A Tower WGC from IR consistency

Stefano Andriolo

based on SA, D. Junghans, T. Noumi, G. Shiu 1802.04287

Kavli IPMU Tokyo University

20th September 2019

Outline

The Weak Gravity Conjecture (WGC)

Landscape and Swampland

The WGC (and CHC)

Infrared Consistency

Relation to WGC

WGC and dimensional reduction

The Lattice WGC

Tower WGC

Summary & Outlook

Observation: String Theory allows for enormous amount of different vacua ("Landscape")

- how to compactify, type/amount fluxes, how to put D-branes/localised objs...

[Vafa 0509212]

[Vafa 0509212]

Criteria to distinguish Swampland/Landscape?

Reviews: Brennan, Carta, Vafa 1711.00864 Vitv: Palti 1903.06239]

An effective field theory coupled to gravity:

ST: only scale=string scale, no free parameters

e.g. string coupling

$$g_s = e^{\phi}$$

IR: EFT parameters=field vevs

Reviews: Brennan, Carta, Vafa 1711.00864 Palti 1903.06239]

An effective field theory coupled to gravity:

ST: only scale=string scale, no free parameters

e.g. string coupling

$$g_s = e^{\phi}$$

IR: EFT parameters=field vevs

Rencent findings concern

Distance conjecture (new Physics from the boundaries

of moduli space)

[Ooguri, Palti, Shiu, Vafa 1810.05506]

(A)dS Conjecture(s)

Brane-y constraints

[Kim, Shiu, Vafa 1905.08261]

An effective field theory coupled to gravity:

No (exact) global symmetries [Matt Reece ICTP lectures 2019]

true in ST: all global symmetries turn out to be gauged [Banks, Dixon '88]
 true in theories with asymptotically AdS (holography)

[Harlow, Ooguri 1810.05338]

Q: More generically, is this true with any QG completion?

A: BH Physics

An effective field theory coupled to gravity:

No (exact) global symmetries [Matt Reece ICTP lectures 2019]

true in ST: all global symmetries turn out to be gauged [Banks, Dixon '88]
 true in theories with asymptotically AdS (holography)

[Harlow, Ooguri 1810.05338]

Q: More generically, is this true with any QG completion?

A: BH Physics

Rough arguments follow. Please bear with me!

No (exact) global symmetries

Suppose you have global symmetry (e.g.U(1)), and a particle charged under it (q)

Problems with infinite number of (semi-classically stable) charged remnants?

at lower energies we have to integrate out all these states: they contribute to renormalising Newton constant The problem is avoided if the symmetry is **gauged**:

charged BH solutions

$$ds^{2} = -f(r) dt^{2} + f(r)^{-1} dr^{2} + r^{2} d\Omega^{2}, \qquad f(r) = 1 - \frac{2M}{r} + \frac{2g^{2}Q^{2}}{r^{2}}$$

Extremality bound

 $M \geq \sqrt{2}gQM_P$ (Violation=naked singularities)

Below any given mass, there is a **finite** number of EBH's

$$N_{EBH} \sim \frac{M_0}{gM_p}$$

Maximum charge with M_0

 $\neg \neg r$

Problem solved!

The problem is avoided if the symmetry is **gauged**:

charged BH solutions

$$ds^{2} = -f(r) dt^{2} + f(r)^{-1} dr^{2} + r^{2} d\Omega^{2}, \qquad f(r) = 1 - \frac{2M}{r} + \frac{2g^{2}Q^{2}}{r^{2}}$$

Extremality bound

 $M \geq \sqrt{2}g Q M_P$ (Violation=naked singularities)

Below any given mass, there is a **finite** number of EBH's

$$N_{EBH} \sim \frac{M_0}{gM_p}$$

Problem solved!.....really??

The problem is avoided if the symmetry is **gauged**:

charged BH solutions

$$ds^2 = -f(r) dt^2 + f(r)^{-1} dr^2 + r^2 d\Omega^2$$
, $f(r) = 1 - \frac{2M}{r} + \frac{2g^2 Q^2}{r^2}$

Extremality bound

 $M \geq \sqrt{2}gQM_P$ (Violation=naked singularities)

Below any given mass, there is a **finite** number of EBH's

 $\neg \neg r$

$$N_{EBH} \sim \frac{M_0}{gM_p}$$

What about a gauge theory in the limit

For $g \rightarrow 0$ the problem is **recovered**!

Extremality bound

$$M \ge \sqrt{2gQM_P} \rightarrow 0$$

Below any given mass, there is a **infinite** number of BH's

$$N_{EBH} \sim \frac{M_0}{gM_p} \to \infty$$

Basically, switching off the coupling g corresponds to approaching the **GLOBAL** symmetry with its issues...

If we insist in having an EFT with finite $\,G_N\,$ and no naked singularities, Then it must be:

Impossible to take $g \rightarrow 0$?

but this seems valid in ST...

OR

If we insist in having an EFT with finite $\,G_N\,$ and no naked singularities, Then it must be:

Impossible to take $g \rightarrow 0$?

but this seems valid in ST...

OR

Something off with our understanding of BHs

(indeed above reasonings use the semi-classical approximation)

In such a case, they do not contribute to catastrophic renormalisation of G_N

In such a case, they do not contribute to catastrophic renormalisation of G_N

In particular, <u>Extremal</u> BH's must decay into charged object while remaining sub-extremal

In such a case, they do not contribute to catastrophic renormalisation of G_N

In particular, Extremal BH's must decay into charged object while remaining sub-extremal

(Sub-extremal BH "decay" into EBH via radiation, but EBH's are stable, need another decay process)

 $g(Q_{\text{ext}} - q) \le (M_{\text{ext}} - m)/M_{\text{Pl}} \le gq \ge m/M_{\text{Pl}}$

In such a case, they do not contribute to catastrophic renormalisation of G_N

In particular, Extremal BH's must decay into charged object while remaining sub-extremal

(Sub-extremal BH "decay" into EBH via radiation, but EBH's are stable, need another decay process)

→ require existence of a particle satisfying

The Weak Gravity Conjecture (WGC)

In any consistent EFT of gauge U(1) coupled to gravity There must exist a particle (m,q) with charge-mass ratio

In particular, it has to be true also for magnetic monopoles

$$m_{mag} \leq g_{mag} M_p \sim \frac{M_p}{g_{el}} \qquad \text{but we know} \qquad m_{mag} \sim \frac{1}{g_{el}^2} \qquad \text{ov cut-OFF}$$

The cutoff scale Λ of the effective theory is bounded from above approximately by the gauge coupling

 $\Lambda \lesssim g_{el} M_P$

 $z \equiv \frac{gqM_P}{2} \ge 1$

A posteriori, motivated by many examples in ST

WGC: The convex hull condition (CHC) In case we have **multiple U(1)'s**, obj can decay if their chargeto-mass ratio lies inside the convex hull (in the z-space) [Cheung, Remmen 1402.2287] (sub-)Extremal Black holes can decay if they lie inside the Convex Hull! $Z_{U(1)_2}$ $\vec{z_1} = (z_{11}, z_{12})$ Ex.: $U(1)^2$, 2 particles $\vec{z_2} = (z_{21}, z_{22})$ \vec{z}_2 $Z_{U(1)_1}$ Convex Hull is the region of **Extremal Black Holes** instability: any Z inside, decays $z_{EBH} = 1$

WGC: The convex hull condition (CHC) In case we have **multiple U(1)'s**, obj can decay if their chargeto-mass ratio lies inside the convex hull (in the z-space) [Cheung, Remmen 1402.2287] (sub-)Extremal Black holes can decay if they lie inside the Convex Hull! $Z_{U(1)_2}$ $\vec{z_1} = (z_{11}, z_{12})$ Ex.: $U(1)^2$, 2 particles $\vec{z_2} = (z_{21}, z_{22})$ \vec{z}_2 $Z_{U(1)_{1}}$ **Extremal Black Holes** $z_{EBH} = 1$ There are no states which can discharge Black Holes in the red regions!

recent directions:

1. how to evade WGC and realize axion inflation models

[De la Fuente et al '14, Bachlechner et al '15, Choi-Kim '15, Conlon-Krippendorf '16,...]

2. constraints on particle physics models (ex. neutrino masses)

[Ooguri-Vafa '16, Ibanez, MartinLozano-Valenzuela '17, Hamada-Shiu '17 ...]

3. better understanding & towards a proof of WGC

- lessons from string theory examples

[Brown et al '15, Heidenreich et al '15, Hebecker-Soler '17, Montero et al '17,...]

- use of AdS/CFT (holography)

[Nakayama-Nomura '15, Harlow '15, Benjamin et al '16, Montero et al '16, Montero '18,...]

- relation to positivity bounds

[Cheung-Remmen '14, Andriolo-Junghans-Noumi-Shiu '18, Hamada-Noumi-Shiu '18,...]

Positivity bounds (IR)

An EFT with HO operators = 4-derivative corrections

Eg.
$$\mathcal{L}_{1-loop} = \frac{M_P}{2}R - \frac{F^2}{4e^2} + CF^4 + \dots$$

is "IR consistent" i.e. respects:

causality

analyticity of S-matrix

if

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 0602178]

Causality - eg 3D

First, dualisation:
$$\mathcal{L}_1 = \frac{M_3}{2}R - \frac{(\partial \phi)^2}{2} + 4C(\partial \phi)^4 \qquad F \sim *d\phi$$

We want to study the the speed of propagation of fluctuations $\phi = \bar{\phi} + \varphi$ and require it is sub-luminal in any locally flat frame η_{ab}

i.e., we require
$$v \equiv \frac{k_0}{|\vec{k}|} < 1$$

Causality - eg 3D

First, dualisation:
$$\mathcal{L}_1 = \frac{M_3}{2}R - \frac{(\partial \phi)^2}{2} + 4C(\partial \phi)^4 \qquad F \sim *d\phi$$

We want to study the the speed of propagation of fluctuations $\phi = \overline{\phi} + \varphi$ and require it is sub-luminal in any locally flat frame η_{ab}

i.e., we require
$$v \equiv \frac{k_0}{|\vec{k}|}$$

1)

Compute the corrected EOMs, locally go to Fourier space and obtain (background-dependent) dispersion relation

< 1

 $(\eta_{ab} + 16C \ \overline{\partial_a \phi \partial_b \phi}) \ k^a k^b = 0$ True for any bg choice

Causality - eg 3D

First, dualisation:
$$\mathcal{L}_1 = \frac{M_3}{2}R - \frac{(\partial \phi)^2}{2} + 4C(\partial \phi)^4 \qquad F \sim *d\phi$$

We want to study the the speed of propagation of fluctuations $\phi = \overline{\phi} + \varphi$ and require it is sub-luminal in any locally flat frame η_{ab}

i.e., we require
$$v \equiv \frac{k_0}{|\vec{k}|} < 1$$

1)

Compute the corrected EOMs, locally go to Fourier space and obtain (background-dependent) dispersion relation

 $(\eta_{ab} + 16C \ \overline{\partial_a \phi \partial_b \phi}) \ k^a k^b = 0$ True for any bg choice

2) Simplest choice of bg: constant EM field $\overline{\partial_a \phi} = w_a = (w_0, \vec{w}) = const$

$$v = \frac{k_0}{|\vec{k}|} = 1 - 8C(w_0 - \vec{w} \cdot \hat{k})^2 \quad \longrightarrow \quad (C > 0)$$

Analyticity - eg 3D

Consider 4-pts photon scatterings

In the forward limit $\mathcal{M}(s,t) = 8C(s^2 + t^2 + u^2) \rightarrow \mathcal{M}(s) = 16Cs^2$ $t \rightarrow 0$

We can extract C from

Analyticity - 3D/4D

from

٠

Consider 4-pts photon scatterings

 $\mathcal{M}(s) = 16Cs^2$

 $16C = \oint_{\gamma} \frac{ds}{2\pi i} \frac{\mathcal{M}(s)}{s^3}$

Analyticity - 3D/4D

from

Consider 4-pts photon scatterings

$$16C = \oint_{\gamma} \frac{ds}{2\pi i} \frac{\mathcal{M}(s)}{s^3} = \left(\int_{-\infty}^{-s_0} + \int_{s_0}^{\infty} \right) \frac{ds}{2\pi i} \frac{\text{Disc}[\mathcal{M}(s)]}{s^3}$$

contour def
+ **analyticity**
+ Froissart bound

$$\boxed{s_0} \qquad \boxed{s_0} \qquad \boxed{s_0} \qquad \boxed{s_0}$$

The S-matrix is **analytical** along the real axis $|s| < s_0$, up to the lowest energy where on-shell intermediate states are created (= red discontinuities)

Analyticity - 3D/4D

from

Consider 4-pts photon scatterings

The S-matrix is **analytical** along the real axis $|s| < s_0$, up to the lowest energy where on-shell intermediate states are created (= red discontinuities)

[Cheung-Remmen '14]

YES!

Take 1-loop EFT obtained by integrating out charged matter

YES!

Setup (3d)

EFT multiple scalar/fermions charged under multiple U(1)'s

$$\Gamma = \int d^3x \sqrt{-g} \left[\frac{M_3}{2} R - \frac{1}{4} \sum_i F_i^2 \right] + \Gamma_{s/f} + H.O.$$

$$\Gamma_{\rm s} = \int d^3x \sqrt{-g} \sum_a \left(-|D_\mu \phi_a|^2 - m_a^2 |\phi_a|^2 \right)$$

$$\Gamma_{\rm f} = \int d^3x \sqrt{-g} \sum_a \bar{\psi}_a (-\Gamma^\mu D_\mu - m_a) \psi_a$$

$$H.O. = \sum_{ijkl} c_{ijkl} (F_i \cdot F_j) (F_k \cdot F_l) \qquad \begin{array}{l} \text{UV-Physics dof} \\ \text{(kept generic/unknown)} \end{array}$$

Setup (3d)

EFT multiple scalar/fermions charged under multiple U(1)'s

$$\Gamma = \int d^3x \sqrt{-g} \left[\frac{M_3}{2} R - \frac{1}{4} \sum_i F_i^2 \right] + \Gamma_{s/f} + \frac{H.O.}{\mathbf{UV}}$$

$$\Gamma_{\rm s} = \int d^3x \sqrt{-g} \sum_a \left(-|D_\mu \phi_a|^2 - m_a^2 |\phi_a|^2 \right)$$

$$\Gamma_{\rm f} = \int d^3x \sqrt{-g} \sum_a \bar{\psi}_a (-\Gamma^\mu D_\mu - m_a) \psi_a$$

$$H.O. = \sum_{ijkl} c_{ijkl} (F_i \cdot F_j) (F_k \cdot F_l)$$

UV-Physics dof (kept generic/unknown)

"Elephant in the room"...

Nonetheless, there is a **regime** where we can extract interesting results!

Setup (3d)

Integrating out matter, we obtain

$$\min(m_{a}) \qquad \Gamma_{1} = \int d^{3}x \sqrt{-g} \left[\frac{M_{3}}{2}R - \frac{1}{4} \sum_{i,j} \delta_{ij}F_{i} \cdot F_{j} + \sum_{i,j,k,l} C_{ijkl}(F_{i} \cdot F_{j})(F_{k} \cdot F_{l}) \right]$$

$$C_{ijkl}^{s} = c_{ijkl} + \sum_{a} \frac{1}{1920\pi |m_{a}|M_{3}^{2}} \left[\frac{7}{8} z_{ai} z_{aj} z_{ak} z_{al} + \frac{3}{2} z_{ai} z_{aj} \delta_{kl} - z_{ai} z_{ak} \delta_{jl} + \frac{1}{2} \delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} \right]$$

$$C_{ijkl}^{f} = c_{ijkl} + \sum_{a} \frac{1}{1920\pi |m_{a}|M_{3}^{2}} \left[z_{ai} z_{aj} z_{ak} z_{al} + z_{ai} z_{aj} \delta_{kl} - \frac{3}{2} z_{ai} z_{ak} \delta_{jl} - \frac{1}{2} \delta_{ij} \delta_{kl} + \frac{3}{2} \delta_{ik} \delta_{jl} \right]$$

$$Q_{g} \qquad Q_{g} \qquad Q_{g$$

- **single particle**, charged under **single U(1)**

$$C > 0 \begin{cases} \text{scalar:} \quad z^2 \left(z^2 + \frac{4}{7} \right) + \mathcal{O}_s(z^0) > 0 \\ \\ \text{fermion:} \quad z^2 \left(z^2 - \frac{1}{2} \right) + \mathcal{O}_f(z^0) > 0 \end{cases}$$

- **single particle**, charged under **single U(1)**

$$C > 0 \begin{cases} \text{scalar:} \quad z^2 \left(z^2 + \frac{4}{7} \right) + \mathcal{O}_s(z^0) > 0 & \longrightarrow & \text{trivial} \\ \\ \text{fermion:} \quad z^2 \left(z^2 - \frac{1}{2} \right) + \mathcal{O}_f(z^0) > 0 & \longrightarrow & z > \frac{1}{\sqrt{2}} \\ & \text{WGC!} \end{cases}$$

$$\mathcal{O}(z^{0}) \sim \underbrace{\operatorname{form}^{\mathsf{In the regime where } \mathcal{O}(z^{0}) \text{ is negligible}}_{\mathsf{In the regime where } \mathcal{O}(z^{0}) \sim \bullet 0$$

- more particles, multiple U(1)'s:

Several positivity conditions on

 C_{ijkl}

In some details:

 $\sum C_{(ij)(kl)} u_i v_j u_k v_l \ge 0$ ijkl

to be satisfied for **any** unit vector u, v

- more particles, multiple U(1)'s:

Several positivity conditions on

 C_{ijkl}

In some details:

$$\sum_{ijkl} C_{(ij)(kl)} u_i v_j u_k v_l \ge 0$$

to be satisfied for **any** unit vector u, v

E.g. with $U(1)^2$ i=1,2

 $HO = C_{1111}(\partial\phi_1)^4 + C_{2222}(\partial\phi_2)^4 + C_{1212}(\partial\phi_1 \cdot \partial\phi_2)^2 + C_{1122}(\partial\phi_1)^2(\partial\phi_2)^2$

if we take
$$u_i = v_i = \delta_i^{1(2)} \longrightarrow C_{1111} \ge 0 \ (C_{2222} \ge 0)$$

- more particles, multiple U(1)'s:

Several positivity conditions on

 C_{ijkl}

In some details:

$$\sum_{ijkl} C_{(ij)(kl)} u_i v_j u_k v_l \ge 0$$

to be satisfied for **any** unit vector u, v

E.g. with $U(1)^2$ i=1,2

 $HO = C_{1111}(\partial\phi_1)^4 + C_{2222}(\partial\phi_2)^4 + C_{1212}(\partial\phi_1 \cdot \partial\phi_2)^2 + C_{1122}(\partial\phi_1)^2(\partial\phi_2)^2$

$$\text{if we take} \quad u_i = \delta_i^1, \quad v_i = \delta_i^2 \quad \longrightarrow \quad C_{1212} \ge 0 \\ \end{array}$$

- more particles, multiple U(1)'s:

Several positivity conditions on

 C_{ijkl}

In some details:

$$\sum_{ijkl} C_{(ij)(kl)} u_i v_j u_k v_l \ge 0$$

to be satisfied for **any** unit vector u, v

E.g. with $U(1)^2$ i=1,2

 $HO = C_{1111}(\partial\phi_1)^4 + C_{2222}(\partial\phi_2)^4 + C_{1212}(\partial\phi_1 \cdot \partial\phi_2)^2 + C_{1122}(\partial\phi_1)^2(\partial\phi_2)^2$

if we take
$$u_i = \frac{\delta_i^1 + \delta_i^2}{\sqrt{2}}$$
 $v_i = \frac{\delta_i^1 - \delta_i^2}{\sqrt{2}} \longrightarrow C_{1111} + C_{2222} - 2C_{1122} \ge 0$

etc...

- more particles, multiple U(1)'s:

Several positivity conditions on

 C_{ijkl}

Strongest positivity conditions are given by mixed scatterings

Presence of **bifundamentals** is crucial for IR consistency

A stronger CHC (3d/4d)

Is the WGC **consistent** under dimensional reduction ? [B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

D dim: 1 particle, single U(1) $z_0 \ge 1$ WGC \checkmark

 $S^1_{(r)} \downarrow$

D-1 dim: KK tower, U(1)xU(1)_{KK} WGC (CHC)? **NOT** always! (problem $r \rightarrow 0$ limit)

Is the WGC **consistent** under dimensional reduction ? [B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

D dim: 1 particle, single U(1) $z_0 \ge 1$ WGC \checkmark

 $S^1_{(r)}$

For any value of z_0 there is some r_{min} below which the CHC is NOT satisfied!

Is the WGC **consistent** under dimensional reduction ? [B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

D dim: 1 particle, single U(1) $z_0 \ge 1$ WGC \checkmark

 $S^1_{(r)}$

D-1 dim: KK tower, U(1)xU(1)_{KK} WGC (CHC) ? **NOT** always! (problem $r \to 0$ limit)

Solutions ?

• Theory has a cut-off
$$\Lambda \leq \frac{1}{r_{min}}$$
 OR
• Theory has more particles, all satisfying $z \geq 1$

Is the WGC **consistent** under dimensional reduction ? [B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

D dim: 1 particle, single U(1) $z_0 \ge 1$ WGC \checkmark

 $S^1_{(r)}$

D-1 dim: KK tower, U(1)xU(1)_{KK} WGC (CHC) ? **NOT** always! (problem $r \to 0$ limit)

Solution:

A super-extremal particle z > 1 should exist for every charge in the charge lattice

Is the WGC **consistent** under dimensional reduction ? [B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

D dim: 1 particle, single U(1) $z_0 \ge 1$ WGC \checkmark

 $S^1_{(r)}$

D-1 dim: KK tower, U(1)xU(1)_{KK} WGC (CHC) ? **NOT** always! (problem $r \to 0$ limit)

Solution:

Lattice WGC

A super-extremal particle z > 1 should exist for every charge in the charge lattice

Can we see this by using **positivity bounds**?

4D EFT Einstein-Maxwell + single scalar/fermion (m,q) \longrightarrow 3D:

Theory of KK states charged under $U(1)^2=U(1)xU(1)_{KK}$

$$\vec{Z}_{(n)} = (z_F, z_{KK}) = \left(\frac{q}{\sqrt{m^2 + n^2/r^2}}, \frac{n}{\sqrt{m^2 r^2 + n^2}}\right)$$

In the small radius limit

- the lowest mode (n=0): $(z_F, z_{KK}) = (q/m, 0)$

- KK modes (n≠0): $(z_F, z_{KK}) \sim (0, 1)$

Absence of bifundamentals

How to recover IR consistency?

Tower-WGC*

Replace the 4D field with a **tower** of 4D fields Φ_l charged under U(1) with masses and charges (m_l, q_l) s.t. **bifundamental** contributions (at any r) saves IR cons.

(*in absence of fermions)

4D particles

Replace the 4D field with a **tower** of 4D fields Φ_l charged under U(1) with masses and charges (m_l, q_l) s.t. **bifundamental** contributions (at any r) saves IR cons.

(*in absence of fermions)

Tower-WGC*

there may be bifundamentals at small radii: IR-OK

Many other possibilities...(check case-by-case)

Tower-WGC

Replace the 4D field with a **tower** of 4D fields Φ_l charged under U(1) with masses and charges (m_l, q_l) s.t. bifundamental contributions (at any r) saves IR cons.

Conditions:

- There must exist particles with mass near the cut-off $m_l \lesssim \Lambda$
- Such particles must have $z_l \gtrsim \mathcal{O}(1)$
- In case the lightest particle has mass $m \ll r^{-1}, \Lambda$ then the number of particles in the tower is *at least* of order $(mr)^{-1}$

- TWGC is weaker than the LWGC

no counterexample + reminiscent of swampland distance conjecture!!!

Summary & Outlook

Important "take-away's"

Swampland/Landscape:

- Not all good-looking EFT's can be UV-completed in a theory of QG (as String Theory)

- pheno/cosmo model building: better check the EFT you are using is not in the Swampland

Swampland criteria: SDC, WGC, etc...

Weak Gravity Conjecture:

- EFT U(1) coupled to gravity requires existence of super-extremal particle (or CHC for multiple U(1)'s)

IR consistency:

- Causality, analyticity and unitarity constrain effective interactions

Summary & Outlook

Results & future directions

Relation IR consistency-WGC?

- clear connection when **UV contribution** to the EFT in a certain regime. Possibly, compute UV contributions and check...

- existence of **bifundamentals** is crucial in case of multiple U(1)'s:

in general: yields a stronger CHC

under KK reduction: implies the necessity of a tower of particles in the parent D-dimensional theory **(TWGC)**

TWGC is weaker than LWGC and agrees with literature

- Extension of IR consistency arguments to check axionic version of WGC (*in progress w/ Huang, Noumi, Ooguri, Shiu*)
- Relation to SDC, *Emergence*...?

Multiple U(1)'s in 3d (similarly in 4d)

The 1-loop $U(1)^{N}$ +gravity EFT is obtained by integrating out matter fields in

$$\begin{split} \Gamma &= \int d^3x \sqrt{-g} \bigg[\frac{M_3}{2} R - \frac{1}{4} \sum_i F_i^2 \bigg] + \Gamma_{s/f} + H.O. \\ &H.O. \sim \mathcal{O}(R^2) + \mathcal{O}(RF^2) + \mathcal{O}(F^4) \end{split}$$

via the heat kernel method...

One obtains the following HO 4-derivatives ops (to be added to H.O.)

Multiple U(1)'s in 3d (similarly in 4d)

Eventually, by field redefinitions, we can recast all the HO operators as

So finally one has:

$$\Gamma_{1} = \int d^{3}x \sqrt{-g} \left[\frac{M_{3}}{2}R - \frac{1}{4} \sum_{i,j} \delta_{ij}F_{i} \cdot F_{j} + \sum_{i,j,k,l} C_{ijkl} (F_{i} \cdot F_{j}) (F_{k} \cdot F_{l}) \right]$$

$$C_{ijkl}^{s} = c_{ijkl} + \sum_{a} \frac{1}{1920\pi |m_{a}| M_{3}^{2}} \left[\frac{7}{8} z_{ai} z_{aj} z_{ak} z_{al} + \frac{3}{2} z_{ai} z_{aj} \delta_{kl} - z_{ai} z_{ak} \delta_{jl} + \frac{1}{2} \delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} \right]$$

$$C_{ijkl}^{f} = c_{ijkl} + \sum_{a} \frac{1}{1920\pi |m_{a}| M_{3}^{2}} \left[z_{ai} z_{aj} z_{ak} z_{al} + z_{ai} z_{aj} \delta_{kl} - \frac{3}{2} z_{ai} z_{ak} \delta_{jl} - \frac{1}{2} \delta_{ij} \delta_{kl} + \frac{3}{2} \delta_{ik} \delta_{jl} \right]$$

Multiple U(1)'s in 3d (similarly in 4d)

Validity of 4-derivatives 1-loop expansion

