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WIMP non-directional direct detection:
WIMP’s interact coherently with nuclei in the detector, which recoil
with energy 𝐸𝑅
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Elements of the direct detection event rate
Event rate: events/(unit mass of detector)/(keV of recoil energy)/day

𝑑𝑅
𝑑𝐸𝑅

= ൑
𝑇 ച𝑣>𝑣𝑚𝑖𝑛

𝑁𝑇 × 𝑑𝜎𝑇
𝑑𝐸𝑅

× 𝑛𝑣𝑓( ⃗𝑣, 𝑡)𝑑3𝑣

-𝐸𝑅: nuclear recoil energy
- T: each target nuclide (elements and isotopes)
- 𝑁𝑇 = 𝐶𝑇 /𝑀𝑇 = Number of nuclides T in the detector = (mass fraction × Number of nuclides
T per unit target mass);

- 𝑣𝑚𝑖𝑛 min WIMP speed to impart 𝐸𝑅 to the target 𝑇 , 𝑣𝑚𝑖𝑛(𝐸𝑅) = 1
√2𝑀𝑇 𝐸𝑅

|
|
||
𝑀𝑇 𝐸𝑅

𝜇𝑇
+ 𝛿

|
|
||

- 𝜇𝑇 = 𝑚𝑀𝑇 /(𝑚 + 𝑀𝑇 ), reduced mass

-𝜌 = 𝑛𝑚, 𝑓( ⃗𝑣, 𝑡): local DM density and ⃗𝑣 distribution depend on halo model.
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The recoil rate 𝑑𝑅/𝑑𝐸𝑅 is not directly accessible to experiments, they
observe only a proxy 𝐸′ for the recoil energy 𝐸𝑅 with 𝐸′-dependent energy resolutions/efficiencies.
Observed event rate:

𝑑𝑅
𝑑𝐸′ = 𝜀(𝐸′) ച

∞

0
𝑑𝐸𝑅 ൑

𝑇
𝐺𝑇 (𝐸𝑅, 𝐸 ′) 𝑑𝑅𝑇

𝑑𝐸𝑅
- 𝐸′: detected energy (in keVee or number of PE), 𝐶𝑇 : mass fraction in target nuclide 𝑇 ;
- 𝜀(𝐸′): counting efficiency or cut acceptance; 𝐺𝑇 (𝐸𝑅, 𝐸 ′): energy response function

𝑑𝑅𝑇
𝑑𝐸𝑅

= 𝐶𝑇
𝑀𝑇 ച𝑣>𝑣𝑚𝑖𝑛

𝑑𝜎𝑇
𝑑𝐸𝑅

× 𝜌
𝑚𝑣𝑓( ⃗𝑣, 𝑡)𝑑3𝑣

Elements of the rate: Each with its own uncertainties
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Elements of the Event Rate

How does the DM particle couple to the nuclei?

- Starting with fundamental interactions, DM particles couple to quarks/gluons,
then pass from quarks/gluons to protons and neutrons, then to nuclei
- besides the DM mass 𝑚, this is the only input of Particle Physics
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Cross sections can be very different: e.g. SI and Magnetic Dipole
𝑑𝜎𝑆𝐼

𝑇
𝑑𝐸𝑅

= 𝜎𝑆𝐼
𝑟𝑒𝑓

|ඒ𝑞𝑟𝑒𝑓 |4
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𝑇
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|ඒ𝑞𝑟𝑒𝑓 |2

𝑀4
𝑚2

𝑇
4𝑣2𝜇2

𝑁
ඁ𝑍2

𝑇 ඳ4𝑣2| ⃗𝑞|2 − | ⃗𝑞|4඄
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𝑇

− 1
𝑚2

𝜒
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𝐸,𝑇 +2 | ⃗𝑞|4
𝑚2

𝑁

𝜆2
𝑇

𝜆2
𝑁 ඳ

𝐽𝑇 + 1
3𝐽𝑇 ප 𝐹𝑀,𝑇 ං

Rates can be very different than for SI Fig. from Gluscevic et al. 1506.04454
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Elements of the Event Rate in Direct DM detection

How many DM particles are passing through the detector and with which velocity
distribution?

The usually assumed Standard Halo Model is a good first approximation but not
expected to be correct. Uncertainty in measurements of key parameters, and
Earth could be within a DM clump, or streams, and maybe a dark disk and there
are debris flows, triaxiality....
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Standard Halo Model (SHM) The of halo models

- 𝜌𝑆𝐻𝑀 = 0.3+0.2
−0.1 GeV/cm3 local Dark Matter density

- 𝑓(𝑣, 𝑡): Maxwellian ⃗𝑣 distribution at rest with the Galaxy, 𝑣⊙ ≃220km/s, 𝑣𝑒𝑠𝑐 ≃500-650km/s

Expected annual modulation due to the max Galactic Earth velocity in late May-early June, min.
in Dec. (unless gravitational focussing from the Sun is important) (Drukier, Freese, Spergel 1986)
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...but triaxiality, debris flows, streams, dark disk... “DM particles” in
simulations have > 103 M⊙....

Avoid using a dark halo model to analyze Direct Detection data?
Lots of work done since 2010 on “Halo Independent” methods...
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“Halo-Independent”: Recall the event rate:
For a WIMP-nucleus contact differential cross section (for momentum transfer and velocity-
independent interaction operators) e.g. for Spin Independent interactions

𝑑𝜎𝑇
𝑑𝐸𝑅

= 𝜎𝑇 (𝐸𝑅) 𝑀𝑇
2𝜇2

𝑇 𝑣2 𝜎𝑇 (𝐸𝑅) ∼ 𝜎𝑟𝑒𝑓

𝑑𝑅
𝑑𝐸𝑅

= ൑
𝑇

𝜎𝑇 (𝐸𝑅)
2𝑚𝜇2

𝑇
𝜌𝜂(𝑣𝑚𝑖𝑛, 𝑡), 𝜂(𝑣𝑚𝑖𝑛, 𝑡) = ച𝑣>𝑣𝑚𝑖𝑛

𝑓( ⃗𝑣, 𝑡)
𝑣 𝑑3𝑣 = ച𝑣𝑚𝑖𝑛

𝐹(𝑣, 𝑡)
𝑣 𝑑𝑣

- 𝜌, 𝑓( ⃗𝑣, 𝑡): local DM density, Earth’s frame ⃗𝑣 distribution depend on halo model

“Halo-Dependent”: Given 𝜌𝜂(𝑣𝑚𝑖𝑛) plots in (𝑚, 𝜎𝑟𝑒𝑓) plane (usual)

“Halo-Independent”: Given 𝑚, 𝑑𝜎𝑇 /𝑑𝐸𝑅 plots in (𝑣𝑚𝑖𝑛, ̃𝜂(𝑣𝑚𝑖𝑛)) plane,
̃𝜂(𝑣𝑚𝑖𝑛, 𝑡) = 𝜎𝑟𝑒𝑓

𝑚 𝜌𝜂(𝑣𝑚𝑖𝑛, 𝑡)

contains all halo dependence in ANY experiment!
Fox, Liu, Weiner 1011.1915; Frandsen et al 1111.0292; Gondolo-Gelmini 1202.6359...
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for ANY interaction, energy resolutions, efficiencies...
Gondolo-Gelmini 1202.6359; Del Nobile, Gelmini, Gondolo and Huh, 1306.5273

We write the predicted observable rate for any cross section as

𝑅[𝐸′
1,𝐸′

2] = ച
∞

0
𝑑𝑣𝑚𝑖𝑛 ℛ[𝐸′

1,𝐸′
2](𝑣𝑚𝑖𝑛) ̃𝜂(𝑣𝑚𝑖𝑛, 𝑡)

ℛ[𝐸′
1,𝐸′

2] ∶ experiment and interaction
dependent response function
(non zero only for an interval in 𝑣𝑚𝑖𝑛 given a
measured energy interval [𝐸′

1, 𝐸 ′
2])

Proof: leave v integration for last and integrate by parts:

𝑅[𝐸′
1,𝐸′

2] = 𝐶 ച
∞

0
𝑑𝑣 ℋ[𝐸′

1,𝐸′
2](𝑣) 𝐹(𝑣, 𝑡) = 𝐶 ച

∞

0
𝑑𝑣𝑚𝑖𝑛 ℛ[𝐸′

1,𝐸′
2](𝑣𝑚𝑖𝑛) 𝜂(𝑣𝑚𝑖𝑛, 𝑡)
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Early halo Independent analysis
Gondolo-Gelmini 1202.6359, Del Nobile, Gelmini, Gondolo and Huh, 1306.5273

Rate measurements: just translated into weighted averages of the ̃𝜂 function:

𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
[𝐸′

1,𝐸′
2] = <พ𝜂[𝐸′

1,𝐸′
2] > ച

∞

0
𝑑𝑣𝑚𝑖𝑛 ℛ[𝐸′

1,𝐸′
2](𝑣𝑚𝑖𝑛)

<พ𝜂[𝐸′
1,𝐸′

2] >: weighted average of ̃𝜂 with weight ℛ[𝐸′
1,𝐸′

2](𝑣𝑚𝑖𝑛)
For both the average value over a year ീ𝜂0 and the annual modulation amplitude ീ𝜂1:
̃𝜂(𝑣𝑚𝑖𝑛, 𝑡) = ീ𝜂0(𝑣𝑚𝑖𝑛) + ീ𝜂1(𝑣𝑚𝑖𝑛) 𝑐𝑜𝑠[𝜔(𝑡 − 𝑡0)]; 𝑅(𝑡) = 𝑅0 + 𝑅1 𝑐𝑜𝑠[𝜔(𝑡 − 𝑡0)]

Upper limits: ̃𝜂 is a non decreasing function of 𝑣𝑚𝑖𝑛: the smallest
possible halo passing by ( ̂𝑣, ീ𝜂0) is ̃𝜂(𝑣𝑚𝑖𝑛) = ീ𝜂0Θ( ̂𝑣 − 𝑣𝑚𝑖𝑛). Thus,
compute the rate with this downward step ̃𝜂 function and ask for
this rate to be at most equal to the measured limit for ീ𝜂0 = ീ𝜂0

𝑙𝑖𝑚.

𝑅𝑙𝑖𝑚𝑖𝑡
[𝐸′

1,𝐸′
2] = ീ𝜂0

𝑙𝑖𝑚𝑖𝑡( ̂𝑣) ച
̂𝑣

0
𝑑𝑣𝑚𝑖𝑛 ℛ[𝐸′

1,𝐸′
2](𝑣𝑚𝑖𝑛)
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Halo Dependent vs Independent comparison for elastic SI IV
Del Nobile, Gelmini, Gondolo, Huh 1304.6183, 1311.4247, 1405.5582

LEFT: Part of the 90%CL CDMS-II-Si region survives all 90%CL limits.
RIGHT: 𝑚 = 9GeV. CDMS-II-Si rate small for CoGeNT/DAMA mod. CoGeNT annual mod.
compatible with zero at ≃ 1𝜎, with best fit phase of DAMA- Comparison of crosses and limits???
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Likelihood based “Halo Independent” data analysis:
1- Infer properties of the dark halo from Direct Detection data, e.g. for
the coefficients of the harmonic expansion of ̃𝜂(𝑣𝑚𝑖𝑛, 𝑡) (mostly its time average).

2- Determine the compatibility of different data by comparing their
inferred halo characteristics, e.g. for the time-averaged ̃𝜂(𝑣𝑚𝑖𝑛, 𝑡):
– putative measurements translate into regions in the (𝑣𝑚𝑖𝑛, ̃𝜂(𝑣𝑚𝑖𝑛)) plane,
– upper limits into upper limits on ̃𝜂(𝑣𝑚𝑖𝑛)

Main Problem: Likelihood methods are good for parameter estimation, but
here we want to estimate a function, ̃𝜂 or the local WIMP speed distribution
𝐹 which the predicted rates depend on (𝐶 = 𝜎𝑟𝑒𝑓 𝜌

𝑚 is a constant)

𝑅[𝐸′
1,𝐸′

2] = 𝐶 ച
∞

0
𝑑𝑣𝑚𝑖𝑛 ℛ[𝐸′

1,𝐸′
2](𝑣𝑚𝑖𝑛) 𝜂(𝑣𝑚𝑖𝑛, 𝑡) = 𝐶 ച

∞

0
𝑑𝑣 ℋ[𝐸′

1,𝐸′
2](𝑣) 𝐹(𝑣, 𝑡)

In 2014-15 solved the problem only for unbinned data (Extended Likelihood)
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All likelihoods depend on the dark halo velocity distribution
only through the predicted rates:
For experiments 𝛽 = 1, 2, … , 𝑛𝑢𝑛𝑏𝑖𝑛𝑛𝑒𝑑 with unbinned data, one can use an extended likelihood,

ℒ𝛽[ ̃𝜂] = 𝑒−𝜈𝛽[ ̃𝜂]
𝑁𝑂𝛽

൏
𝑗=1

(𝑀𝑇)𝛽 ඳ
𝑑𝑅𝛽
𝑑𝐸 ′ [ ̃𝜂] + 𝑑𝑅𝛽𝑏

𝑑𝐸′ ප
|
|
||𝐸′=𝐸′

𝑗

,

𝜈𝛽 = total number of expected events, 𝜈𝛽[ ̃𝜂] = (𝑀𝑇)𝛽(𝑅𝛽[ ̃𝜂])𝑡𝑜𝑡𝑎𝑙.

For experiments 𝛼 = 1, … , 𝑛𝑏𝑖𝑛𝑛𝑒𝑑, with binned data 𝛼, usually a Poisson or a Gaussian likelihood

ℒ𝛼[ ̃𝜂] =
𝑁𝑏𝑖𝑛−𝛼

൏
𝑗=1

(𝜈𝛼𝑗[ ̃𝜂] + 𝑏𝛼𝑗)𝑛𝛼𝑗

𝑛𝛼𝑗!
𝑒𝑥𝑝[−(𝜈𝛼𝑗[ ̃𝜂] + 𝑏𝛼𝑗)],

ℒ𝛼[ ̃𝜂] =
𝑁𝑏𝑖𝑛−𝛼

൏
𝑗=1

1
𝜎𝛼𝑗√2𝜋

𝑒𝑥𝑝[−(𝜈𝛼𝑗[ ̃𝜂] + 𝑏𝛼𝑗 − 𝑛𝛼𝑗)2/𝜎2
𝛼𝑗],

𝜈𝛼𝑗[ ̃𝜂] = number of events predicted in the bin 𝑗 of exp. 𝛼, 𝜈𝛼𝑗[ ̃𝜂] = (𝑀𝑇)𝛼𝑅𝛼𝑗[ ̃𝜂],
𝑅𝛼𝑗 = integrated predicted rate in the same bin, (𝑀𝑇)𝛼 = exposure of experiment 𝛼.
(In calculations we minimize 𝐿 = −2𝑙𝑛ℒ instead of maximizing ℒ)

IPMU, Nov 15, 2019 14



Graciela Gelmini-UCLA

Halo-Independent analysis as of 2015
Regions for putative DM (time averaged) rate measurements: With
unbinned data (e.g. three CDMS-II-Si events), using at least one extended
likelihood, we found (Fox, Kahn and McCullough 1403.6830; Gelmini, Georgescu, Gondolo
and Huh 1507.03902; Gelmini, Huh and Witte 1607.02445)

1 - a unique piecewise constant best fit ̃𝜂(𝑣𝑚𝑖𝑛) with a number of
downward steps ≤ number of data points, by extending to functionals
the Karush-Kuhn-Tucker (KKT) maximization conditions (Fox, Kahn and McCullough
1403.6830), and defined

2 -a statistically meaningful two-sided point-wise band at a chosen
CL. (Gelmini, Georgescu, Gondolo and Huh, 1507.03902)
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Karush-Kuhn-Tucker (KKT) conditions are first order necessary
conditions for an extremization problem with inequality conditions. They
generalize the method of Lagrange multipliers, which allows only equality
constraints.

Minimize 𝑓(𝑥) subject to 𝑔𝑖(𝑥) ≤ 0. Then one minimizes

𝐿(𝑥, 𝜇𝑖) = 𝑓(𝑥) + ∑
𝑖

𝜇𝑖𝑔𝑖(𝑥)

where 𝜇𝑖 are KKT multipliers and 𝜇𝑖 ≥ 0

Then, if 𝑥∗ is a local optimum,

∇⃗𝑓(𝑥∗) = ∑
𝑖

𝜇𝑖∇⃗𝑔𝑖(𝑥∗) i.e. and 𝜇𝑖𝑔𝑖(𝑥∗) = 0 for all 𝑖 are necessary conditions.

We extended this procedure for functions to functionals.
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Karush-Kuhn-Tucker (KKT) conditions to minimize 𝐿[ ̃𝜂] = −2 ℒ[ ̃𝜂]
Gelmini, Georgescu, Gondolo and Huh, 1507.03902, where 𝑞(𝑣𝑚𝑖𝑛) is the KKT multiplier
for the condition that ̃𝜂(𝑣𝑚𝑖𝑛) is non-increasing ( III ):

(I) 𝑞(𝑣𝑚𝑖𝑛) = ച
𝑣𝑚𝑖𝑛

𝑣𝛿
𝑑𝑣 𝛿𝐿

𝛿 ̃𝜂(𝑣)
(II) 𝑞(𝑣𝑚𝑖𝑛) ≥ 0

(III) ∀𝜀 > 0, ̃𝜂(𝑣𝑚𝑖𝑛 + 𝜀) ≤ ̃𝜂(𝑣𝑚𝑖𝑛)

(IV) 𝑞(𝑣𝑚𝑖𝑛)
𝜀→+0

̃𝜂(𝑣𝑚𝑖𝑛 + 𝜀) − ̃𝜂(𝑣𝑚𝑖𝑛)
𝜀 = 0 .

In 1507.03902 we proved that for an extended likelihood 𝑞(𝑣𝑚𝑖𝑛) has only at most
𝑁𝑂 (number of events observed) isolated zeroes, thus the ̃𝜂(𝑣𝑚𝑖𝑛) that minimizes
𝐿 is piece-wise constant with at most 𝑁𝑂 downward steps.
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CDMS three candidate events in Si (April14, 2013)
140.23 kg-day from July 2007 to Sep. 2008 in 8 Si detectors, expected background events < 0.7
(0.41+0.20

−0.08
+0.28
−0.24), 5.4% probability of being known backgrounds
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Extendent likelihood Halo Independent method: forbidden model
Fox, Kahn and McCullough 1403.6830; Gelmini, Georgescu, Gondolo and Huh, 1507.03902

LEFT: halo dependent Figs. from Del Nobile, Gelmini, Gondolo, Huh 1405.5582 RIGHT: halo independent

90%CL bounds and the 68% and 90%CL regions (Left) and confidence confidence bands (Right)
for CDMS-II-Si, 𝑚 = 9 GeV elastic SI and 𝑓𝑛/𝑓𝑝 = 1. No continuous part of the bands allowed
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Extendent likelihood Halo Independent method: allowed model
Fox, Kahn and McCullough 1403.6830; Gelmini, Georgescu, Gondolo and Huh, 1507.03902
LEFT: halo dependent Figs. from Gelmini, Georgescu, Huh 1404.7484 RIGHT: halo independent

90%CL bounds and the 68% and 90%CL regions and confidence bands for CDMS-II-Si, 𝑚 = 9
GeV elastic SI 𝑓𝑛/𝑓𝑝=−0.7. A continuous part of the bands (so any ̃𝜂 contained in it) is allowed
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Halo-Dependent and Independent analyses CDMS-II-Si data
inelastic exothermic DM with SI IV coupling, 𝛿= −225 keV Witte, Gelmini 1703.06892

LEFT: assuming the SHM RIGHT: Halo independent, m=1.1GeV
Can be ruled out by an LZ or PICO-250 like experiment (not XENON1T)
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We later extended this result Gelmini, Huh and Witte, 1607.02445 to a global likelihood
consisting of at least one extended likelihood (requires unbinned data) and an
arbitrary number of Gaussian or Poisson likelihoods (which use binned data):

- ̃𝜂(𝑣𝑚𝑖𝑛) that minimizes 𝐿 is piece-wise constant with at most 𝑁 downward
steps (N= number of data entries);

- this best fit ̃𝜂(𝑣𝑚𝑖𝑛) is unique (𝐿 does not have a degenerate minimum);

- we showed how to construct a two sided pointwise confidence band at any
desired confidence level,

We wanted to extend these results to any likelihood (e.g. with just binned data,
and to modulation data) and suspected that the ̃𝜂(𝑣𝑚𝑖𝑛) is always piecewise
constant, but we found that 𝑞(𝑣𝑚𝑖𝑛) may have extended zeroes and thus we
could not use KKT (IV) to prove the shape of ̃𝜂(𝑣𝑚𝑖𝑛).
Now comes the use of the convex hull...
Let us first concentrate on time-averaged rates (so no 𝑡 dependence)
IPMU, Nov 15, 2019 22
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A deeper understanding of Halo-Independent methods for
all Likelihoods Gelmini, Huh and Witte 1707.07019

Why a piecewise constant best fit ̃𝜂(𝑣𝑚𝑖𝑛) with the number of downward steps ≤
the number of data points????
Without making any assumption on 𝐹(𝑣), theorems in convex geometry
(Caratheodory, Fenchel-Eggleston) provide the answer: for d (time-averaged)
rate data points the DM speed distribution 𝐹(𝑣), normalized to 1, is

𝐹(𝑣) =
𝑑

൑
𝑛=1

𝐹𝑛 𝛿(𝑣 − 𝑣𝑛) 𝑤𝑖𝑡ℎ
𝑑

൑
𝑛=1

𝐹𝑛 = 1

Now we have at most 2d parameters 𝐹𝑛, 𝑣𝑛 to estimate using the Likelihood
and the integral ̃𝜂(𝑣𝑚𝑖𝑛) = 𝐶 ∫∞

𝑣𝑚𝑖𝑛
𝑑𝑣 𝐹(𝑣)/𝑣 is the sum of at most d step

functions Θ(𝑣𝑛 − 𝑣𝑚𝑖𝑛)

(A refinement I will not return to: because the rates are non negative, the
maximum number of steps is actually 𝑑 − 1)
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Convexity has to do with the maximization/minimization problem, i.e.
optimization.

A “convex set” of points is such that it includes all the points in a straight line
connecting any two points in the set. Each point in a straight line between ⃗𝑥
and ⃗𝑦 is given by

⃗𝑟 = 𝑎 ⃗𝑥 + 𝑏 ⃗𝑦

where 𝑎, 𝑏 are real non-negative numbers and 𝑎 + 𝑏 = 1. This is a “convex
combination” of ⃗𝑥 and ⃗𝑦.
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Convex hull of “generating” vectors of d-dimensions
Contains all “convex combinations” of them Gelmini, Huh, Witte 1707.07019

Discrete set of generating vectors ⃗𝑟𝑖: any vector in the hull is a “convex
combination” of them i.e. a linear combination ⃗𝑟 = ∑𝑛

𝑖=1 𝑎𝑖 ⃗𝑟𝑖 with
coefficients 𝑎𝑖 real non-negative and ∑𝑛

𝑖=1 𝑎𝑖 = 1

Notice: any ⃗𝑟 in the hull can be written as combination of
at most d+1 (here 3) generating vectors. (Caratheodory Theorem)
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Convex hull of “generating” vectors of d-dimensions
Contains all “convex combinations” of them Gelmini, Huh, Witte 1707.07019

Connected set of generating vectors ⃗𝑟(𝜆) (with a real parameter𝜆): any vector
in the hull is defined by ⃗𝑟 = ∫ ⃗𝑟(𝜆) 𝑎(𝜆) 𝑑𝜆 with ∫ 𝑎(𝜆) 𝑑𝜆 = 1
(Choquet theorem)
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Convex hull of “generating” vectors, of d-dimensions
Contains all “convex combinations” of them Gelmini, Huh, Witte 1707.07019

Connected set of generating vectors ⃗𝑟(𝜆) (with a real parameter𝜆): any vector
in the hull is defined by ⃗𝑟 = ∫ ⃗𝑟(𝜆) 𝑎(𝜆) 𝑑𝜆 with ∫ 𝑎(𝜆) 𝑑𝜆 = 1
Fenchel-Eggleston: any ⃗𝑟 in the hull can be written as combination of
at most d (here 2) generating vectors, i.e. ⃗𝑟 = ∑𝑑

𝑛=1 ⃗𝑟(𝜆𝑛)𝑎(𝜆𝑛)
Same as saying: 𝑎(𝜆) = ∑𝑑

𝑛=1 𝑎(𝜆𝑛)𝛿(𝜆 − 𝜆𝑛)
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Predicted Rates Let us write each rate (here integrated- but same for
differential) using the DM speed distribution, 𝐹(𝑣, 𝑡) (𝐶 = 𝜎𝑟𝑒𝑓 𝜌/𝑚, constant)

𝑅[𝐸′
1,𝐸′

2](𝑡) = 𝐶 ച
∞

0
𝑑𝑣 ℋ[𝐸′

1,𝐸′
2](𝑣) 𝐹(𝑣, 𝑡)

by integration by parts can be written as before

𝑅[𝐸′
1,𝐸′

2](𝑡) = ച
∞

0
𝑑𝑣𝑚𝑖𝑛 ℛ[𝐸′

1,𝐸′
2](𝑣𝑚𝑖𝑛) ̃𝜂(𝑣𝑚𝑖𝑛, 𝑡)

with
̃𝜂(𝑣𝑚𝑖𝑛, 𝑡) = 𝐶 ച

∞

𝑣𝑚𝑖𝑛
𝑑𝑣 𝐹(𝑣, 𝑡)

𝑣 , ℛ[𝐸′
1,𝐸′

2](𝑣) = 𝜕
𝜕𝑣ඁ𝑣ℋ[𝐸′

1,𝐸′
2](𝑣)ං

and consider just average rates for simplicity (so no 𝑡 dependence)
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With d data points, d predicted rates enter in the Likelihood. Consider these
rates as the d components of a rate vector 𝑅⃗. Each component has its kernel
ℋ, which we put in a kernel vector ൉ℋ, then, using the speed distribution 𝐹(𝑣)

𝑅⃗ = 𝐶 ച
∞

0
൉ℋ(𝑣) 𝐹(𝑣) 𝑑𝑣

𝐹(𝑣) ≡ 𝑣2 ∫ 𝑑Ω𝑣𝑓( ⃗𝑣) is normalized to 1: ∫∞
0 𝑑𝑣 𝐹(𝑣) = 1. This means

that all possible predicted rate vectors 𝑅⃗ form the convex hull of
the originating connected kernel vectors ൉ℋ(𝑣) (a set with one real
parameter 𝑣).

Fenchel-Eggleston says that all vectors in the hull can be written as a convex
combination of at most d kernel vectors 𝑅⃗ = ∑𝑑

𝑛=1
൉ℋ(𝑣𝑛) 𝐹(𝑣𝑛)

which amounts to writing our result,

𝐹(𝑣) =
𝑑

൑
𝑛=1

𝐹𝑛 𝛿(𝑣 − 𝑣𝑛), 𝑤𝑖𝑡ℎ 𝐹𝑛 = 𝐹(𝑣𝑛)
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Confidence and degeneracy bands for any Likelihood
Gelmini, Huh and Witte 1707.07019

In this way we can always find a best fit piecewise constant඾𝜂𝐵𝐹
but it may or may not be unique!
With at least one extended likelihood it is unique, and we can define
a confidence band at any CL.

With Gaussian and Poisson distributions only, it may or may not be
unique. If it is not, we can find a degeneracy band within which all
̃𝜂 functions maximize equally the Likelihood.
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Confidence and degeneracy bands
Define a two-sided pointwise band as the region filled by all possible ̃𝜂 functions
satisfying (here 𝐿 is the -2 log-likelihood)

Δ𝐿[ ̃𝜂] ≡ 𝐿[ ̃𝜂] − 𝐿min ≤ Δ𝐿∗

,with Δ𝐿∗ corresponding to a desired CL (we need to know the prob. distribution).

In practice: find the subset of ̃𝜂 functions which minimize 𝐿[ ̃𝜂] subject to the
constraint of passing by a particular point (𝑣∗, ീ𝜂∗) i.e. ̃𝜂(𝑣∗) = ീ𝜂∗.
If 𝐿𝑐

min(𝑣∗, ീ𝜂∗) is the minimum of 𝐿[ ̃𝜂] subject to the constraint,

Δ𝐿𝑐
min(𝑣∗, ീ𝜂∗) = 𝐿𝑐

min(𝑣∗, ീ𝜂∗) − 𝐿min ≤ Δ𝐿∗

If we find Δ𝐿∗ ≠ 0, we define a confidence band.
If we find solutions with Δ𝐿∗ = 0 this means that the best fit eta function is not
unique and define instead a degeneracy band.
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Confidence and degeneracy bands
If there is no degeneracy band, i.e. the best fit ̃𝜂 function is unique, Wilks
theorem can be applied. We prove this by discretizing in 𝑣𝑚𝑖𝑛.

Take 𝐾 discrete values in 𝑣min: (𝑣0
𝑚𝑖𝑛, … , 𝑣𝐾−1

𝑚𝑖𝑛 ). The constraint to pass by the point (𝑣∗, ീ𝜂∗) is
now 𝑣𝑘

𝑚𝑖𝑛 ≤ 𝑣∗ < 𝑣𝑘+1
𝑚𝑖𝑛 and ീ𝜂∗ = ീ𝜂𝑘 for some 𝑘, 0 ≤ 𝑘 ≤ 𝐾 − 1. Δ𝐿𝑐

min(𝑣∗, ീ𝜂∗) is replaced by the
function Δ𝐿𝑘,𝑐

min(ീ𝜂∗) with the index 𝑘 corresponding to 𝑣∗,

Δ𝐿𝑘,𝑐
min(ീ𝜂∗) = −2

෪
ℒ( ̂̂̃𝜂0, … , ̂̂̃𝜂𝑘−1, ീ𝜂𝑘 = ീ𝜂∗, ̂̂̃𝜂𝑘+1, … , ̂̂̃𝜂𝐾−1)

ℒ( ̂̃𝜂0, … , ̂̃𝜂𝑘, … , ̂̃𝜂𝐾−1) ෫
̂̂̃𝜂𝑖 are the ീ𝜂𝑖 which maximize ℒ subject to the constraint ീ𝜂𝑘 = ീ𝜂∗, ̂̃𝜂𝑖 maximize ℒ without it

Δ𝐿𝑘,𝑐
min(ീ𝜂∗) now defines the −2 of the profile likelihood ratio with one parameter (ീ𝜂𝑘), thus

by Wilks’ theorem the distribution of Δ𝐿𝑘,𝑐
min(ീ𝜂∗) approaches the chi-square

distribution with one degree of freedom in the limit where the data sample is very
large. This is not changed when we take the continuum limit 𝐾 → ∞. If so, Δ𝐿∗ = 1.0 (2.7)
correspond to the confidence intervals ̃𝜂 at 68 (90)% CL for each 𝑣𝑚𝑖𝑛 value.
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Fake binned data Best fit not unique- degeneracy band (green)
Δ𝐿 = 1.0 (darker yellow) and Δ𝐿 = 2.7 (lighter yellow) Gelmini, Huh, Witte 1707.07019
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Fake binned data Best fit unique- Confidence bands,
68%CL (Δ𝐿 = 1.0) darker purple, and 90%CL (Δ𝐿 = 2.7) (lighter purple)
Gelmini, Huh, Witte 1707.07019
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Formalism for modulation amplitudes Gelmini, Huh, Witte 1707.07019

actually for all coefficients of a harmonic expansion of the rate.

The theorems we use require the DM velocity distribution to be time independent: In the
Galactic frame 𝑓 𝑔𝑎𝑙( ⃗𝑢) does NOT depend on t, the (detector and particle
candidate dependent) kernel which defines the rate DOES depend on t

𝑅[𝐸′
1,𝐸′

2](𝑡) = ച 𝑑3𝑢 ℋ𝑔𝑎𝑙
[𝐸′

1,𝐸′
2]( ⃗𝑢, 𝑡) 𝑓 𝑔𝑎𝑙( ⃗𝑢)

Expand 𝑅(𝑡) and ℋ𝑔𝑎𝑙( ⃗𝑢, 𝑡) as a harmonic series in time with coefficients 𝑅𝑎 and
ℋ𝑔𝑎𝑙−𝑎( ⃗𝑢), 𝑎 = 0, 1.... For d data points on 𝑅𝑎 Fenchel-Eggleston gives

𝑓 𝑔𝑎𝑙( ⃗𝑢) =
𝑑

൑
ℎ=1

𝑓 𝑔𝑎𝑙−𝑎
ℎ 𝛿(3)( ⃗𝑢 −൉𝑢𝑎

ℎ)

We maximize the likelihood now with at most 4d parameters.
This is a sum of streams with negligible velocity dispersion.

IPMU, Nov 15, 2019 35



Graciela Gelmini-UCLA

Formalism for modulation amplitudes Gelmini, Huh, Witte 1707.07019

actually for all coefficients of a harmonic expansion of the rate.

Using a Galilean transformation to Earth’s frame ⃗𝑢 =൉𝑣⊙ +൉𝑣⊕(𝑡) + ⃗𝑣 we compute
the BEST FIT ̃𝜂(𝑣𝑚𝑖𝑛, 𝑡),

඾𝜂𝐵𝐹 (𝑣𝑚𝑖𝑛, 𝑡) ≡ 𝐶 ച| ⃗𝑣|≥𝑣𝑚𝑖𝑛
𝑑3𝑣 𝑓 𝑔𝑎𝑙(൉𝑣⊙ +൉𝑣⊕(𝑡) + ⃗𝑣)

𝑣

=
𝒩

൑
ℎ=1

𝐶 𝑓 𝑔𝑎𝑙−𝑎
ℎ

|൉𝑢𝑎
ℎ −൉𝑣⊙ −൉𝑣⊕(𝑡)|Θ(|൉𝑢𝑎

ℎ −൉𝑣⊙ −൉𝑣⊕(𝑡)| − 𝑣𝑚𝑖𝑛) ,

which is piecewise constant only for fixed time t, and find its time-averaged඾𝜂𝐵𝐹
(which is NOT piecewise constant) and construct a band around it.

IPMU, Nov 15, 2019 36



Graciela Gelmini-UCLA

Example of඾𝜂𝐵𝐹 (𝑣𝑚𝑖𝑛, 𝑡) and its time average
at constant t it is piecewise constant, but its time average is not
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Example: two-bin 2013 DAMA modulation data, 2-6 and
6-14 eVee (preliminary) Δ𝐿 = 2.7 band
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Outlook
The Halo Independent method to compare data of different direct DM searches
is independent of the usual comparison in the 𝑚, 𝜎 plane which must be done
assuming a particular halo model.
It answers two questions under the assumption of a DM particle model:
1- What can we say about the local dark halo with (non-directional) DD data ?
2- How DD data from different experiments can be compared without assuming
any model for the local dark halo?

Finding that putative signals and limits yield compatible inferred halo features
when assuming a particular DM particle model and not others, would constitute
a clear indication that the signals come from DM and which model is right.

The method in now on a firm mathematical ground but still not mature to be
widely implemented. I believe that if there are DD signal, the method will be
adopted as complementary to the usual halo dependent.
Sure, what we most need are dark matter signals...
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.

EXTRA SLIDES
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Event rate 𝑅 in direct detection:
𝑑𝑅 = 𝑁𝑇 × 𝜎 × {flux of projectiles with speed 𝑣}

𝑁𝑇 = number of targets

𝜎= interaction cross section Thus 𝑁𝑇 ×𝜎= total area presented by targets to the projectiles

{Flux of projectiles with speed 𝑣} = {𝑣 𝑑𝑛(𝑣)}= {[𝑣 (𝑑𝑡 area) 𝑑𝑛(𝑣)]/ (area 𝑑𝑡)} = number of
projectiles with speed 𝑣 reaching the detector per unit time per unit area

𝑑𝑛(𝑣) = 𝑛𝑓( ⃗𝑣, 𝑡)𝑑3𝑣

with the velocity distribution 𝑓( ⃗𝑣, 𝑡) (and speed distribution 𝐹(𝑣, 𝑡) ≡ 𝑣2 ∫ 𝑑Ω𝑣𝑓( ⃗𝑣, 𝑡)) normalized
to 1:

ച 𝑓( ⃗𝑣, 𝑡)𝑑3𝑣 = ച 𝐹(𝑣, 𝑡)𝑑𝑣1

𝑛 is the total number density = number of projectiles per unit volume

IPMU, Nov 15, 2019 41



Graciela Gelmini-UCLA

In general a convex combination of a set of 𝐾 vectors൉𝑟(𝑗), is a linear combination

𝑅⃗ =
𝐾

൑
𝑗=1

𝑎𝑗൉𝑟(𝑗)

with real non-negative coefficients 𝑎𝑗 which sum to 1, i.e. ∑𝐾
𝑗=1 𝑎𝑗 = 1.

The “convex hull” of a set of vectors ൉𝑟(𝑗) (called “generating vectors”) is
the set of all convex combinations of these vectors, i.e. here the set of all 𝑅⃗.
If the dimension of the vectors 𝑅⃗ is 𝑛, the dimension 𝑑 of the hull is 𝑑 ≤ 𝑛.

Caratheodory theorem: any 𝑅⃗ in the convex hull of dim. 𝑑 of a generating set of
vectors belongs to the convex hull of at most (𝑑 + 1) of the generating vectors,
ie. any 𝑅⃗ can be written as the convex combination of at most (𝑑 + 1)
generating vectors (not necessarily fixed).

The Caratheodory theorem applies to the convex hull of any set of generating vectors. However,
if the generating vectors are a connected set, the Fenchel-Eggleston theorem
reduces the max. number of necessary generating vectors to be at most d.
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If the generating vectors are a connected set the index 𝑗 becomes a continuous
real positive variable, call it 𝑣 (Choquet theorem). The generating set is 𝑅⃗(𝑣)
and the most general convex combination of the generating set, instead of
𝑅⃗ = ∑𝐾

𝑗=1 𝜆𝑗൉𝑟(𝑗) with ∑𝐾
𝑗=1 𝜆𝑗 = 1 , becomes

𝑅⃗ = ച
∞

0
𝑑𝑣 𝑅⃗(𝑣)𝜆(𝑣)

with ∫∞
0 𝜆(𝑣)𝑑𝑣 = 1.

The set of all 𝑅⃗ constitute the convex hull the generating set 𝑅⃗(𝑣).

And the Fenchel-Eggleston theorem say that any 𝑅⃗ can be given as

𝑅⃗ =
𝑑

൑
ℎ=1

𝑅⃗(𝑣ℎ)𝜆ℎ

with ∑𝑑
ℎ=1 𝜆ℎ = 1, where 𝑑 ≤ 𝑛 and 𝑛 is the dimension of the vectors 𝑅⃗.
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Formalism for modulation amplitudes actually for all coefficients
of a harmonic expansion of the rate.

Main idea: go to Galactic frame so the DM velocity distribution 𝑓 𝑔𝑎𝑙( ⃗𝑢) does
NOT depend on t, it is the detector (thus the response function) which does.
Change LAB equation

𝑅𝑖(𝑡) = ച 𝑑3𝑣 ℋ𝑖( ⃗𝑣)𝑓( ⃗𝑣, 𝑡) 𝑤𝑖𝑡ℎ ℋ𝑖( ⃗𝑣) = 𝒞ℋ𝑖( ⃗𝑣)
𝑣

to the Galactic rest frame:

𝑅𝑖(𝑡) = ച 𝑑3𝑢 ℋ𝑔𝑎𝑙
𝑖 ( ⃗𝑢, 𝑡) 𝑓 𝑔𝑎𝑙( ⃗𝑢)

Writing 𝑅⃗(𝑡) and −→ℋ𝑔𝑎𝑙( ⃗𝑢, 𝑡) as a harmonic series in time with coefficients ൉𝑅𝑎 and−→ℋ𝑔𝑎𝑙−𝑎( ⃗𝑢), 𝑎 = 0, 1... and all ൉𝑅𝑎 are the convex hull of −→ℋ𝑔𝑎𝑙−𝑎( ⃗𝑢) (which now
have 3 parameters instead of 1).
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Formalism for modulation amplitudes actually for all coefficients
of a harmonic expansion of the rate. Thus Fenchel-Eggleston implies

൉𝑅𝑎 =
𝑑

൑
ℎ=1

−→ℋ𝑔𝑎𝑙−𝑎(൉𝑢ℎ) 𝑓 𝑔𝑎𝑙−𝑎
ℎ ,

𝑑

൑
ℎ=1

𝑓 𝑔𝑎𝑙−𝑎
ℎ = 1

𝑑 ≤ 𝑁 , where 𝑁 is the number of components of the vectors −→ℋ𝑔𝑎𝑙( ⃗𝑢, 𝑡).
Equivalently, the Galactic velocity distribution can be written as a sum of at
most 𝑑 delta functions in Galactic velocity ⃗𝑢, namely streams with zero velocity
dispersion,

𝑓 𝑔𝑎𝑙( ⃗𝑢) =
𝑑

൑
ℎ=1

𝑓 𝑔𝑎𝑙−𝑎
ℎ 𝛿(3)( ⃗𝑢 −൉𝑢𝑎

ℎ)

Using a simple Galilean transformation, the best fit ̃𝜂(𝑣𝑚𝑖𝑛, 𝑡) at fixes t is again
piecewise constant, and we could construct a confidence band at any fixed t.
However, may be more useful to find the time average ̃𝜂 function (NOT piecewise
constant) and construct a band around it.

IPMU, Nov 15, 2019 47


