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Landscape and Swampland

Observation: String Theory allows for enormous amount of different vacua (“Landscape”) 

each vacuum gives a different QFT model at low energy

QFT 

QFT 

QFT 

QFT 

QFT 

- how to compactify, type/amount fluxes, how to put D-branes/localised objs…
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We can do phenomenology with any EFT  
pretending it is a LE manifestation  

of String Theory!
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Landscape and Swampland

We can do phenomenology with any EFT  
pretending it is a LE manifestation  

of String Theory!

Are you sure that any EFT  
can be UV-completed into String Theory ?

If an EFT comes from QG (ST), then it must 
inherit and manifest some particular QG 
(stringy) features, which are 
absent in a generic EFT!

[Vafa 0509212]

Aspirant
String 

Phenomenologist



Landscape and Swampland

EFT space

In other words, I believe the picture should be:

[Vafa 0509212]
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Landscape and Swampland

EFT space

In other words, I believe the picture should be:

[Vafa 0509212]

Landscape
(consistent theories of QG)

Swampland
(no QG completion)



Landscape and Swampland

EFT space

In other words, I believe the picture should be:

[Vafa 0509212]

Boundaries?

Criteria to distinguish 
Swampland/Landscape?



Swampland criteria (conjectures) [Reviews:  
Brennan, Carta, Vafa 1711.00864 

Palti 1903.06239]An effective field theory coupled to gravity:

No free parameters

ST: only scale=string scale,  
      no free parameters 

IR: EFT parameters=field vevs
e.g. string coupling

gs = e�



Swampland criteria (conjectures) [Reviews:  
Brennan, Carta, Vafa 1711.00864 

Palti 1903.06239]An effective field theory coupled to gravity:

No free parameters

Distance conjecture (new Physics from the boundaries 
of moduli space)

(A)dS Conjecture(s)

Brane-y constraints

[Obied, Ooguri, Spodyneiko, Vafa 1806.08362 ]

[Ooguri, Palti, Shiu, Vafa 1810.05506]

[Lust, Palti, Vafa 1906.05225 ]

[Kim, Shiu, Vafa 1905.08261]

ST: only scale=string scale,  
      no free parameters 

IR: EFT parameters=field vevs
e.g. string coupling

gs = e�

Rencent findings concern



No (exact) global symmetries

- true in ST: all global symmetries turn out to be gauged
- true in theories with asymptotically AdS (holography)

[Banks, Dixon ’88] 

[Matt Reece ICTP lectures 2019] 

Q: More generically, is this true with any QG completion ?

A: BH Physics

Swampland criteria (conjectures)

An effective field theory coupled to gravity:

[Harlow, Ooguri 1810.05338 ] 



No (exact) global symmetries

- true in ST: all global symmetries turn out to be gauged
- true in theories with asymptotically AdS (holography)

[Banks, Dixon ’88] 

[Matt Reece ICTP lectures 2019] 

Swampland criteria (conjectures)

An effective field theory coupled to gravity:

[Harlow, Ooguri 1810.05338 ] 

Q: More generically, is this true with any QG completion ?

A: BH Physics

Rough arguments follow. Please bear with me!



Suppose you have global symmetry (e.g.U(1)), and a particle charged under it (q)

[taken from  
Palti 1903.06239]

MP

Problems with infinite number of (semi-classically stable) charged remnants?

Semi-classically  
a BH evaporates

No (exact) global symmetries



MP

deep-IR: EFT with 
⇤ ⌧ MP

at lower energies we have to  
integrate out all these states: 
they contribute to renormalising 
Newton constant 

GN = 0

Problem at low energies…



The problem is avoided if the symmetry is gauged:

charged BH solutions

f(r) = 1� 2M

r
+

2g2Q2

r2

M �
p
2gQMP

M

Q

M0

(Violation=naked singularities)

Problem solved!

Below any given mass,  
there is a finite number of EBH’s

NEBH ⇠ M0

gMp

Extremality bound 

Maximum charge with M0
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Below any given mass,  
there is a finite number of EBH’s

(Violation=naked singularities)
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The problem is avoided if the symmetry is gauged:

f(r) = 1� 2M

r
+

2g2Q2

r2

M �
p
2gQMP

M

Q

M0

(Violation=naked singularities)

What about a gauge theory in the limit g ! 0

Below any given mass,  
there is a finite number of EBH’s

NEBH ⇠ M0

gMp

Extremality bound 

charged BH solutions



For                    the problem is recovered!

Extremality bound 

M

Q

M0

Below any given mass,  
there is a infinite number of BH’s

Basically, switching off the coupling g corresponds to 
approaching the GLOBAL symmetry with its issues…

! 1

M �
p
2gQMP 0

g ! 0

NEBH ⇠ M0

gMp



If we insist in having an EFT with finite               and no naked singularities, 
Then it must be: 

GN

Impossible to take                ?g ! 0 but this seems valid in ST…

OR



If we insist in having an EFT with finite               and no naked singularities, 
Then it must be: 

GN

Impossible to take                ?g ! 0 but this seems valid in ST…

OR

Something off with our understanding of BHs 

(indeed above reasonings use the semi-classical approximation)



not correct to use semi-classical description of BH’s up to           : 
Neglected quantum gravity effects may render BH’s unstable and decay! 

In such a case, they do not contribute to catastrophic renormalisation of         GN

MP



In particular, Extremal BH’s must decay into charged object while 
remaining sub-extremal

not correct to use semi-classical description of BH’s up to           : 
Neglected quantum gravity effects may render BH’s unstable and decay! 

In such a case, they do not contribute to catastrophic renormalisation of         GN

MP



EBH
BH’

(q,m)

(Q
ext

� q,M
ext

�m)

(Q
ext

,M
ext

= QgM
Pl

)

a particle

g(Q
ext

� q)  (M
ext

�m)/M
Pl

gq � m/MPl⇆

(Sub-extremal BH “decay” 
into EBH via radiation, but  
EBH’s are stable, need 
another decay process)

In particular, Extremal BH’s must decay into charged object while 
remaining sub-extremal
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Neglected quantum gravity effects may render BH’s unstable and decay! 

In such a case, they do not contribute to catastrophic renormalisation of         GN
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EBH
BH’

(q,m)

(Q
ext

� q,M
ext

�m)

(Q
ext

,M
ext

= QgM
Pl

)

a particle

g(Q
ext

� q)  (M
ext

�m)/M
Pl

gq � m/MPl⇆

→ require existence of a particle satisfying z ⌘ gqMP

m
� 1

WGC

zEBH

(Sub-extremal BH “decay” 
into EBH via radiation, but  
EBH’s are stable, need 
another decay process)

In particular, Extremal BH’s must decay into charged object while 
remaining sub-extremal

not correct to use semi-classical description of BH’s up to           : 
Neglected quantum gravity effects may render BH’s unstable and decay! 

In such a case, they do not contribute to catastrophic renormalisation of         GN

MP



The Weak Gravity Conjecture (WGC)

In any consistent EFT of gauge U(1) coupled to gravity  
There must exist a particle (m,q) with charge-mass ratio

In particular, it has to be true also for magnetic monopoles 

mmag  gmagMp ⇠ Mp

gel
but we know mmag ⇠ ⇤

g2el

UV CUT-OFF

NEW CUT-OFF below Mp
when weakly coupled gel ⌧ 1

z ⌘ gqMP

m
� 1

The cutoff scale Λ of the effective theory is bounded 
from above approximately by the gauge coupling ⇤ . gelMP

A posteriori, motivated by many 
examples in ST



~z1 = (z11, z12)

~z2 = (z21, z22)

WGC: The convex hull condition (CHC)

In case we have multiple U(1)’s, obj can decay if their charge-
to-mass ratio lies inside the convex hull (in the z-space)

Ex.: U(1)2, 2 particles

(sub-)Extremal Black holes can decay if they lie inside the Convex Hull!

zEBH = 1
Extremal Black Holes 

ZU(1)1

ZU(1)2
~z1

~z2

[Cheung, Remmen 
1402.2287]

Convex Hull is the region of 
instability: any Z inside, decays



~z1 = (z11, z12)

~z2 = (z21, z22)

WGC: The convex hull condition (CHC)

In case we have multiple U(1)’s, obj can decay if their charge-
to-mass ratio lies inside the convex hull (in the z-space)

Ex.: U(1)2, 2 particles

(sub-)Extremal Black holes can decay if they lie inside the Convex Hull!

There are no states which can discharge 
Black Holes in the red regions!

zEBH = 1
Extremal Black Holes 

ZU(1)1

ZU(1)2

~z1

~z2

~z1

~z2

[Cheung, Remmen 
1402.2287]



- relation to positivity bounds
[Cheung-Remmen ’14, Andriolo-Junghans-Noumi-Shiu ’18, Hamada-Noumi-Shiu ’18,…]

- use of AdS/CFT (holography)
[Nakayama-Nomura ’15, Harlow ’15, Benjamin et al ’16, Montero et al ’16, Montero ’18,…] 

[Brown et al ’15, Heidenreich et al ’15, Hebecker-Soler ’17, Montero et al ’17,…]

- lessons from string theory examples

3. better understanding & towards a proof of WGC

recent directions: 
1. how to evade WGC and realize axion inflation models

[De la Fuente et al ’14, Bachlechner et al ’15, Choi-Kim ‘15, Conlon-Krippendorf ’16,…]

[Ooguri-Vafa ’16, Ibanez, MartinLozano-Valenzuela ’17, Hamada-Shiu ’17 …]

2. constraints on particle physics models (ex. neutrino masses)



An EFT with HO operators = 4-derivative corrections

Eg.

is “IR consistent” i.e. respects: causality 

analyticity of S-matrix

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 0602178]

if

L1�loop

=
M

P

2
R� F 2

4e2
+ CF 4

C > 0

Positivity bounds (IR)

+...



Causality - eg 3D

First, dualisation: F ⇠ ⇤d�L1 =
M3

2
R� (@�)2

2
+ 4C(@�)4

We want to study the the speed of propagation of fluctuations  
and require it is sub-luminal in any locally flat frame         ⌘ab

� = �̄+ '

v ⌘ k0

|~k|
< 1i.e., we require



Causality - eg 3D

First, dualisation: F ⇠ ⇤d�L1 =
M3

2
R� (@�)2

2
+ 4C(@�)4

We want to study the the speed of propagation of fluctuations  
and require it is sub-luminal in any locally flat frame         ⌘ab

� = �̄+ '

v ⌘ k0

|~k|
< 1

(⌘ab + 16C @a�@b�) k
akb = 0 True for any bg choice

i.e., we require

1) Compute the corrected EOMs, locally go to Fourier space and  
obtain (background-dependent) dispersion relation



Causality - eg 3D

Simplest choice of bg: constant EM field

First, dualisation: F ⇠ ⇤d�L1 =
M3

2
R� (@�)2

2
+ 4C(@�)4

We want to study the the speed of propagation of fluctuations  
and require it is sub-luminal in any locally flat frame         ⌘ab

� = �̄+ '

v ⌘ k0

|~k|
< 1

Compute the corrected EOMs, locally go to Fourier space and  
obtain (background-dependent) dispersion relation

(⌘ab + 16C @a�@b�) k
akb = 0

@a� = wa = (w0, ~w) = const

True for any bg choice

v =
k0

|~k|
= 1� 8C(w0 � ~w · k̂)2 C > 0

i.e., we require

1)

2)



Analyticity - eg 3D

Consider 4-pts photon scatterings

t ! 0
M(s, t) = 8C(s2 + t2 + u2) ! M(s) = 16Cs2

IR from

 In the forward limit

We can extract C from



Consider 4-pts photon scatterings

IR from

16C =

I

�

ds

2⇡i

M(s)

s3
=

✓Z �s0

�1
+

Z 1

s0

◆
ds

2⇡i

Disc[M(s)]

s3
=

2

⇡

Z 1

s0

ds
ImM(s)

s3
> 0

Analyticity - 3D/4D

M(s) = 16Cs2



Consider 4-pts photon scatterings

IR from

16C =

I

�

ds

2⇡i

M(s)

s3
=

✓Z �s0

�1
+

Z 1

s0

◆
ds

2⇡i

Disc[M(s)]

s3
=

2

⇡

Z 1

s0

ds
ImM(s)

s3
> 0

    contour def 
+ analyticity
+ Froissart bound

The S-matrix is analytical along the real axis            ,  up to the lowest energy  
where on-shell intermediate states are created (= red discontinuities)

|s| < s0

Analyticity - 3D/4D



Consider 4-pts photon scatterings

IR from

16C =

I

�

ds

2⇡i

M(s)

s3
=

✓Z �s0

�1
+

Z 1

s0

◆
ds

2⇡i

Disc[M(s)]

s3
=

2

⇡

Z 1

s0

ds
ImM(s)

s3
> 0

    contour def 
+ analyticity
+ Froissart bound

   analyticity 
+ Schwarz reflection 
+ crossing symm

Opt Th
ImM(s) = s�(s)

The S-matrix is analytical along the real axis            ,  up to the lowest energy  
where on-shell intermediate states are created (= red discontinuities)

|s| < s0

C > 0

Analyticity - 3D/4D



Positivity bounds WGC ?

C > 0
f(z) > 0

bound for z ? 

[Cheung-Remmen ’14]



C > 0

YES!

Take 1-loop EFT obtained by integrating out charged matter

Conditions on

at each vertex = qg

C(z)

z

HO  ~ + …



YES!

Precisely.

[taken from “Dialogo sopra  
i due massimi sistemi del mondo”]

Wait a second!  
Did not we say that the WGC, as a Swampland criterium,  
is a feature dictated by UV Physics ?! 

Then how come you can extract something about it  
from IR Physics ??

. . . 

Let me explain…

Salviati

Sagredo

There is a caveat!



�s =

Z
d

3
x

p
�g

X

a

�
�|Dµ�a|2 �m

2
a|�a|2

�

�f =

Z
d

3
x

p
�g

X

a

 ̄a(��µ
Dµ �ma) a

H.O. =
X

ijkl

cijkl(Fi · Fj)(Fk · Fl)

⇤

� =

Z
d3x

p
�g


M3

2
R� 1

4

X

i

F 2
i

�
+ �s/f +H.O.

UV

UV-Physics dof
(kept generic/unknown)

EFT multiple scalar/fermions charged under multiple U(1)’s

Setup (3d)

Index notation: i,j,k,l       run over U(1)’s species 
a            runs over matter species



�s =

Z
d

3
x

p
�g

X

a

�
�|Dµ�a|2 �m

2
a|�a|2

�

�f =

Z
d

3
x

p
�g

X

a

 ̄a(��µ
Dµ �ma) a

H.O. =
X

ijkl

cijkl(Fi · Fj)(Fk · Fl)

⇤

� =

Z
d3x

p
�g


M3

2
R� 1

4

X

i

F 2
i

�
+ �s/f +H.O.

UV

UV-Physics dof
(kept generic/unknown)

“Elephant in the room”…

Nonetheless, there is a regime where       
we can extract interesting results!

EFT multiple scalar/fermions charged under multiple U(1)’s

Setup (3d)

UV



min(ma)

Integrating out matter, we obtain

�1 =

Z
d

3
x

p
�g

2

4M3

2
R� 1

4

X

i,j

�ijFi · Fj +
X

i,j,k,l

Cijkl(Fi · Fj)(Fk · Fl)

3

5

Setup (3d)



min(ma)

Integrating out matter, we obtain

�1 =

Z
d

3
x

p
�g

2

4M3

2
R� 1

4

X

i,j

�ijFi · Fj +
X

i,j,k,l

Cijkl(Fi · Fj)(Fk · Fl)

3

5

Cs
ijkl = cijkl +

X

a

1

1920⇡|ma|M2
3


7

8
zaizajzakzal +

3

2
zaizaj�kl � zaizak�jl +

1

2
�ij�kl + �ik�jl

�

Cf
ijkl = cijkl +

X

a

1

1920⇡|ma|M2
3


zaizajzakzal + zaizaj�kl �

3

2
zaizak�jl �

1

2
�ij�kl +

3

2
�ik�jl

�UV

qg

qg

qg
qg qg

qg

Setup (3d)



Implications:

z2
✓
z2 +

4

7

◆
+Os(z

0) > 0

z2
✓
z2 � 1

2

◆
+Of (z

0) > 0

scalar:

fermion:

C > 0

(
-  single particle, charged under single U(1)



Implications:

z2
✓
z2 +

4

7

◆
+Os(z

0) > 0

z2
✓
z2 � 1

2

◆
+Of (z

0) > 0

scalar:

fermion:

trivial

z >
1p
2

WGC!

C > 0

(
-  single particle, charged under single U(1)

In the regime where                 is negligible O(z0)

O(z0) ⇠
UV

+ 0



Implications:

Cijkl

Several positivity conditions on -  more particles, multiple U(1)’s:

In some details:
X

ijkl

C(ij)(kl)uivjukvl � 0

to be satisfied for any unit vector u, v



Implications:

Cijkl

Several positivity conditions on -  more particles, multiple U(1)’s:

In some details:
X

ijkl

C(ij)(kl)uivjukvl � 0

to be satisfied for any unit vector u, v

E.g. with U(1)2

if we take 

i=1,2

ui = vi = �1(2)i C1111 � 0 (C2222 � 0)

HO = C1111(@�1)
4 + C2222(@�2)

4 + C1212(@�1 · @�2)
2 + C1122(@�1)

2(@�2)
2



Implications:

Cijkl

Several positivity conditions on -  more particles, multiple U(1)’s:

In some details:
X

ijkl

C(ij)(kl)uivjukvl � 0

to be satisfied for any unit vector u, v

E.g. with U(1)2

if we take 

i=1,2

HO = C1111(@�1)
4 + C2222(@�2)

4 + C1212(@�1 · @�2)
2 + C1122(@�1)

2(@�2)
2

ui = �1i , vi = �2i C1212 � 0



Implications:

Cijkl

Several positivity conditions on -  more particles, multiple U(1)’s:

In some details:
X

ijkl

C(ij)(kl)uivjukvl � 0

to be satisfied for any unit vector u, v

E.g. with U(1)2 i=1,2

HO = C1111(@�1)
4 + C2222(@�2)

4 + C1212(@�1 · @�2)
2 + C1122(@�1)

2(@�2)
2

ui =
�1i + �2ip

2
vi =

�1i � �2ip
2

if we take C1111 + C2222 � 2C1122 � 0

etc…



Implications:

Cijkl

Several positivity conditions on -  more particles, multiple U(1)’s:

e.g.: U(1)xU(1)

Strongest positivity conditions are given by mixed scatterings

1 1

2 2

C1212 ⇠
X

a

a
a=matter field �a, a

ma, ~qa = (q1a, q2a)

scalar:

fermion:

C(12)(12) > 0

(

X

a

1

480⇡|ma|

z21az

2
2a �

3

8
z21a �

3

8
z22a

�
+Of (z

0) > 0

X

a

1

3840⇡|ma|

z21az

2
2a �

2

7
z21a �

2

7
z22a

�
+Os(z

0) > 0> 0

> 0

Presence of bifundamentals is crucial for IR consistency

O(z0) ! 0



Positivity 
conditions

1) CHC is satisfied, but alone is not enough

2) There must exist (at least) a bifundamental particle for any 
     (orthogonal) basis choice for the U(1)’s gauge fields 

A stronger CHC (3d/4d)

E.g., U(1)xU(1)
~z1

~z2

~z2

~z1

~z3



Is the WGC consistent under dimensional reduction ?
[B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

Dimensional reduction

z0 � 1D dim: 1 particle, single U(1) WGC

D-1 dim: KK tower, U(1)xU(1)KK WGC (CHC) ?            NOT always!

S1
(r)

(problem                limit)r ! 0



Is the WGC consistent under dimensional reduction ?
[B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

Dimensional reduction

z0 � 1D dim: 1 particle, single U(1) WGC

D-1 dim: KK tower, U(1)xU(1)KK WGC (CHC) ?            NOT always!

S1
(r)

(problem                limit)r ! 0

CHC m2
0r

2 � 1

4z20(z
2
0 � 1)

For any value of          there is some               below which the CHC is NOT satisfied!z0 rmin



Is the WGC consistent under dimensional reduction ?
[B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

Dimensional reduction

z0 � 1D dim: 1 particle, single U(1) WGC

D-1 dim: KK tower, U(1)xU(1)KK WGC (CHC) ?            NOT always!

S1
(r)

(problem                limit)r ! 0

Solutions ?
Theory has more particles, all satisfying z � 1

Theory has a cut-off ⇤  1

rmin
OR



Is the WGC consistent under dimensional reduction ?
[B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

Dimensional reduction

z0 � 1D dim: 1 particle, single U(1) WGC

D-1 dim: KK tower, U(1)xU(1)KK WGC (CHC) ?            NOT always!

S1
(r)

(problem                limit)r ! 0

A super-extremal particle             should exist for every charge in the charge latticez > 1

Lattice
WGC

Solution:



Is the WGC consistent under dimensional reduction ?
[B. Heidenreich, M. Reece, T. Rudelius 1509.06374]

Dimensional reduction

z0 � 1D dim: 1 particle, single U(1) WGC

D-1 dim: KK tower, U(1)xU(1)KK WGC (CHC) ?            NOT always!

S1
(r)

(problem                limit)r ! 0

A super-extremal particle             should exist for every charge in the charge latticez > 1

Lattice
WGC

Solution:

Can we see this by using positivity bounds ?



4D EFT Einstein-Maxwell + single scalar/fermion (m,q)              3D: 

Theory of KK states charged under U(1)2=U(1)xU(1)KK

~Z(n) = (zF , zKK) =

 
qp

m2 + n2/r2
,

np
m2r2 + n2

!

In the small radius limit

- the lowest mode (n=0):

- KK modes (n   0):≠

(zF , zKK) = (q/m, 0)

Absence of bifundamentals IR inconsistency

(zF , zKK) ⇠ (0, 1)



How to recover IR consistency?

4D theory has more particles

Theory has a cut-off preventing to achieve small radii…



Replace the 4D field with a tower of 4D fields         
charged under U(1) with masses and charges 
s.t. bifundamental contributions (at any r) saves IR cons.

�l
(ml, ql)Tower-WGC* 

(*in absence  
of fermions)
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Replace the 4D field with a tower of 4D fields         
charged under U(1) with masses and charges 
s.t. bifundamental contributions (at any r) saves IR cons.

�l
(ml, ql)Tower-WGC* 

(*in absence  
of fermions)

U(1)

U(1)KKn

(zF , zKK) =

 
qlp

m2
l + n2/r2

,
np

m2
l r

2 + n2

!

E.g.:

there may be bifundamentals at small radii: IR-OK

ml =
p

m2 + l2µ2 ql = (l + 1)q

µ(depending on     )

Many other possibilities…(check case-by-case)

4D
 p

ar
tic
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s



Replace the 4D field with a tower of 4D fields         
charged under U(1) with masses and charges 
s.t. bifundamental contributions (at any r) saves IR cons.

�l
(ml, ql)Tower-WGC 

- There must exist particles with mass near the cut-off   

- Such particles must have  

- In case the lightest particle has mass                                                
then the number of particles in the tower is at least of order  

ml . ⇤

zl & O(1)

(mr)�1
m ⌧ r�1,⇤

Conditions:

⇤

1

r

(
ml

TWGC is weaker than the LWGC

no counterexample  
+ reminiscent of swampland distance conjecture!!!



Summary & Outlook

Important “take-away’s”

Swampland/Landscape:

- Not all good-looking EFT’s can be UV-completed in a theory of QG 
(as String Theory)

- pheno/cosmo model building: better check the EFT you are using 
is not in the Swampland

# Swampland criteria: SDC, WGC, etc…

Weak Gravity Conjecture:

- EFT U(1) coupled to gravity requires existence of super-extremal 
particle (or CHC for multiple U(1)’s)

IR consistency:

- Causality, analyticity and unitarity constrain effective interactions



Summary & Outlook

Results & future directions

Relation IR consistency-WGC?

- clear connection when UV contribution to the EFT in a certain 
regime. Possibly, compute UV contributions and check…

- existence of bifundamentals is crucial in case of multiple U(1)’s:

# in general: yields a stronger CHC 

# under KK reduction: implies the necessity of a tower of 
particles in the parent D-dimensional theory (TWGC)

# TWGC is weaker than LWGC and agrees with literature

- Extension of IR consistency arguments to check axionic version 
of WGC  (in progress w/ Huang, Noumi, Ooguri, Shiu)

- Relation to SDC, Emergence…?





Multiple U(1)’s in 3d (similarly in 4d)

The 1-loop U(1)N+gravity EFT is obtained by integrating out matter fields in 

� =

Z
d3x

p
�g


M3

2
R� 1

4

X

i

F 2
i

�
+ �s/f +H.O.

via the heat kernel method…

One obtains the following HO 4-derivatives ops (to be added to H.O.)

Fi gi gj

gkgl

Fj

FkFl

F4

gi

gj

Fj

Fi

h ⇠ R1/2

h ⇠ R1/2

F2R R2

h ⇠ R1/2

h ⇠ R1/2 h ⇠ R1/2

h ⇠ R1/2

H.O. ⇠ O(R2) +O(RF 2) +O(F 4)



Multiple U(1)’s in 3d (similarly in 4d)

Eventually, by field redefinitions, we can recast all the HO operators as

F4,RF2,R2 (F2)2

TL E.E.(F 2)2

F 4

RF 2

Rµ⌫F
µ↵F ⌫

↵

Rµ⌫⇢�Fµ⌫F⇢�

R2

Rµ⌫R
µ⌫

Rµ⌫⇢�Rµ⌫⇢�

vanishing Weyl

3d identities

R,Rµ⌫ ⇠ F 2, Fµ↵F
↵

⌫

Rµ⌫⇢�(R,Rµ⌫)

F 4 ⇠ (F 2)2

So finally one has:

�1 =

Z
d

3
x

p
�g

2

4M3

2
R� 1

4

X

i,j

�ijFi · Fj +
X

i,j,k,l

Cijkl(Fi · Fj)(Fk · Fl)

3

5

Cs
ijkl = cijkl +

X

a

1

1920⇡|ma|M2
3


7

8
zaizajzakzal +

3

2
zaizaj�kl � zaizak�jl +

1

2
�ij�kl + �ik�jl

�

Cf
ijkl = cijkl +

X

a

1

1920⇡|ma|M2
3


zaizajzakzal + zaizaj�kl �

3

2
zaizak�jl �

1

2
�ij�kl +

3

2
�ik�jl

�



photon legs
weak field

Validity of 4-derivatives 1-loop expansion

⌧

gF g F
...

g g g gF F

^̂

...
g g

g g

F

F F

F

...

higher loops 
suppressed

higher points 
suppressed

qgF

m2
⌧ 1

↵ ⌘ qgp
m

⌧ 11

2

Multiple U(1)’s in 3d (similarly in 4d)

weak field

higher loops 
suppressed

higher points 
suppressed graviton legs

� ⌘ m

Mp
⌧ 1

R

m2
⌧ 1

R1/2 R1/2 R1/2 R1/2⌧ ...

^̂

...

...

R1/2 R1/2

R1/2

R1/2

3

4

self-consistentz T O(1)

z =
qg
p

Mp

m
=

↵p
�

↵  z  1p
�


