Gromov–Witten theory and integrable hierarchies

Todor Milanov

Department of Mathematics
North Carolina State University

April 27, 2009
Outline

1. Representation theory
 - Dirac see
 - The KP hierarchy

2. Gromov–Witten theory
 - Moduli spaces of curves
 - W-spin structures
 - Gromov–Witten Invariants

3. Summary of results
\[V = \text{span}\left\{ v_j : j \in \mathbb{Z} \right\} \]

\[F^{(0)} = \text{span} \left\{ v_{i_0} \wedge v_{i_1} \wedge \ldots \right\} \]

the vacuum state is \[|0\rangle = v_0 \wedge v_{-1} \wedge \ldots \]

every wedge monomial in \(F^{(0)} \) differs from the vacuum only in finitely many places

It helps to think of \(v_j \) as a particle of energy \(j \) and charge \(-1 \)
\[V = \text{span}\{v_j : j \in \mathbb{Z}\} \]

\[F^{(0)} = \text{span}\{v_0 \wedge v_{i_1} \wedge \ldots\} \]

- the vacuum state is \(|0\rangle = v_0 \wedge v_{-1} \wedge \ldots \)
- every wedge monomial in \(F^{(0)} \) differs from the vacuum only in finitely many places
- It helps to think of \(v_j \) as a particle of energy \(j \) and charge \(-1\)
\[V = \text{span}\{v_j : j \in \mathbb{Z}\} \]

\[F^{(0)} = \text{span}\{v_{i_0} \wedge v_{i_1} \wedge \ldots\} \]

the vacuum state is \[|0\rangle = v_0 \wedge v_{-1} \wedge \ldots \]

every wedge monomial in \(F^{(0)} \) differs from the vacuum only in finitely many places

It helps to think of \(v_j \) as a particle of energy \(j \) and charge \(-1\)
The vacuum state is $|0\rangle = v_0 \wedge v_{-1} \wedge \ldots$

every wedge monomial in $F^{(0)}$ differs from the vacuum only in finitely many places

It helps to think of v_j as a particle of energy j and charge -1
\[V = \text{span}\{v_j : j \in \mathbb{Z}\} \]

\[F^{(0)} = \text{span} \{v_{i_0} \wedge v_{i_1} \wedge \ldots \} \]

the vacuum state is \[|0\rangle = v_0 \wedge v_{-1} \wedge \ldots \]

every wedge monomial in \(F^{(0)} \) differs from the vacuum only in finitely many places

It helps to think of \(v_j \) as a particle of energy \(j \) and charge \(-1\)
Boson–Fermion isomorphism

- Representation of GL_∞ on $F^{(0)}$:

\[E_{ij} \mapsto (v_i \wedge \circ \text{contract } v_j) \]

- $F^{(0)} \cong \mathbb{C}[x_1, x_2, x_3, \ldots]$

- $[\Lambda_m, \Lambda_n] = m \delta_{m,-n}$ ($m \neq 0$) Heisenberg algebra relations

- $\Lambda_m \mapsto \frac{\partial}{\partial x_m}, \Lambda_{-m} \mapsto mx_m, \ m > 0.$

- $\Lambda_m \mapsto \sum_{i \in \mathbb{Z}} E_{i,i+m}$: (the normal ordering $: :$ means that we have to apply first the operation which annihilates the vacuum $|0\rangle$.)
Boson–Fermion isomorphism

- **Representation of** GL_∞ **on** $F^{(0)}$:

 $$E_{ij} \mapsto (v_i \wedge) \circ (\text{contract } v_j)$$

- $F^{(0)} \cong \mathbb{C}[x_1, x_2, x_3, \ldots]$

- $[\Lambda_m, \Lambda_n] = m \delta_{m,-n}$ ($m \neq 0$) Heisenberg algebra relations

- $\Lambda_m \mapsto \frac{\partial}{\partial x_m}$, $\Lambda_{-m} \mapsto mx_m$, $m > 0$.

- $\Lambda_m \mapsto \sum_{i \in \mathbb{Z}} :E_{i,i+m}:$ (the normal ordering $: :$ means that we have to apply first the operation which annihilates the vacuum $|0\rangle$.)
Boson–Fermion isomorphism

- Representation of GL_{∞} on $F^{(0)}$:

 $$E_{ij} \mapsto (v_i \wedge) \circ (\text{contract } v_j)$$

- $F^{(0)} \cong \mathbb{C}[x_1, x_2, x_3, \ldots]$

- $[\Lambda_m, \Lambda_n] = m\delta_{m,-n} (m \neq 0)$ Heisenberg algebra relations

- $\Lambda_m \mapsto \frac{\partial}{\partial x_m}$, $\Lambda_{-m} \mapsto mx_m$, $m > 0$.

- $\Lambda_m \mapsto \sum_{i \in \mathbb{Z}} :E_{i,i+m}:$ (the normal ordering $:$ $:$ means that we have to apply first the operation which annihilates the vacuum $|0\rangle$.)

Todor Milanov

GW theory and integrable hierarchies
Representation of GL_∞ on $F^{(0)}$:

$$E_{ij} \mapsto (v_i \wedge) \circ (\text{contract} v_j)$$

- $F^{(0)} \cong \mathbb{C}[x_1, x_2, x_3, \ldots]$
- $[\Lambda_m, \Lambda_n] = m \delta_{m,-n}$ ($m \neq 0$) Heisenberg algebra relations
- $\Lambda_m \mapsto \frac{\partial}{\partial x_m}$, $\Lambda_{-m} \mapsto mx_m$, $m > 0$.
- $\Lambda_m \mapsto \sum_{i \in \mathbb{Z}} :E_{i,i+m}:$ (the normal ordering $: :$ means that we have to apply first the operation which annihilates the vacuum $|0\rangle$.)
Boson–Fermion isomorphism

- Representation of GL_∞ on $F^{(0)}$:

$$E_{ij} \mapsto (v_i \wedge) \circ (\text{contract } v_j)$$

- $F^{(0)} \cong \mathbb{C}[x_1, x_2, x_3, \ldots]$

- $[\Lambda_m, \Lambda_n] = m\delta_{m,-n}$ ($m \neq 0$) Heisenberg algebra relations

- $\Lambda_m \mapsto \frac{\partial}{\partial x_m}$, $\Lambda_{-m} \mapsto mx_m$, $m > 0$.

- $\Lambda_m \mapsto \sum_{i \in \mathbb{Z}} : E_{i,i+m} :$ (the normal ordering $:\ :$ means that we have to apply first the operation which annihilates the vacuum $|0\rangle$.)

Todor Milanov
GW theory and integrable hierarchies
The KP-hierarchy

- Decomposable vectors: $w_0 \wedge w_1 \wedge w_2 \wedge \ldots$, where $w_i = v_{-i}$ for $i \gg 0$.

- Plücker imbedding of the Grassmanian

 $\text{Gr} = \{ W \text{ subspace of } V \mid W \text{ projects isomorphically to } V_- \}$,

 where V_- is the subspace spanned by $v_j, j < 0$.

- $\tau_W(x_1, x_2, x_3, \ldots)$ are called tau-functions of KP.

- One of the Plücker relations is the celebrated KP equation:

 \[
 (u_{xxx} + 12uu_x - u_x^3)_x + 3u_{x_2x_2} = 0,
 \]

 where $x = x_1$ and $u = 2(\log \tau_W)_{xx}$.
The KP-hierarchy

- Decomposable vectors: \(w_0 \land w_1 \land w_2 \land \ldots \), where \(w_i = v_{-i} \) for \(i >> 0 \).

- Plücker imbedding of the Grassmanian

\[\text{Gr} = \{ W \ \text{subspace of} \ V \ | \ W \ \text{projects isomorphically to} \ V_- \}, \]

where \(V_- \) is the subspace spanned by \(v_j, j < 0 \).

- \(\tau_W(x_1, x_2, x_3, \ldots) \) are called tau-functions of KP.

- One of the Plücker relations is the celebrated KP equation:

\[(u_{xxx} + 12uu_x - u_x)_{x'} + 3u_{x_2x_2} = 0,\]

where \(x = x_1 \) and \(u = 2(\log \tau_W)_{xx} \).
The KP-hierarchy

- Decomposable vectors: $w_0 \wedge w_1 \wedge w_2 \wedge \ldots$, where $w_i = v_{-i}$ for $i >> 0$.

- Plücker imbedding of the Grassmanian

$$\mathrm{Gr} = \{ W \text{ subspace of } V \mid W \text{ projects isomorphically to } V_- \},$$

where V_- is the subspace spanned by $v_j, j < 0$.

- $\tau_W(x_1, x_2, x_3, \ldots)$ are called tau-functions of KP.

- One of the Plücker relations is the celebrated KP equation:

$$\left(u_{xxx} + 12uu_x - u_x \right)'_x + 3u_{x_2}x_2 = 0,$$

where $x = x_1$ and $u = 2(\log \tau_W)_{xx}$.

Todor Milanov
GW theory and integrable hierarchies
The KP-hierarchy

- Decomposable vectors: $w_0 \wedge w_1 \wedge w_2 \wedge \ldots$, where $w_i = v_{-i}$ for $i >> 0$.

- Plücker imbedding of the Grassmanian

$$\text{Gr} = \{ W \text{ subspace of } V \mid W \text{ projects isomorphically to } V_- \},$$

where V_- is the subspace spanned by $v_j, j < 0$.

- $\tau_W(x_1, x_2, x_3, \ldots)$ are called tau-functions of KP.

- One of the Plücker relations is the celebrated KP equation:

$$(u_{xxx} + 12uu_x - u_x^3)'_x + 3u_{x2x2} = 0,$$

where $x = x_1$ and $u = 2(\log \tau_W)_{xx}$.

Todor Milanov
GW theory and integrable hierarchies
\[\langle \tau_{k_1}, \ldots, \tau_{k_n} \rangle_{g,n} = \sum_{\mathcal{M}_{g,n}} c_1(z_1)^{k_1} \cdots c_1(z_n)^{k_n} \in \mathbb{Q} \]

\[k_1 + \ldots + k_n = 3g - 3 + n \]
W-spin structures

- $W(x_1, x_2, x_3)$ weighted-homogeneous polynomial with an isolated critical point at 0.

- Isolated singularities are classified by Dynkin diagrams. For example, the singularity corresponding to D_N is: $W = x_1^{N-1} + x_1 x_2^2 + x_3^2$.

- A W-spin structure on a (nodal) Riemann surface is a choice of orbifold line bundles L_1, L_2, L_3 and isomorphisms

$$L_1^\otimes(N-1) \cong L_1 \otimes L_2^\otimes 2 \cong L_3^\otimes 2 \cong K_{\log},$$

where K_{\log} is the canonical line bundle of the Riemann surface with logarithmic poles at marked and nodal points.
W-spin structures

- \(W(x_1, x_2, x_3) \) weighted-homogeneous polynomial with an isolated critical point at 0.

- Isolated singularities are classified by Dynkin diagrams. For example the singularity corresponding to \(D_N \) is:
 \[
 W = x_1^{N-1} + x_1 x_2^2 + x_3^2.
 \]

- A \(W \)-spin structure on a (nodal) Riemann surface is a choice of orbifold line bundles \(L_1, L_2, L_3 \) and isomorphisms
 \[
 L_1^{(N-1)} \cong L_1 \otimes L_2^2 \cong L_3^2 \cong K_{\log},
 \]
 where \(K_{\log} \) is the canonical line bundle of the Riemann surface with logarithmic poles at marked and nodal points.

W-spin structures

- \(W(x_1, x_2, x_3) \) weighted-homogeneous polynomial with an isolated critical point at 0.

- Isolated singularities are classified by Dynkin diagrams. For example the singularity corresponding to \(D_N \) is:
 \[
 W = x_1^{N-1} + x_1 x_2^2 + x_3^2.
 \]

- A W-spin structure on a (nodal) Riemann surface is a choice of orbifold line bundles \(L_1, L_2, L_3 \) and isomorphisms
 \[
 L_1^{(N-1)} \cong L_1 \otimes L_2^2 \cong L_3^2 \cong K_{\log},
 \]
 where \(K_{\log} \) is the canonical line bundle of the Riemann surface with logarithmic poles at marked and nodal points.
\[\{ \phi_1, \phi_2, \ldots, \phi_N \} \] basis of \(H^* (X; \mathbb{C}) \)

\[\langle \tau_{k_1, a_1}, \ldots, \tau_{k_n, a_n} \rangle_{g,n} = \sum_d q^d \# \text{(degree-}d \text{ maps)} \]
We will be interested in formal power series

\[
\mathcal{D}_X = \exp \left(\sum \frac{\epsilon^{2g-2}}{n!} \langle \tau_{k_1}, a_1, \ldots, \tau_{k_n}, a_n \rangle g, n \ q_{k_1}^{a_1} \cdots q_{k_n}^{a_n} \right)
\]

in \(q_0, q_1, \ldots \), where \(q_k = (q_k^1, \ldots, q_k^N) \) are vector variables taking values in \(H^*(X) \), where \(N = \dim_{\mathbb{C}} X \).

Question 1. Is it true that the partial derivatives of \(\mathcal{D} \) satisfy quadratic equations similar to the differential equations of KP and is this system of equations an integrable hierarchy?
We will be interested in formal power series

\[
D_X = \exp \left(\sum \frac{\epsilon^{2g-2}}{n!} \langle \tau_{k_1}, a_1, \ldots, \tau_{k_n}, a_n \rangle g, n \, q_{k_1}^{a_1} \cdots q_{k_n}^{a_n} \right)
\]

in \(q_0, q_1, \ldots \), where \(q_k = (q_{k_1}^1, \ldots, q_{k}^N) \) are vector variables taking values in \(H^*(X) \), where \(N = \dim \mathbb{C} X \).

Question 1. Is it true that the partial derivatives of \(D \) satisfy quadratic equations similar to the differential equations of KP and is this system of equations an integrable hierarchy?
A fundamental open question in Gromov–Witten theory is the Virasoro conjecture. It was formulated by a group of physicists: Egouchi–Hori–Xiong and S. Katz.

On the level of generating functions: $L_n D = 0$, $n \geq -1$ for some linear differential operators (in q_0, q_1, \ldots) which represent the vector fields $-\zeta^{n+1} \partial_\zeta$.

On the level of correlators the Virasoro conjecture says that the correlator

$$\langle \tau_{k,1}, \tau_{k,2}, a_2, \ldots, \tau_{k,n}, a_n \rangle_{g,n}$$

is a quadratic expression of simpler correlators.
A fundamental open question in Gromov–Witten theory is the Virasoro conjecture. It was formulated by a group of physicists: Egouchi–Hori–Xiong and S. Katz.

On the level of generating functions: $L_n \mathcal{D} = 0, n \geq -1$ for some linear differential operators (in q_0, q_1, \ldots) which represent the vector fields $-\zeta^{n+1} \partial \zeta$.

On the level of correlators the Virasoro conjecture says that the correlator

$$\langle \tau_{k,1}, \tau_{k,2}, a_2, \ldots, \tau_{k,n}, a_n \rangle_{g,n}$$

is a quadratic expression of simpler correlators.
A fundamental open question in Gromov–Witten theory is the Virasoro conjecture. It was formulated by a group of physicists: Egouchi–Hori–Xiong and S. Katz.

On the level of generating functions: $L_n D = 0, \ n \geq -1$ for some linear differential operators (in q_0, q_1, \ldots) which represent the vector fields $-\zeta^{n+1} \partial_\zeta$.

On the level of correlators the Virasoro conjecture says that the correlator

$$\langle \tau_{k,1}, \tau_{k,2}, a_2, \ldots, \tau_{k,n}, a_n \rangle_{g,n}$$

is a quadratic expression of simpler correlators.
Is it true that the correlator

\[\langle \tau_k, a, \tau_{k_2}, a_2, \ldots, \tau_{k_n}, a_n \rangle_{g,n} \]

is a polynomial expression of simpler correlators?

On the level of generating functions a positive answer to the above question would mean that there is an algebra of differential operators \(\mathcal{W} \) that contains Virasoro, such that \(D \) is a highest weigh vector.

Question 2. Does \(\mathcal{W} \) exist?
Is it true that the correlator

\[\langle \tau_{k_1}, a_1, \tau_{k_2}, a_2, \ldots, \tau_{k_n}, a_n \rangle_{g,n} \]

is a polynomial expression of simpler correlators?

On the level of generating functions a positive answer to the above question would mean that there is an algebra of differential operators \(\mathcal{W} \) that contains Virasoro, such that \(D \) is a highest weigh vector.

Question 2. Does \(\mathcal{W} \) exist?
\(\mathcal{W} \)-constraints

- Is it true that the correlator
 \[\langle \tau_{k_1}, a_1, \tau_{k_2}, a_2, \ldots, \tau_{k_n}, a_n \rangle \]
 is a polynomial expression of simpler correlators?

- On the level of generating functions a positive answer to the above question would mean that there is an algebra of differential operators \(\mathcal{W} \) that contains Virasoro, such that \(D \) is a highest weigh vector.

- **Question 2.** Does \(\mathcal{W} \) exist?
Witten’s conjecture

- Witten conjectured and Kontsevich proved that \mathcal{D}_{pt} is a tau-function of KdV, i.e., tau-function of KP independent of the even variables.

- The above fact allows us to compute all intersection numbers on $\overline{\mathcal{M}}_{g,n}$.

- Thanks to a theorem of Kac and Schwarz, \mathcal{D}_{pt} satisfies Virasoro constraints as well.
Witten conjectured and Kontsevich proved that D_{pt} is a tau-function of KdV, i.e., tau-function of KP independent of the even variables.

The above fact allows us to compute all intersection numbers on $\overline{M}_{g,n}$.

Thanks to a theorem of Kac and Schwarz, D_{pt} satisfies Virasoro constraints as well.
Witten’s conjecture

- Witten conjectured and Kontsevich proved that \(D_{\text{pt}} \) is a tau-function of KdV, i.e., tau-function of KP independent of the even variables.

- The above fact allows us to compute all intersection numbers on \(\overline{M}_{g,n} \).

- Thanks to a theorem of Kac and Schwarz, \(D_{\text{pt}} \) satisfies Virasoro constraints as well.
The generalized Witten’s conjecture

- For any singularity Givental defined a total descendant potential – formal power series similar to D_X.
- Fan–Jarvis–Ruan proved that in the case of singularities of type A, D, and E, the total descendant potential of the singularity is a generating function for certain intersection numbers on the moduli space of W-spin curves.

Theorem (A. Givental – T.M.)

The total descendant potential of a singularity of type A, D, or E is a tau-function for the Kac–Wakimoto hierarchies.
The generalized Witten’s conjecture

- For any singularity Givental defined a total descendant potential – formal power series similar to D_X.
- Fan–Jarvis–Ruan proved that in the case of singularities of type A, D, and E, the total descendant potential of the singularity is a generating function for certain intersection numbers on the moduli space of W-spin curves.

Theorem (A. Givental – T.M.)

The total descendant potential of a singularity of type A, D, or E is a tau-function for the Kac–Wakimoto hierarchies.
The generalized Witten’s conjecture

- For any singularity Givental defined a total descendant potential – formal power series similar to D_X.
- Fan–Jarvis–Ruan proved that in the case of singularities of type A, D, and E, the total descendant potential of the singularity is a generating function for certain intersection numbers on the moduli space of W-spin curves.

Theorem (A. Givental – T.M.)

The total descendant potential of a singularity of type A, D, or E is a tau-function for the Kac–Wakimoto hierarchies.
Theorem (B. Bakalov–T.M.)

The intersection numbers on the moduli space of W-spin curves, where W is of type A, D, or E, satisfy \mathcal{W}-constraints similar to the ones described in Question 2.

Proof amounts to showing that the total descendant potential is a highest weight vector for certain vertex algebra $\mathcal{W}_\beta(g)$, with $\beta = 1$.

The W-spin intersection numbers are governed by a certain representation of the corresponding affine Lie algebra.
Theorem (B. Bakalov–T.M.)

The intersection numbers on the moduli space of W-spin curves, where W is of type A, D, or E, satisfy \(\mathcal{W} \)-constraints similar to the ones described in Question 2.

- Proof amounts to showing that the total descendant potential is a highest weight vector for certain vertex algebra \(\mathcal{W}_\beta(g) \), with \(\beta = 1 \).

- The \(W \)-spin intersection numbers are governed by a certain representation of the corresponding affine Lie algebra.
Theorem (B. Bakalov–T.M.)

The intersection numbers on the moduli space of W-spin curves, where W is of type A, D, or E, satisfy \mathcal{W}-constraints similar to the ones described in Question 2.

- Proof amounts to showing that the total descendant potential is a highest weight vector for certain vertex algebra $\mathcal{W}_\beta(g)$, with $\beta = 1$.

- The W-spin intersection numbers are governed by a certain representation of the corresponding affine Lie algebra.
Theorem

The total descendant potential of $\mathbb{C}P^1$ (both the equivariant and the non-equivariant) is a tau-function.

- The theorem is also known as the Toda conjecture (Eguchi and Young).
- It was proved by Getzler (non-equivariant case), Okounkov–Pandharipande (equivariant case), Dubrovin–Zhang (non-equivariant case), T.M. (both equivariant and non-equivariant case).

Theorem (T.M.–H.-H. Tseng)

The total descendant potential of $\mathbb{C}P^1_{k,m}$ (both the equivariant and the non-equivariant) is a tau-function.
GW theory of the projective line

Theorem

The total descendant potential of $\mathbb{C}P^1$ (both the equivariant and the non-equivariant) is a tau-function.

- The theorem is also known as the Toda conjecture (Egouchi and Young).
- It was proved by Getzler (non-equivariant case), Okounkov–Pandharipande (equivariant case), Dubrovin–Zhang (non-equivariant case), T.M. (both equivariant and non-equivariant case).

Theorem (T.M.–H.-H. Tseng)

The total descendant potential of $\mathbb{C}P^1_{k,m}$ (both the equivariant and the non-equivariant) is a tau-function.
The total descendant potential of $\mathbb{C}P^1$ (both the equivariant and the non-equivariant) is a tau-function.

- The theorem is also known as the Toda conjecture (Egouchi and Young).
- It was proved by Getzler (non-equivariant case), Okounkov–Pandharipande (equivariant case), Dubrovin–Zhang (non-equivariant case), T.M. (both equivariant and non-equivariant case).

Theorem (T.M.–H.-H. Tseng)

The total descendant potential of $\mathbb{C}P^1_{k,m}$ (both the equivariant and the non-equivariant) is a tau-function.
The total descendant potential of $\mathbb{C}P^1$ (both the equivariant and the non-equivariant) is a tau-function.

- The theorem is also known as the Toda conjecture (Egouchi and Young).
- It was proved by Getzler (non-equivariant case), Okounkov–Pandharipande (equivariant case), Dubrovin–Zhang (non-equivariant case), T.M. (both equivariant and non-equivariant case).

The total descendant potential of $\mathbb{C}P^1_{k,m}$ (both the equivariant and the non-equivariant) is a tau-function.
Summary

- Sympl. topology
- GW invariants
- Moduli spaces
- Mirror symmetry
- Complex structures
- Oscillating integrals
- Representations
- Integrable hierarchies

Todor Milanov
GW theory and integrable hierarchies