-2,1}(\tau,s\lambda)}$$

 \rightarrow All-genus results for compact CY 3-folds!

Topological strings and weak Jacobi forms

Conjecture: For trivial G (*i.e.* no reducible fibers!) [Huang,Katz,Klemm'15] $Q^{\beta} = \exp(2\pi i\beta_j t^j)$ t^j : (shifted) volumes of base curves $Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_\beta(\tau,\lambda) Q^\beta \right)$ $\underbrace{Z_{\beta>0}(\tau,\lambda)}_{f} = \frac{\phi_{\beta}(\tau,\lambda)}{\eta(\tau)^{12\beta\cdot K_B}\prod_{l=1}^{b_2(B)}\prod_{s=1}^{\beta_l}\phi_{-2,1}(\tau,s\lambda)}$ τ : fiber volume

 \rightarrow All-genus results for compact CY 3-folds!

 \rightarrow All-genus results for compact CY 3-folds!

 \rightarrow All-genus results for compact CY 3-folds!

A weak Jacobi form $\phi(\tau, z)$ of weight k and index m

➡ Admits a Fourier expansion

$$\phi(\tau, z) = \sum_{n \ge 0} \sum_{r \in \mathbb{Z}} c(n, r) e^{2\pi i (n\tau + rz)}$$

➡ Satisfies "Modular Transformation Law" (MTL)

$$\phi\left(-\frac{1}{\tau},\frac{z}{\tau}\right) = \tau^k e^{\frac{2\pi i m z^2}{\tau}} \phi(\tau,z)$$

• MTL implies "Elliptic Transformation Law" (ETL) $\phi(\tau, z + \tau) = e^{-2\pi i m (\tau + 2z)} \phi(\tau, z)$

 \rightarrow All-genus results for compact CY 3-folds!

Conjecture: For trivial *G* (*i.e.* no reducible fibers!) [Huang,Katz,Klemm'15]

$$Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_\beta(\tau,\lambda) Q^\beta \right)$$
$$Z_{\beta>0}(\tau,\lambda) = \frac{\phi_\beta(\tau,\lambda)}{\eta(\tau)^{12\beta \cdot K_B} \prod_{l=1}^{b_2(B)} \prod_{s=1}^{\beta_l} \phi_{-2,1}(\tau,s\lambda)}$$

 Z_{β} has weight 0 and index $\frac{1}{2}\beta \cdot (\beta - c_1(B))$

 \rightarrow All-genus results for compact CY 3-folds!

gHKK conjecture:

1. For a "general" elliptic Calabi-Yau threefold, $Z_{\beta}(\tau, \lambda, \vec{m})$ is a *lattice Jacobi form*

$$Z_{\beta>0}(\tau,\lambda,\vec{m}) = \frac{\phi_{\beta}(\tau,\lambda,\vec{m})}{\eta^{12\beta \cdot K_B} \prod_{l=1}^{b_2(B)} \prod_{s=1}^{\beta_l} \phi_{-2,1}(\tau,s\lambda)}$$

- 2. The index matrix is encoded in the *anomaly polynomial* of the 6d F-theory effective action
- 3. Z_{β} is invariant under the action of the *affine Weyl groups*

[DelZotto,Gu,Huang,Kashani-Poor,Klemm,Lockhart'17], 2x[Lee,Lerche,Weigand'18]

(can be made more precise!)

gHKK conjecture:

1. For a "general" elliptic Calabi-Yau threeform fibral curves $Z_{\beta}(\tau, \lambda, \vec{m})$ is a *lattice Jacobi form*

$$Z_{\beta>0}(\tau,\lambda,\vec{m}) = \frac{\phi_{\beta}(\tau,\lambda,\vec{m})}{\eta^{12\beta\cdot K_B} \prod_{l=1}^{b_2(B)} \prod_{s=1}^{\beta_l} \phi_{-2,1}(\tau,s\lambda)}$$

Volumes of

- 2. The index matrix is encoded in the *anomaly polynomial* of the 6d F-theory effective action
- 3. Z_{β} is invariant under the action of the *affine Weyl groups*

[DelZotto,Gu,Huang,Kashani-Poor,Klemm,Lockhart'17], 2x[Lee,Lerche,Weigand'18]

(can be made more precise!)

A lattice Jacobi form $\phi(\tau, z_1, ..., z_n)$ of weight k and index matrix M•0 Admits a Fourier expansion and transforms as $\phi\left(-\frac{1}{\tau},\frac{z_1}{\tau},...,\frac{z_n}{\tau}\right) = \tau^k e^{\frac{2\pi i M_{ij} z^i z^j}{\tau}} \phi(\tau,z_1,...,z_n)$ Again, this implies elliptic transformation law

gHKK conjecture:

1. For a "general" elliptic Calabi-Yau threefold, $Z_{\beta}(\tau, \lambda, \vec{m})$ is a *lattice Jacobi form*

$$Z_{\beta>0}(\tau,\lambda,\vec{m}) = \frac{\phi_{\beta}(\tau,\lambda,\vec{m})}{\eta^{12\beta \cdot K_B} \prod_{l=1}^{b_2(B)} \prod_{s=1}^{\beta_l} \phi_{-2,1}(\tau,s\lambda)}$$

- 2. The index matrix is encoded in the *anomaly polynomial* of the 6d F-theory effective action
- 3. Z_{β} is invariant under the action of the affine Weyl groups

[DelZotto,Gu,Huang,Kashani-Poor,Klemm,Lockhart'17], 2x[Lee,Lerche,Weigand'18]

(can be made more precise!)

Can we see this directly from topological strings?

- ➡ Z_{top.} is wave function on moduli space of Calabi-Yau [Witten'93]
- Can we understand modular properties as consequence of monodromies in the stringy Kähler moduli space (SKM)?
- **Note:** Invariance under $T: \tau \to \tau + 1$ trivial (*B*-field shifts) (B-field shifts are also monodromies!)

Need to establish duality between τ and $-\frac{1}{\tau}$ in SKM! Basically 2-fold T-duality, but what about the singular fibers? What about genus one fibrations without sections?

Let's study monodromies!

Can we see this directly from topological strings?

- ➡ Z_{top.} is wave function on moduli space of Calabi-Yau [Witten'93]
- Can we understand modular properties as consequence of monodromies in the stringy Kähler moduli space (SKM)?
- **Note:** Invariance under $T: \tau \to \tau + 1$ trivial (*B*-field shifts) (B-field shifts are also monodromies!)

Need to establish duality between τ and $\frac{\tau}{\tau+1}$ in SKM! Basically 2-fold T-duality, but what about the singular fibers? What about genus one fibrations without sections?

Let's study monodromies!

Warmup: Generic conifold monodromy

- A-MODEL: Monodromy around boundary of geometric cone where 6-brane becomes massless
- B-MODEL: Monodromy around principal component of the discriminant where base of SYZ fibration collapses

Topological B-branes:

- ➡ 0-brane transforms into 0-brane and anti-6-brane
- FM-kernel is *ideal sheaf* \mathcal{I}_{Δ} *of diagonal in* $X \times X$

$$\mathcal{I}_{\Delta} \sim 0 \to \mathcal{O}_{X \times X} \to \mathcal{O}_{\Delta} \to 0 \quad \text{in } D^b(X \times X)$$

Calculate induced action on brane charges from

$$\Phi_{\mathcal{I}_{\Delta}}: \mathcal{F}^{\bullet} \mapsto R\pi_{1*} \left(\mathcal{I}_{\Delta} \otimes_L L\pi_2^* \mathcal{F}^{\bullet} \right)$$

Grothendieck-Riemann-Roch implies that

$$\operatorname{ch}(f_*\mathcal{F}^{\bullet}) = f_* \left[\operatorname{ch}(\mathcal{F}^{\bullet}) \cdot f^* \operatorname{Td}(X)\right]$$

Therefore

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta}}(\mathcal{F}^{\bullet})) = \pi_{1*} \left(\operatorname{ch}(\mathcal{I}_{\Delta}) \cdot \pi_{2}^{*} \left[\operatorname{ch}(\mathcal{F}^{\bullet}) \operatorname{Td}(X) \right] \right)$$

Using $\Phi_{\mathcal{O}_{\Delta}}(\mathcal{F}^{\bullet}) = \mathcal{F}^{\bullet}$ this leads to

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta}}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_{2}^{*}(\operatorname{ch}(\mathcal{F}^{\bullet})\operatorname{Td}(X))$$

Calculate induced action on brane charges from

 $\Phi_{\mathcal{I}_{\Delta}}: \mathcal{F}^{\bullet} \mapsto R\pi_{1*} \left(\mathcal{I}_{\Delta} \otimes_L L\pi_2^* \mathcal{F}^{\bullet} \right)$

Grothendieck-Riemann-Roch implies that

 $\operatorname{ch}(f_*\mathcal{F}^{\bullet}) = f_* [\operatorname{ch}(\mathcal{F}^{\bullet}) \cdot f^* \operatorname{Td}(X)]$

Calculate induced action on brane charges from

$$\Phi_{\mathcal{I}_{\Delta}}: \mathcal{F}^{\bullet} \mapsto R\pi_{1*} \left(\mathcal{I}_{\Delta} \otimes_L L\pi_2^* \mathcal{F}^{\bullet} \right)$$

Grothendieck-Riemann-Roch implies that

$$\operatorname{ch}(f_*\mathcal{F}^{\bullet}) = f_* \left[\operatorname{ch}(\mathcal{F}^{\bullet}) \cdot f^* \operatorname{Td}(X)\right]$$

Therefore

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta}}(\mathcal{F}^{\bullet})) = \pi_{1*} \left(\operatorname{ch}(\mathcal{I}_{\Delta}) \cdot \pi_{2}^{*} \left[\operatorname{ch}(\mathcal{F}^{\bullet}) \operatorname{Td}(X) \right] \right)$$

Using $\Phi_{\mathcal{O}_{\Delta}}(\mathcal{F}^{\bullet}) = \mathcal{F}^{\bullet}$ this leads to

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta}}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_{2}^{*}(\operatorname{ch}(\mathcal{F}^{\bullet})\operatorname{Td}(X))$$

For elliptic CY 3-folds without reducible fibers it is known that ideal sheaf of relative diagonal \mathcal{I}_{Δ_B} acts as $\tau \to \frac{\tau}{\tau+1}$ (when normalizing with 0-brane charge)

\rightarrow "fiberwise conifold monodromy"

- Evaluation on brane charges uses singular Riemann Roch This requires suitable embedding into ambient space ("l.c.i. morphism") [Baum,Fulton,MacPherson'75],
 [Andreas,Curio,Ruipérez,Yau'00], reviewed in [Andreas,Ruipérez'04]
- \mathcal{I}_{Δ_B} auto-equivalence of $D^b(X)$ for any genus one fibrations [Ruipérez,López Martín,Sancho de Salas'06]
 - Idea: Use toric geometry, CY as complete intersection • get l.c.i. morphism for free!
 - evaluate action of \mathcal{I}_{Δ_B} on charges

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta_B}}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_2^* \left(\operatorname{ch}(\mathcal{F}^{\bullet}) \operatorname{Td}_{M/B}\right) ,$$

and

$$\operatorname{Td}_{M/B} = 1 - \frac{1}{2}c_1(B) + \dots$$

Moreover, the fiberwise conifold transformation acts as

$$U: \begin{cases} \tau \mapsto \tau/(1+N\tau) \\ m_i \mapsto m_i/(1+N\tau), \quad i=1,...,\mathrm{rk}(G) \\ Q_i \mapsto (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta_B}}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_2^* \left(\operatorname{ch}(\mathcal{F}^{\bullet})\operatorname{Td}_{M/B}\right) ,$$

and
$$\operatorname{Td}_{M/B} = 1 - \frac{1}{2}c_1(B) + \dots .$$

Mo
$$\pi_{1,2} \text{ projections in } X \times_B X \text{ acts as}$$
$$U: \begin{cases} \tau \quad \mapsto \quad \tau/(1+N\tau) \\ m_i \quad \mapsto \quad m_i/(1+N\tau) , \quad i = 1, \dots, \operatorname{rk}(G) \\ Q_i \quad \mapsto \quad (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C_{ab}^i + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta_B}}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_2^* \left(\operatorname{ch}(\mathcal{F}^{\bullet})\operatorname{Td}_{M/B}\right),$$

and
$$\operatorname{Td}_{M/B} = 1 - \frac{1}{2^{c_1(B)} + \dots}$$

Mo
"Todd class of virtual relative tangent bundle" acts as
$$U: \begin{cases} \tau \quad \mapsto \quad \tau/(1 + N\tau) \\ m_i \quad \mapsto \quad m_i/(1 + N\tau), \quad i = 1, \dots, \operatorname{rk}(G) \\ Q_i \quad \mapsto \quad (-1)^{a_i} \exp\left(-\frac{N}{1 + N\tau} \cdot \frac{1}{2}m^a m^b C_{ab}^i + \mathcal{O}(Q_i)\right) Q_i$$

$$\operatorname{ch}(\Phi_{\mathcal{I}_{\Delta_B}}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_2^* \left(\operatorname{ch}(\mathcal{F}^{\bullet}) \operatorname{Td}_{M/B}\right) ,$$

and

$$\operatorname{Td}_{M/B} = 1 - \frac{1}{2}c_1(B) + \dots$$

Moreover, the fiberwise conifold transformation acts as

$$U: \begin{cases} \tau \mapsto \tau/(1+N\tau) \\ m_i \mapsto m_i/(1+N\tau), \quad i=1,...,\mathrm{rk}(G) \\ Q_i \mapsto (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

$$\tau \text{ is } \frac{1}{N} \text{ times volume of generic fiber}$$

For $N \leq 4$, U and T generate action of $\Gamma_1(N)$
$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) : a, d \equiv 1 \pmod{n}, c \equiv 0 \pmod{n} \right\}$$

IVI/L

Moreover, the fiberwise conifold transformation acts as

2

$$U: \begin{cases} \tau \to \tau/(1+N\tau) \\ m_i \to m_i/(1+N\tau) , \quad i=1,...,\mathrm{rk}(G) \\ Q_i \to (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

 $\begin{array}{c} ch(\Phi_{\mathcal{F}}^{\bullet}) = ch(\mathcal{F}^{\bullet}) = \tau_{\mathcal{F}}^{\bullet}(ch(\mathcal{F}^{\bullet})) \mathrm{Td}_{M/B}) \\ m_{i}, \ i = 1, ..., \mathrm{rk}(G) \ \mathrm{are} \ volumes \ of \ fibral \ curves \\ \mathrm{They} \ \mathrm{transform} \ \mathrm{like} \ elliptic \ parameters \end{array}$

Moreover, the **fiberwise conifold transformation** acts as

 $\operatorname{Ad}_{M/B} = 1 - \frac{1}{2}c_1(B) + \dots$

$$U: \begin{cases} \begin{array}{ccc} & \mapsto & \tau/(1+N\tau) \\ & & \\ m_i & \rightarrow & m_i/(1+N\tau) \,, \quad i=1,...,\mathrm{rk}(G) \\ & & \\ Q_i & \mapsto & (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

$$Q_{i} = \exp(2\pi i \cdot t_{i}), \quad i = 1, ..., h^{1,1}(B)$$

$$t_{i} \text{ are shifted volumes of base curves}$$

$$t_{i} = \tilde{t}_{i} + \frac{\tilde{a}_{i}}{2N}\tau \text{ (for } \tilde{a}_{i} \text{ see paper)}$$

$$Q_{i} \text{ transforms like Jacobi form with index } -C_{ab}^{i}!$$

Moreover, the fiberwise conifold transformation acts as

$$U: \begin{cases} \tau \mapsto \tau/(1+N\tau) \\ m_i \mapsto m_i/(1+N\tau) , \quad i=1,...,\mathrm{rk}(G) \\ Q_i \mapsto (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

and

$$C_{ab}^{(I-1)} = -\frac{1}{N} \cdot \pi (D_a \cdot D_b) \cdot C_{\beta}, \quad C_{\beta} \in H_2(X)$$

$$D_{a,b} \text{ are Shioda maps/fibral divisors}$$

$$Td_{M/B} = 1 - \frac{1}{2}c_1(R) + \dots$$

Moreover, the fiberwise conifold transformation acts as

$$U: \begin{cases} \tau \mapsto \tau/(1+N\tau) \\ m_i \mapsto m_i/(1+N\tau), \quad i=1,...,\mathrm{rk}(G) \\ Q_i \mapsto (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

and

$$\begin{array}{c}
 \operatorname{ch}(\Phi_{\tau, \cdot}(\mathcal{F}^{\bullet})) = \operatorname{ch}(\mathcal{F}^{\bullet}) - \pi_{1*}\pi_{2}^{*}\left(\operatorname{ch}(\mathcal{F}^{\bullet})\operatorname{Td}_{M/R}\right), \\
 ggHKK \Rightarrow Q^{\beta}Z_{\beta}(\tau, \lambda, \vec{m}) \text{ transforms as} \\
 Jacobi \text{ form of index } 0 \text{ w.r.t. } \vec{m} \\
 under \Gamma_{1}(N) \text{ action generated by } U, T
\end{array}$$

Moreover, the **fiberwise conifold transformation** acts as

$$U: \begin{cases} \tau \mapsto \tau/(1+N\tau) \\ m_i \mapsto m_i/(1+N\tau), \quad i=1,...,\mathrm{rk}(G) \\ Q_i \mapsto (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2}m^a m^b C^i_{ab} + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

But is *U* induced by a monodromy?

Should come from wall of geometric cone where fibre collapses

- → Branes that wrap $\pi^{-1}(V)$ for some $V \subset B$ become massless this includes the 6-brane! [Aspinwall,Horja,Karp'02]
- Mirror \subset principal component of discriminant
- It has to have tangency with intersection of other large complex structure divisors (otherwise get generic conifold monodromy)

Let us study example using the GLSM [Herbst,Hori,Page'08], [Hori,Romo'13], [Knapp,Erkinger'17]

GLSM branes Matrix factorization A-brane central charge of superpotential $Z(\Gamma) = \int_{\Gamma} \Omega$ depends on complex structure RG-flow Ω : (3,0)-form on W Mirror symmetry $\frac{\text{B-branes on } M}{\mathcal{F}^{\bullet} \in D^b(M)}$ A-branes on W $\Gamma \in H_3(W)$

Fayet-Iliopoulos space of F_4 **GLSM** (genus one fibration w/ 2-sections over \mathbb{P}^2)

How does this look in the B-model (open A-model)?

- Limit large base/small fiber coincides with *triple tangency* between discriminant and large base divisor
- Consider small 3-sphere around tangency [Aspinwall'01]

This implies the relation

$$U = T_b^{-1} \cdot C \cdot T_b^{-1} \cdot C \cdot T_b^{-1} \cdot C \cdot T_b^3.$$

How does this look in the B-model (open A-model)?

- Limit large base/small fiber coincides with *triple tangency* between discriminant and large base divisor
- ✤ Consider small 3-sphere around tangency [Aspinwall'01]

This implies the relation

$$U = T_b^{-1} \cdot C \cdot T_b^{-1} \cdot C \cdot T_b^{-1} \cdot C \cdot T_b^3.$$

Consider any genus fibration over \mathbb{P}^2 .

Denote by C the generic conifold monodromy and by T_b the action of a shift of the "base" B-field by $t \to t+1$.

Then

$$U = \ T_b^{-1} \cdot \ C \cdot \ T_b^{-1} \cdot \ C \cdot \ T_b^{-1} \cdot \ C \cdot \ T_b^3 \ .$$

[Cota,Klemm,TS'19]

Consider **any genus fibration** over \mathbb{F}_n , $n \in \mathbb{N}$. Denote by *C* the generic conifold monodromy and by T_i the action of a shift of the B-field by $t_i \to t_i + 1$.

Then

$$U = \left(T_1^{-1} \cdot C \cdot T_2^{-1} \cdot C \right)^2 \cdot T_1^2 \cdot T_2^2 .$$

 t_1 : volume of \mathbb{F}_n fiber, t_2 : volume of \mathbb{F}_n base [Cota,Klemm,TS'19]

What properties does this imply for Z_{top} ?

mirror

▶ Monodromies interpretable as *canonical transformations*

If C = 0, then $Z_{top}(\vec{t})$ is invariant under M! [Aganagic,Bouchard,Klemm'06], [Gunaydin,Neitzke,Pioline'06]

Which monodromies don't mix momenta and positions?

➡ Large volume monodromies

 $T: \tau \mapsto \tau + 1, \quad M_a: \ m_a \mapsto m_a + 1, \quad T_i: \ t_i \mapsto t_i + 1$

- \rightarrow Fourier expansion
- ➡ Generators of Weyl group [Katz,Morrison,Plesser'96], [Klemm,Mayr'96], [Horja'99], [Aspinwall'01], [Szendroi,02]
 → Weyl invariance
- Furthermore, $E_a = M_a \cdot U^{-1} \cdot M_a^{-1} \cdot U$ acts as

$$E_a: \begin{cases} \tau \quad \mapsto \quad \tau \\ m_i \quad \mapsto \quad m_i, \quad i=1,..., \operatorname{rk}(G), \ i \neq a \\ m_a \quad \mapsto \quad m_a + N \cdot \tau , \\ Q_i \quad \mapsto \quad \exp\left(\frac{N^2 \cdot \tau}{2} C_{aa}^i + N C_{(ab)}^i m^b\right) Q_i \end{cases}$$

 \rightarrow Elliptic transformation law!

Note: Elliptic fibrations with *torsional* sections have restricted $\Gamma_1(N)$ monodromy of fiber **complex structure** over base.

Conjecture:

[Klevers,Pena,Oehlmann,Piragua,Reuter'14], [Oehlmann,Reuter,T.S.'16] T-dualizing fiber exchanges torsional sections and multi-sections

Fiber cplx structure monodromy \leftrightarrow Monodromy of Kähler class?

How do we obtain the ansatz for the modular bootstrap on genus one fibrations with *N*-sections?
How do we obtain the ansatz for the modular bootstrap on genus one fibrations with *N*-sections?

By cheating!

Higgsing in F-theory relates $Z_{top.}$ s!

 $\tau \mapsto N \cdot \tau, \quad m \mapsto \tau$

Can use relations among Jacobi/modular forms to obtain ansatz

EXAMPLES

Engineering elliptic Calabi-Yau

see e.g. [Cvetic,Klevers,Piragua'13], [Klevers,Pena,Oehlmann,Piragua,Reuter'14]

- 1. Obtain family of tori via Batyrev construction
- 2. Promote coefficients to sections of line bundles over base
- ➡ Properties of the fibration can be "tuned"

Fibrations from fibers

Let us perform the modular bootstrap!

$$Z_{d_B,d_F} = \frac{\Delta_4^{2d_F + \frac{1}{2}d_B}}{\eta(2\tau)^{24d_F + 12d_B}} \frac{\phi_{d_B,d_F}(\tau,\lambda,m)}{\prod_{k_1=1}^{d_F} \phi_{-2,1}(2\tau,k_1\lambda) \prod_{k_2=1}^{d_B} \phi_{-2,1}(2\tau,k_2\lambda)}$$

$$\begin{split} \phi_F = & \frac{2}{9} \left(\Delta_4 \right)^2 \left[-8A^2g + AB \left(4g^2 + h \right) + B^2g \left(18g^2 - 5h \right) \right] \,, \\ \phi_B = & -2\sqrt{\Delta_4}g \,, \\ \phi_{2B} = & \frac{\Delta_4}{288} \left[16A^2g^2 + 8ABg \left(h - 2g^2 \right) + B^2h \left(3h - 11g^2 \right) \right] \,, \\ \phi_{B+F} = & \frac{\left(\Delta_4 \right)^{\frac{5}{2}}}{216} \left[8A \left(8C^2g^2 - CDg \left(4g^2 + h \right) - D^2g^2 \left(18g^2 - 5h \right) \right) \right. \\ & \left. B \left(-4C^2g \left(4g^2 + 33h \right) + 8CD \left(-4g^4 + 14g^2h + h^2 \right) \right. \\ & \left. - D^2g \left(4g^4 - 331g^2h + 91h^2 \right) \right) \right] \,, \end{split}$$

G

$$\begin{split} A = &\phi_{0,1}(2\tau,\lambda) , \quad B = \phi_{-2,1}(2\tau,\lambda) , \\ C = &\phi_{0,1}(2\tau,m) , \quad D = \phi_{-2,1}(2\tau,m) , \quad g = E_2^{(2)}(\tau) , \quad h = E_4(\tau) . \end{split}$$

$$Z_{d_B,d_F} = \frac{\Delta_4^{2d_F + \frac{1}{2}d_B}}{\eta(2\tau)^{24d_F + 12d_B}} \frac{\phi_{d_B,d_F}(\tau,\lambda,m)}{\prod_{k_1=1}^{d_F} \phi_{-2,1}(2\tau,k_1\lambda) \prod_{k_2=1}^{d_B} \phi_{-2,1}(2\tau,k_2\lambda)}$$

$$\stackrel{2}{\longrightarrow} \text{Expressions for } Z_{\beta=n\cdot B} \text{ can be refined}$$

$$\rightarrow E\text{-string } w/ \text{ Wilson lines}$$

$$\stackrel{\bullet}{\longrightarrow} \text{Expressions for } Z_{\beta=n\cdot F} \text{ can be matched}$$
with one-loop calculation in heterotic strings on $(K3 \times T^2)/\mathbb{Z}_2$

$$\stackrel{\bullet}{\longrightarrow} Z_{\beta=n\cdot B+m\cdot F} \text{ gives non-perturbative prediction!}$$

$$\begin{aligned} A &= \phi_{0,1}(2\tau,\lambda) , \quad B &= \phi_{-2,1}(2\tau,\lambda) , \\ C &= \phi_{0,1}(2\tau,m) , \quad D &= \phi_{-2,1}(2\tau,m) , \quad g = E_2^{(2)}(\tau) , \quad h = E_4(\tau) . \end{aligned}$$

Relation between $F_{10} \to \mathbb{P}_2$ and $F_6 \to \mathbb{P}_2$

 $F_{10} \to \mathbb{P}_2$

- Genus g=10 curve of I_2 fibers
- •• n = 72 isolated fibral curves \rightarrow fundamental matter
- 101 polynomial + 10 non-polynomial c.s. deformations

 $F_6 \to \mathbb{P}_2$

- ✤ No fibral divisors but two sections
- **2g-2=18** charge two loci, 2n = 144 charge one loci
- •• 111 polynomial + 0 non-polynomial c.s. deformations

Toric manifestation of discussion in [Katz,Morrison,Plesser'96]

Ansatz $F_4 \to \mathbb{P}^2$:

$$Z_{d}(\tau,\lambda) = \frac{\Delta_{4}^{3d}}{\eta(2\tau)^{36d}} \frac{\phi_{d}(\tau,\lambda)}{\prod_{k=1}^{d} \phi_{-2,1}(2\tau,k\lambda)}$$
$$\phi_{1}(\tau,\lambda) = 192 \left[12 \left(E_{2}^{(2)} \right)^{2} + E_{4} \right]$$

$$E_2^{(N)}(\tau) = -\frac{1}{N-1} \partial_\tau \log\left(\frac{\eta(\tau)}{\eta(N\tau)}\right), \quad \Delta_4(\tau) = \frac{1}{192} \left(E_4(\tau) - E_2^{(2)}(\tau)^2\right)$$

$$\begin{split} \phi_2(\tau,\lambda) &= \frac{32}{9} A^4 \cdot \left(12g^2 + h\right)^2 + A^3 B \frac{4}{27} g \left(1072g^4 - 7832g^2 h - 797h^2\right) \\ &\quad - \frac{1}{54} A^2 B^2 \cdot \left(4g^2 - h\right) \left(25504g^4 + 6924g^2 h + 227h^2\right) \\ &\quad + AB^3 \cdot \frac{g \left(1425683g^6 + 7311527g^4 h - 733303g^2 h^2 - 154563h^3\right)}{1728} \\ &\quad + B^4 \cdot \frac{2550099g^8 - 20848992g^6 h + 2131870g^4 h^2 + 885304g^2 h^3 + 8887h^4}{6912} , \\ A &= \phi_{0,1}(2\tau,\lambda) \,, \quad B = \phi_{-2,1}(2\tau,\lambda) \,, \quad g = E_2^{(2)}(\tau) \,, \quad h = E_4(\tau) \,. \end{split}$$

How does this relate to Heterotic strings?

- 1. Heterotic on $K3 \times T^2$ dual to Type IIA on CY 3-fold [Kachru, Vafa'95]
- 2. Dualities of Heterotic strings on $K3 \times T^2$ contain $SL(2,\mathbb{Z})$
- 3. Realized as monodromies of dual Calabi-Yau [Klemm,Lerche,Mayr'95]
- 4. Dualities of Het. strings on $(K3 \times T^2)/\mathbb{Z}_N$ contain $\Gamma_1(N)$
- \rightarrow Dual CY should be genus one fibration with N-sections

For N = 2 we use modular bootstrap for genus one fibrations to perform all order checks against heterotic calculation by [Chattopadhyaya,David'16]

- Related absolute and relative conifold monodromy for *any* genus one fibration over \mathbb{P}^2 , $\mathbb{F}_{n \in \mathbb{N}}$
- ◆ Derived elliptic transformation law for Z_{top}.
 w.r.t. geometric elliptic parameters
- Generalized modular bootstrap to genus one fibrations with *N*-sections
- Obtained new Type II duals to heterotic compactifications on $(K3 \times T^2)\mathbb{Z}_2$
- Using modular bootstrap, performed all order checks against heterotic one-loop amplitudes

- What about genus one fibrations with N-sections, N > 4? More generators for $\Gamma_1(N)$ and modularity of $Z_{\beta=0}$ puzzling Potential source of swampland?
- BPS spectra of twisted compactifications of 6d SCFTs [Bhardwaj,Jefferson,Kim,Tarazi,Vafa'19]
- Find heterotic duals for N > 2

Thank you for your attention!