HobEx The Habitable Exoplanet Observatory

Exploring New Worlds – Understanding Our Universe

Alina Kiessling (JPL – Deputy Center Study Scientist) Scott Gaudi (OSU – Co-Community Chair) Sara Seager (MIT – Co-Community Chair) Bertrand Mennesson (JPL – Center Study Scientist) Keith Warfield (JPL – Study Manager)

Hober of The US Astrophysics Decadal Survey

New Worlds, New Horizons

For large space-based telescopes –

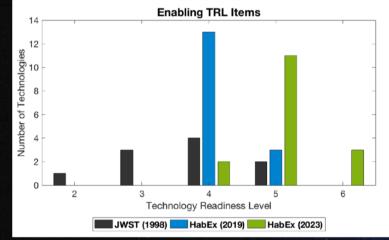
- Astro2000: James Webb Space Telescope (JWST) ~2021.
- Astro2010: Wide Field Infrared Survey Telescope (WFIRST), ~2025 (Jason Rhodes talk 4pm Sep 25th).
- Astro 2020: Habitable Exoplanet Observatory (HabEx; UV–near-IR) If prioritized, mid-to-late 2030's.
 - The other studies are:
 - Origins Space Telescope (OST; Far-IR)
 - Large UV, Optical, IR Telescope (LUVOIR; UV-near-IR)
 - Lynx (X-ray)

Hodbex ,

The HabEx Final Report

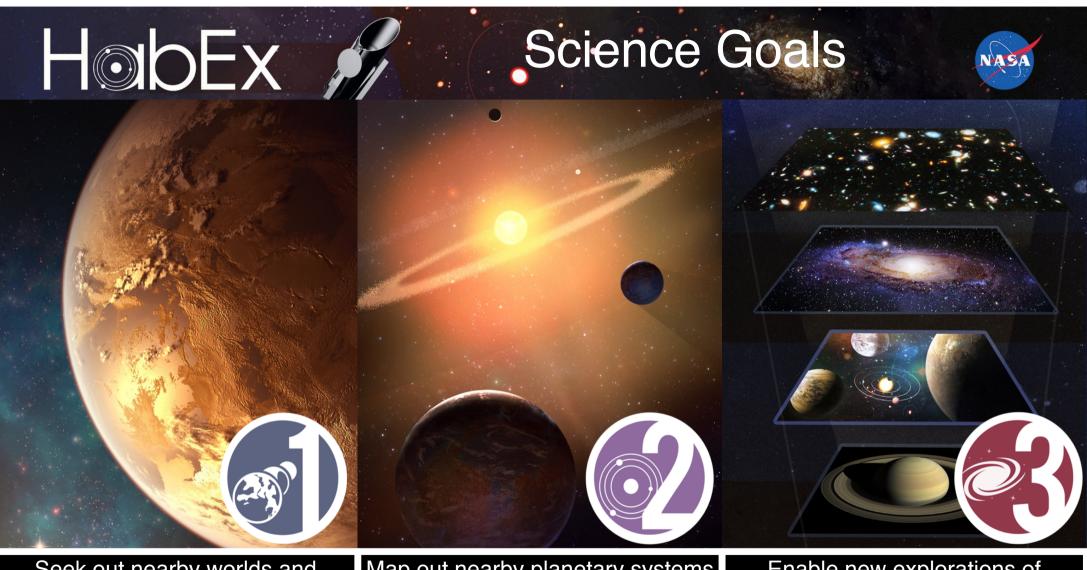
- 3.5 years
- 178 authors
- 9 architectures
- 552 pages

Exploring New Worlds, Understanding Our Universe


www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release.pdf

HobEx

Study Philosophy

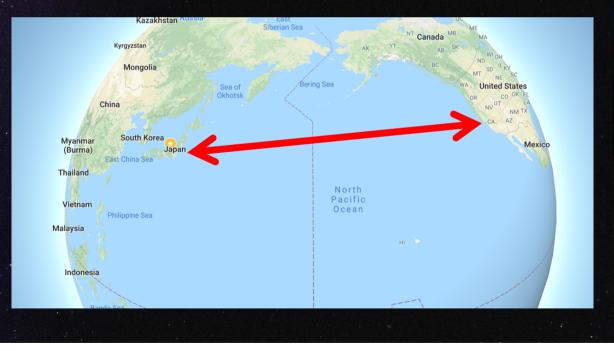

NASA: "Develop an exoplanet direct imaging mission"

- HabEx Team:
- Maximize
 - Science return for both
 - Exoplanet direct imaging
 - Astrophysics & cosmology

HabEx Team: *Minimize*

- Cost
- Risk
- Development schedule

Seek out nearby worlds and explore their habitability


Map out nearby planetary systems and understand their diversity.

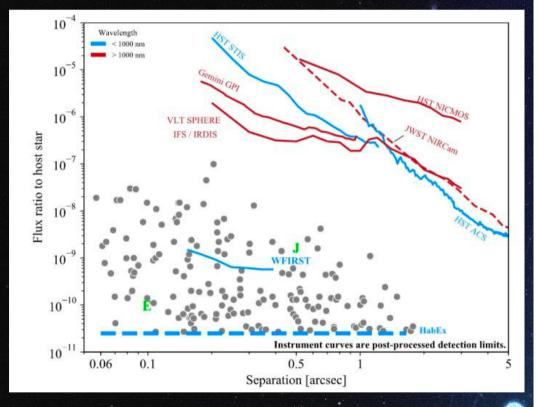
Enable new explorations of systems in the UV to near-IR

Exoplanet Direct Imaging

Seeing an exoplanet around a star is like trying to see a firefly near a spotlight in Los Angeles... when you are standing in Tokyo!

HobEx

Seeing an Earth-like exoplanet in the habitable zone around a sunlike star is like trying to see a firefly near ONE THOUSAND spotlights in Los Angeles... when you are in standing in Tokyo!


High Contrast Imaging and Spectroscopy

Contrast Ratio (exoplanet light to star light)

10⁻⁵ 1 part in 10,000

HodbEx

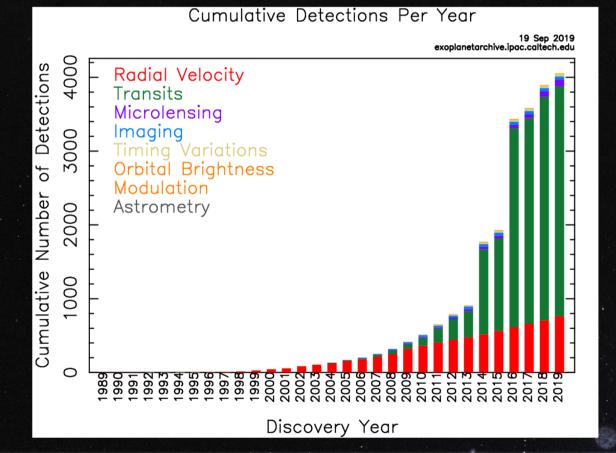
- What we can get from ground-based coronagraphs now
- 1 part in 1,000,000,000
- What WFIRST's coronagraph is being designed to achieve
- **x 10⁻¹⁰** 4 parts in 10,000,000,000
- What we have demonstrated in a lab for WFIRST
- 10⁻¹⁰ 1 part in 10,000,000,000
 - What HabEx's coronagraph is being designed to achieve (and what we need to see another Earth)

We have already found a lot of Exoplanets

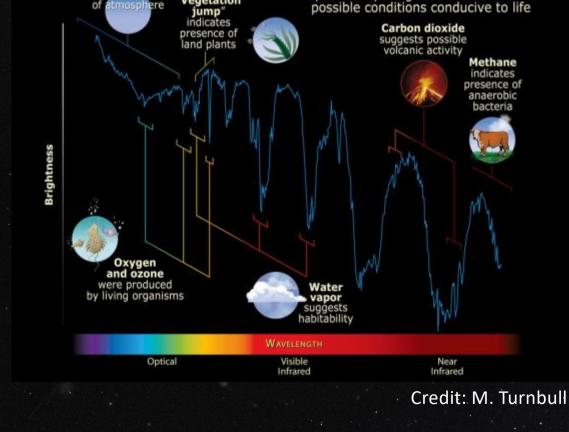
HobEx

Exoplanets:

Cumulative Detections by Discovery Year


1989-2018

Plots generated Sept. 27, 2018


We have already found a lot of Exoplanets

4055 as of 5 days ago!

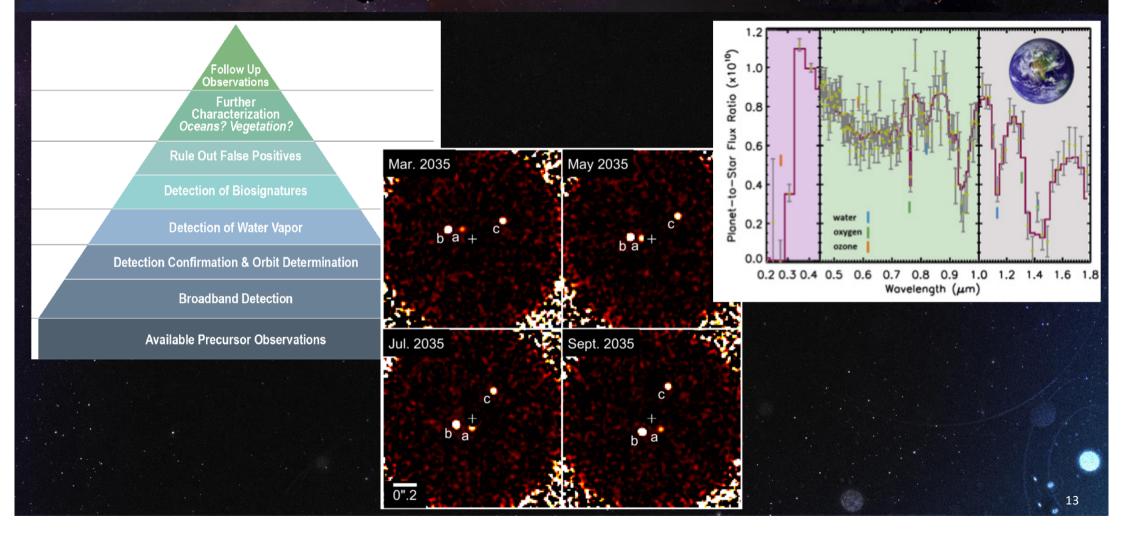
Hodbex

But we really want to find "Earth 2.0" "Blue of the sky" measures total amount of atmosphere" "Negetation indicates presence of

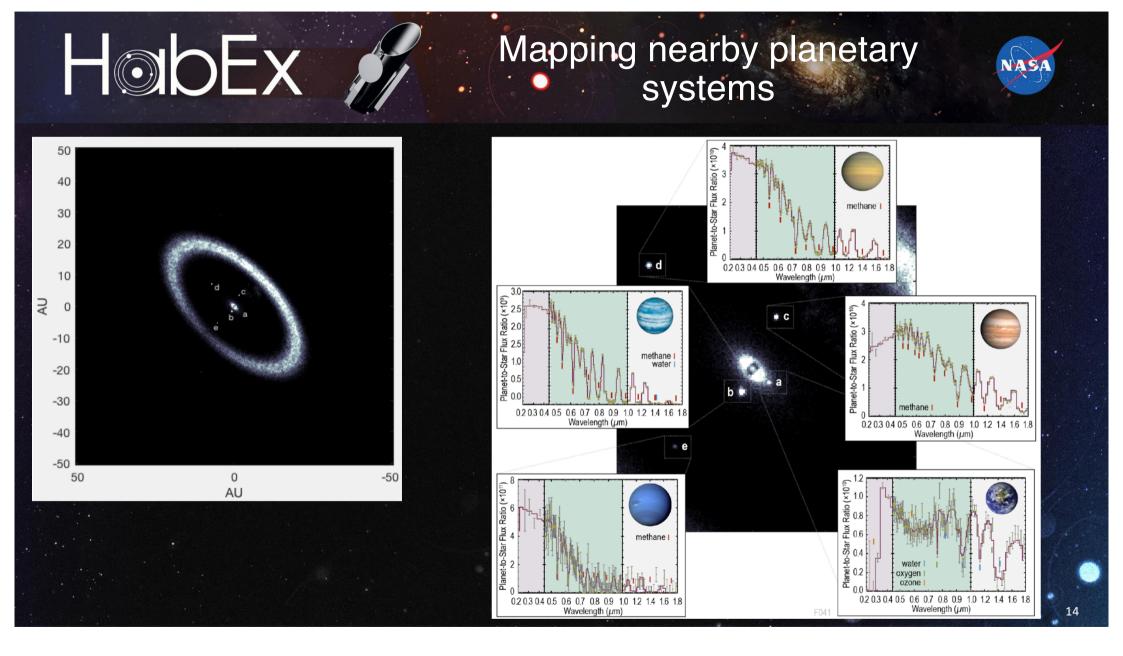
10

Habitable Zone

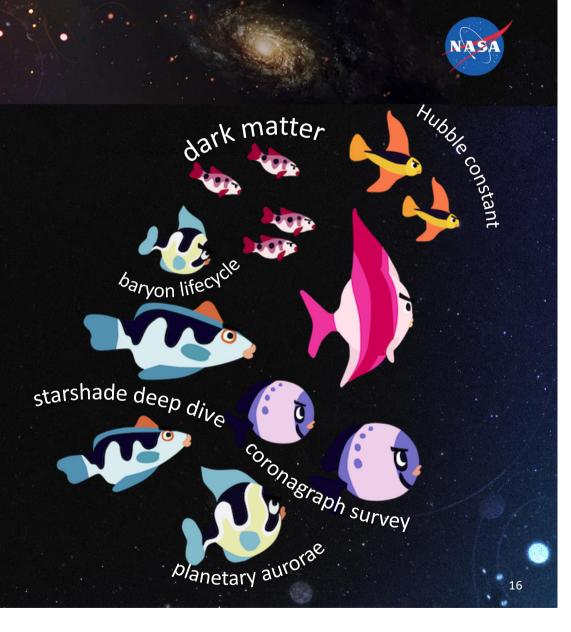
тоо нот

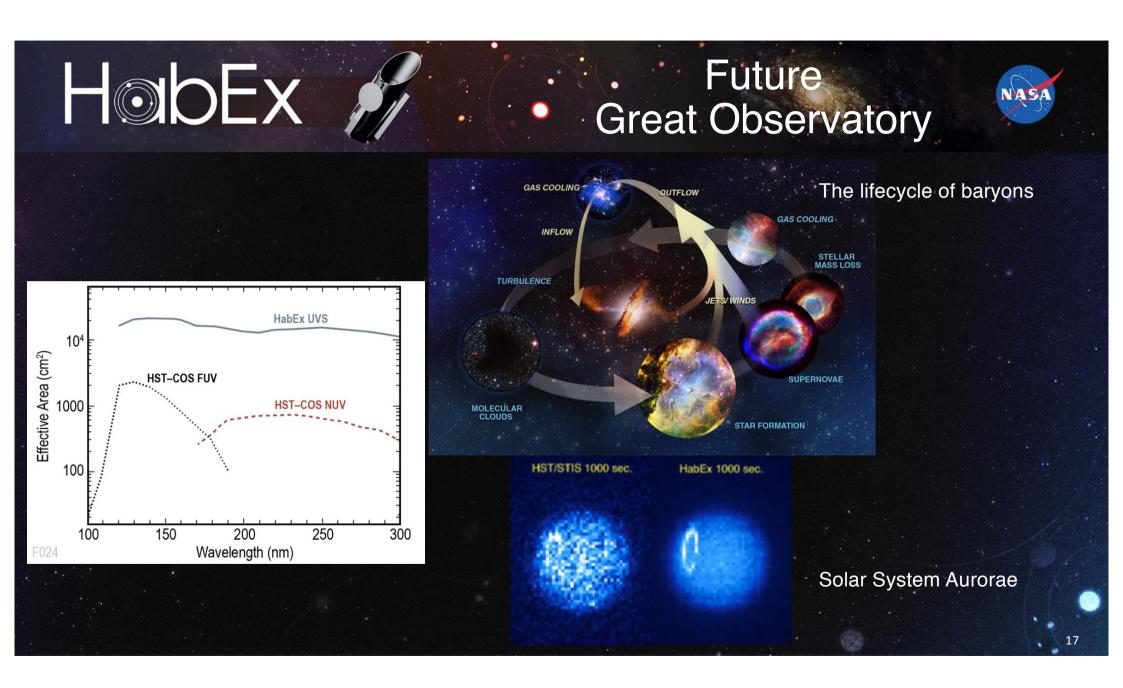

JUST RIGHT

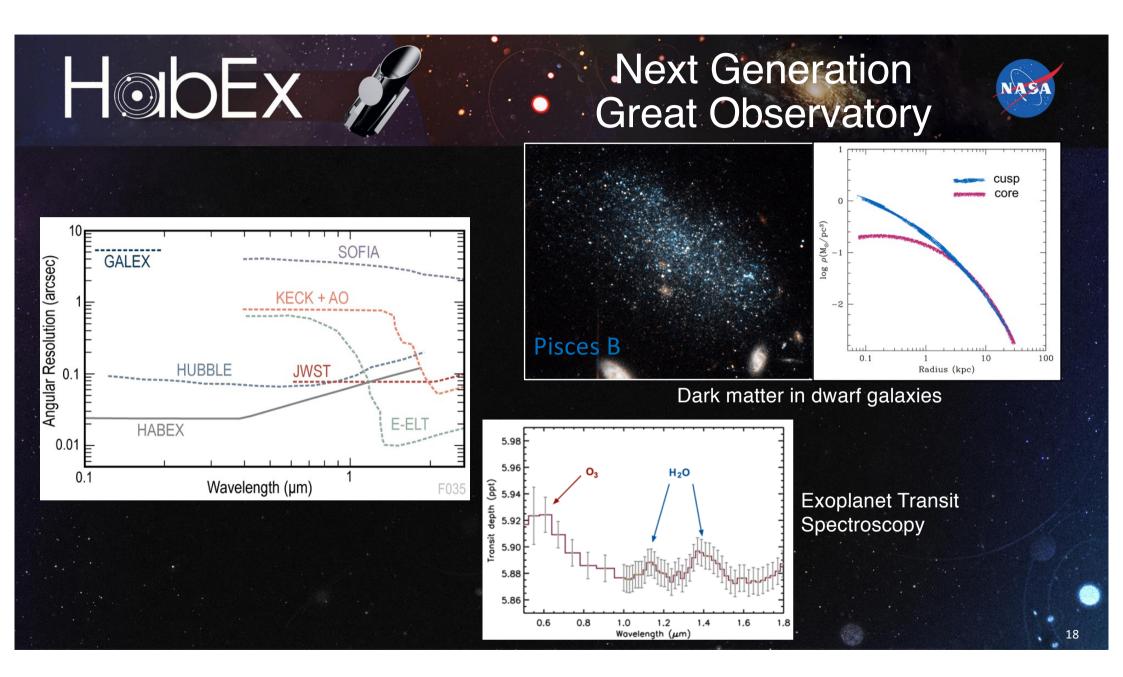
TOO COLD

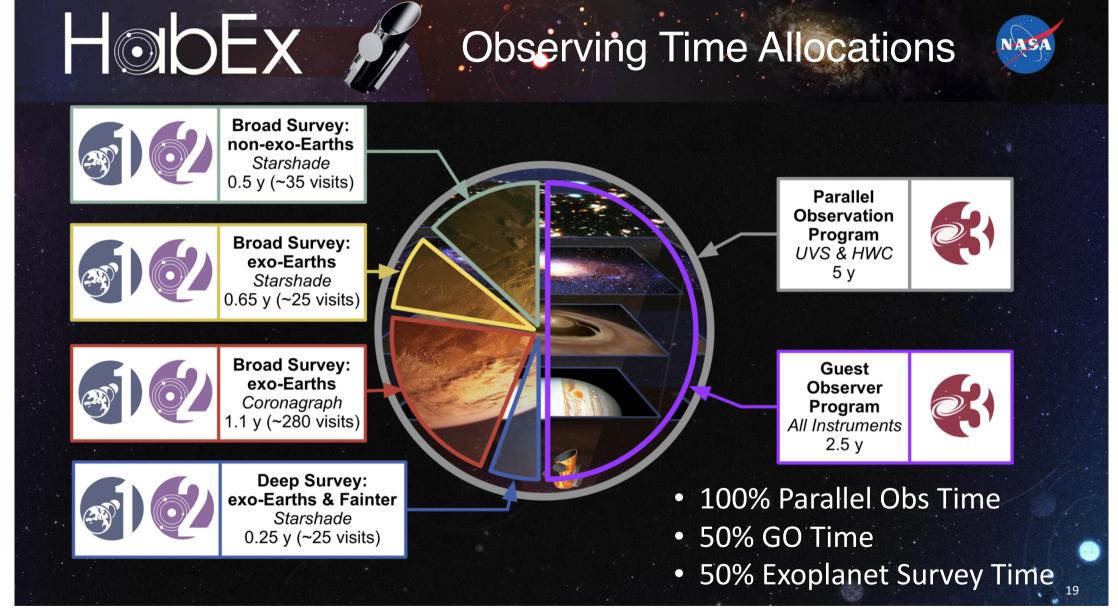

Planet size: 1-2x Earth

Seeking Potentially Habitable Worlds

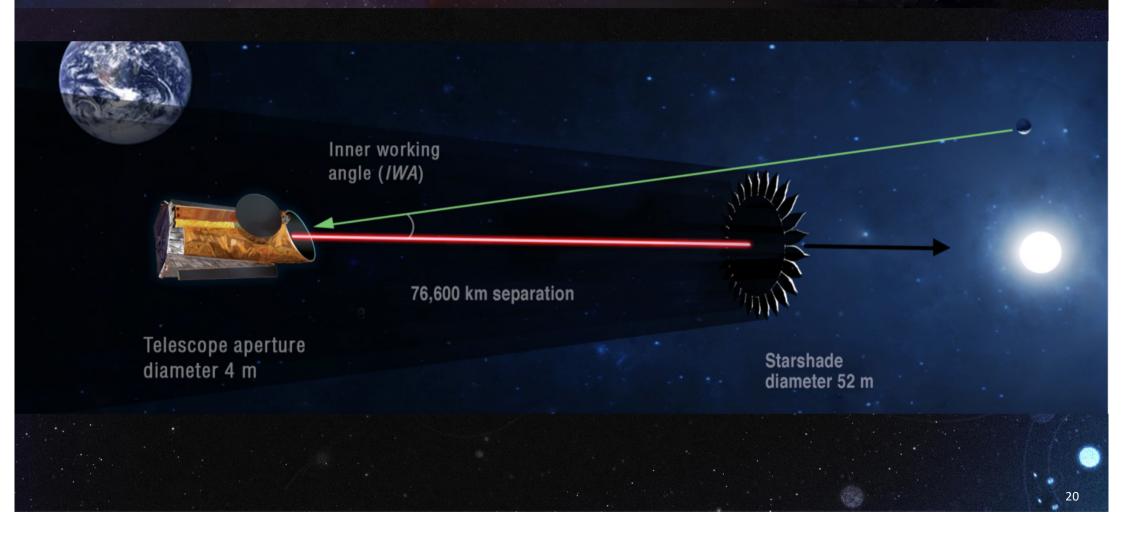

HodbEx




Hodbex M What you're thinking... ctoplanet Direct Imagingo 60 Scienco


HobEx

The truth: 50% of HabEx's primary 5-year mission is dedicated to Guest Observer Science



HobEx /

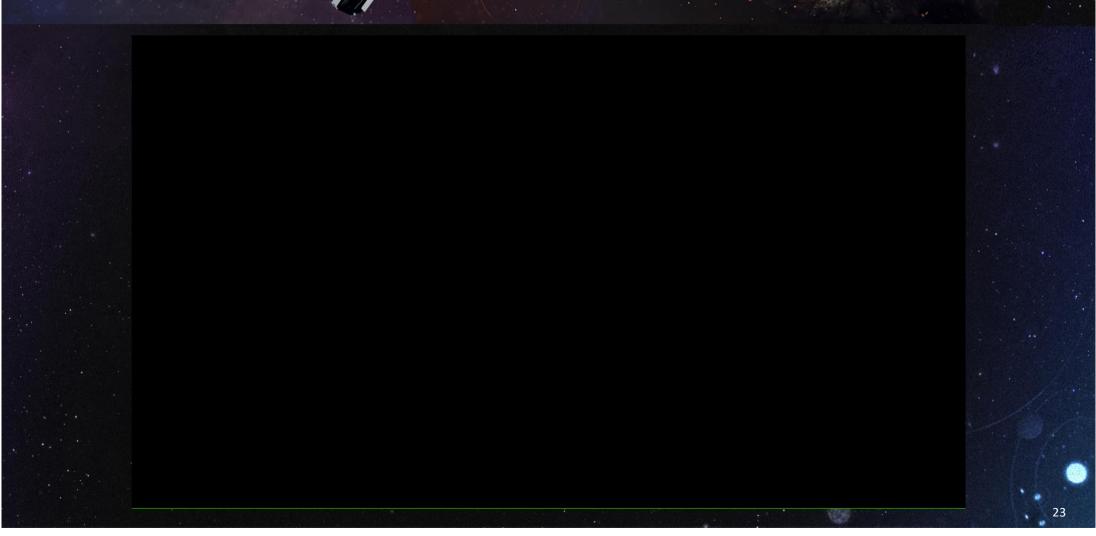
Baseline Architecture

Baseline Architecture

Habitable Exoplanet Observatory (HabEx)

							, ,	
				Mission Duration	5 years (10	0 years consumables)	
	Spacecraft	Optical Telesc	ope Assembly	Orbit	Earth-Sun L2 Halo			
	opuocolult	ephoni lolooo	Telescope Aperture Cover	Aperture	4 m unobs	cured		
				Telescope Type	Off-axis three-mirror anastigmat			
		Baffle Tube with		Primary Mirror	4 m monolith; glass-ceramic substrate; AI+MgF2 coating			
Solar Panels	nels	Forward Scarf		Instruments (4)	Exoplanet science: Coronagraph, Starshade Observatory science: UV Spectrograph, Workhorse Camera			
				Attitude Control	Slewing: hydrazine thrusters; Pointing: microthrusters			
						HST	HabEx	
			econdary Mirror ower Structure	Aperture		2.4 m obscured	4.0 m unobscured	
				Diffraction Limit		500 nm	400 nm	
	e Ring Primary Mirror						20 min (typical),	
	Assembly			Slew Rate (180 de	g)	~30 min (max)	5 min (max)	
Microthru	usters					5 mas (typical),		
in 8 locat	ions Integrated Science			Pointing Accuracy	,	2 mas (best)	0.7 mas	
No.	Instrument Module (ISIM)			Spatial Resolution	า	50 mas	25 mas	
	& Payload Radiators			Effective Area* (@	🦻 200nm)	700 cm ²	10,000 cm ²	
				Micro-shutters		No	Yes	
				Serviceable		Yes/Astronaut	Yes/Robotic	
						ture multiplied by	throughput and	
				quantum efficien	~ /			

•


HobEx M

Starshade

Hodbex #

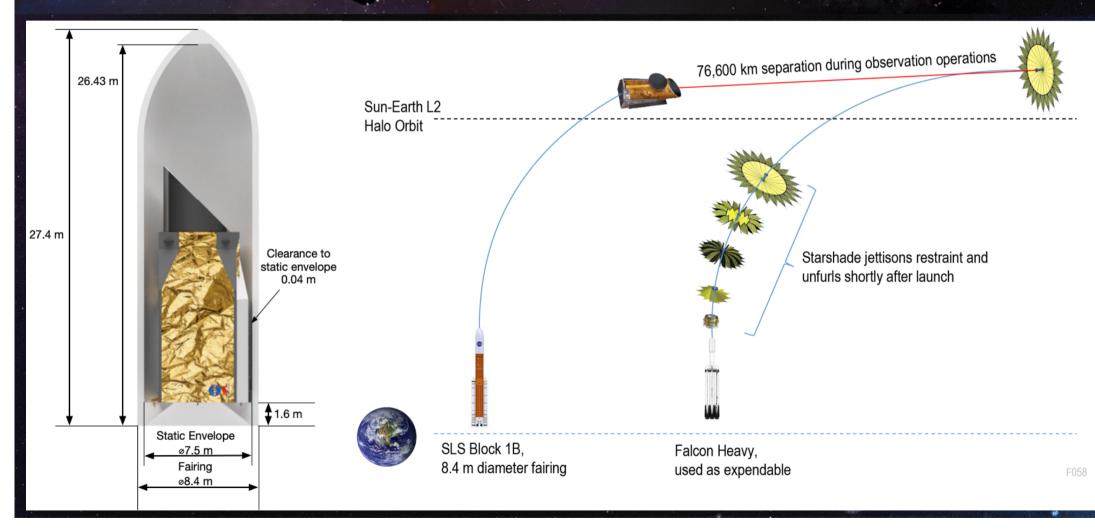
HoabEx

Starshade

HabEx Instruments

×				
	Coronagraph (HCG)	Starshade (SSI)	Workhorse Camera (HWC)	UV Spectograph (UVS)
Purpose	Exoplanet imaging and characterization	Exoplanet imaging and characterization	Multipurpose, wide-field imaging camera and spectograph for observatory science	High-resolution, UV imaging and spectroscopy for observatory science
Instrument Type	Vector Vortex charge 6 coronagraph with: - Raw contrast: 2.5×10^{-10} at the IWA - Δ mag limit = 26.5 - 20% instantaneous bandwidth - Imager and spectograph	52 m diameter starshade occulter with: - 76,600 km separation (Visible) - Raw contrast: 1 x 10^{-10} at the IWA - Δ mag limit = 26.5 - 107% instantaneous bandwidth - Imager and spectograph	Imager and spectograph	High-resolution imager and spectrograph
Channels	Visible: 0.45–0.975 μm - Imager + IFS with <i>R</i> = 140 Near-IR: 0.975–1.8 μm - Imager + IFS with <i>R</i> = 40	UV: 0.2–0.45 μm - Imager + grism with <i>R</i> = 7 Visible: 0.45–0.975 μm - Imager + IFS with <i>R</i> = 140 Near-IR: 0.975–1.8 μm - Imager + IFS with <i>R</i> = 40	Visible: 0.37–0.975 μm - Imager + grism with <i>R</i> = 1,000 Near-IR: 0.95–1.8 μm - Imager + grism with <i>R</i> = 1,000	UV: 115–320 nm (with 115–370 nm available at <i>R</i> ≤ 1,000) <i>R</i> = 60,000; 25,000; 12,000; 6,000; 3,000; 1,000; 500; imaging
Field of View	IWA: 2.4 λ/D = 62 mas at 0.5 μ m OWA: 32 λ/D = 830 mas at 0.5 μ m	IWA: 58 mas at 0.3–1.0 μm OWA: 6 arcsec (Vis. broadband imaging) OWA: 1 arcsec (Visible IFS)	3 x 3 arcmin ²	3 x 3 arcmin ²
Features	64 x 64 deformable mirrors (2) Low-order wavefront sensing and control	Formation flying, sensing, and control	Microshutter array for multi-object spectroscopy - 2 x 2 array, 171 x 365 apertures	Microshutter array for multi-object spectroscopy - 2 x 2 array, 171 x 365 apertures

HobEx

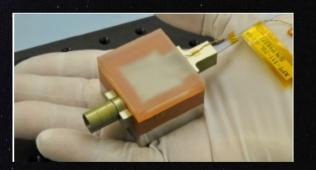

NASA

24

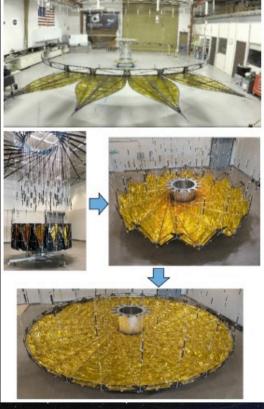
Hobex M

Launch

.


HobEx R Enabling Technologies

WFIRST Coronagraph Instrument Testbed


4.2m mirror for the Southern Astrophysical Research Telescope

Planar lightwave circuit beam launcher for laser metrology

LISA-Pathfinder colloidal microthrusters

Starshade 10m perimeter truss deployment tests

HabEx is the only study with all technologies at TRL 4 or higher.

Hobex M. Ar

Architecture Trade Space

		Starlight Suppression Method									
		H (Hybrid)		S (Starshade-on	lly)	C (Coronagraph-only)					
Diameter	4.0m	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	186 10,000 cm ² 25 mas 13 \$6.8B	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	144 13,000 cm ² 25 mas 9 \$5.7B	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	119 10,000 cm ² 25 mas 10 \$4.8B				
Aperture	3.2m	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	110 6,400 cm ² 31 mas 12 \$5.7B	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	123 8,200 cm ² 31 mas 9 \$5.0B	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	86 6,400 cm ² 31 mas 9 \$3.7B				
Telescope	2.4m	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	79 2,300 cm ² 42 mas 11 \$4.8B	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	69 3,000 cm ² 42 mas 8 \$4.0B	Planets: Effective collecting area: Spatial resolution: TRL-4 technologies: Cost (\$FY20):	28 2,300 cm ² 42 mas 8 \$3.1B				

HabEx Science		HabEx Mission Architectures														
	Goals & Objectives		4H	4S	4C	3.2H	3.2S	3.2C	2.4H	2.4S	2.4C	HabEx Architectures				
A	01	Exo-Earth candidates around nearby sunlike stars?														
Habitable Exoplanets	O 2	Water vapor in rocky exoplanet atmospheres?														
	O 3	Biosignatures in rocky exoplanet atmosphere?														
Ha	04	Surface liquid water on rocky exoplanets?										All architectures include the HWC and UV				
6)	O 5	Architectures of nearby planetary systems?										H: Hybrid – Starshade and Coronagraph C: Coronagraph				
etary,	O 6	Exoplanet atmospheric variations in nearby systems?														
xoplanetary Systems	07	Water transport mechanisms in nearby planetary systems?										S: Starshade				
Exor	O 8	Debris disk architectures in nearby planetary systems?														
	O 9 L	Lifecycle of baryons?														
	010	Sources of reionization?														
	011	Origins of the elements?										Green: Meets baseline requirements				
Science	012	Discrepancies in measurements of the cosmic expansion rate?										Yellow: Meets threshold requirements				
	013	The nature of dark matter?										Orange: Below threshold requirements				
vator	014	Formation and evolution of globular clusters?														
Observatory	015	Habitable conditions on rocky planets around M-dwarfs?														
õ	016	Mechanisms responsible for transition disk architectures?														
	017	Physics driving star-planet interactions, <i>e.g.</i> auroral activity?										28				

Hodbex

- HabEx briefing to the Decadal Survey Nov 19/20
- Decadal Survey recommendations released in 2021
- What would YOU do with HabEx?! Alina.A.Kiessling@jpl.nasa.gov

