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Dirac see

V = span
{

vj : j ∈ Z
}

F (0) = span
{

vi0 ∧ vi1 ∧ . . .
}

the vacuum state is |0〉 = v0 ∧ v−1 ∧ . . .

every wedge monomial in F (0) differs from the vacuum only
in finitely many places

It helps to think of vj as a particle of energy j and charge
−1
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Dirac see
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Boson–Fermion isomorphism

Representation of GL∞ on F (0):

Eij 7→ (vi∧) ◦ (contractvj)

F (0) ∼= C[x1, x2, x3, . . .]

[Λm,Λn] = mδm,−n (m 6= 0) Heisenberg algebra relations

Λm 7→ ∂
∂xm

, Λ−m 7→ mxm, m > 0.

Λm 7→
∑

i∈Z
: Ei ,i+m : (the normal ordering : : means that

we have to apply first the operation which annihilates the
vacuum |0〉.)
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The KP-hierarchy

Decomposable vectors: w0 ∧ w1 ∧ w2 ∧ . . ., where wi = v−i

for i >> 0.

Plücker imbedding of the Grassmanian

Gr =
{

W subspace of V | W projects isomorphically to V−

}

,

where V− is the subspace spanned by vj , j < 0.

τW (x1, x2, x3, . . .) are called tau-functions of KP.

One of the Plücker relations is the celebrated KP equation:
(

uxxx + 12uux − ux3

)′

x + 3ux2x2 = 0,

where x = x1 and u = 2(log τW )xx .
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W-spin structures

W (x1, x2, x3) weighted-homogeneous polynomial with an
isolated critical point at 0.

Isolated singularities are classified by Dynkin diagrams.
For example the singularity corresponding to DN is:
W = xN−1

1 + x1x2
2 + x2

3 .

A W -spin structure on a (nodal) Riemann surface is a
choice of orbifold line bundles L1, L2, L3 and isomorphisms

L⊗(N−1)
1

∼= L1 ⊗ L⊗2
2

∼= L⊗2
3

∼= Klog,

where Klog is the canonical line bundle of the Riemann
surface with logarithmic poles at marked and nodal points.
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Total descendant potential

We will be interested in formal power series

DX = exp
(

∑ ǫ2g−2

n!
〈τk1,a1

, . . . , τkn,an〉g,n qa1
k1

. . . qan
kn

)

in q0, q1, . . ., where qk = (q1
k , . . . , qN

k ) are vector variables
taking values in H∗(X ), where N = dimCX .

Question 1. Is it true that the partial derivatives of D
satisfy quadratic equations similar to the differential
equations of KP and is this system of equations an
integrable hierarchy?
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Virasoro constraints

A fundamental open question in Gromov–Witten theory is
the Virasoro conjecture. It was formulated by a group of
physicists: Egouchi–Hori–Xiong and S. Katz.

On the level of generating functions: LnD = 0, n ≥ −1 for
some linear differential operators (in q0, q1, . . .) which
represent the vector fields −ζn+1∂ζ .

On the level of correlators the Virasoro conjecture says
that the correlator

〈τk ,1, τk2,a2
, . . . , τkn,an〉g,n

is a quadratic expression of simpler correlators.

Todor Milanov GW theory and integrable hierarchies
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W-constraints

Is it true that the correlator

〈τk ,a, τk2,a2
, . . . , τkn,an〉g,n

is a polynomial expression of simpler correlators?

On the level of generating functions a positive answer to
the above question would mean that there is an algebra of
differential operators W that contains Virasoro, such that D
is a highest weigh vector.

Question 2. Does W exist?
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Witten’s conjecture

Witten conjectured and Kontsevich proved that
Dpt is a tau-function of KdV, i.e., tau-function of KP
independent of the even variables

The above fact allows us to compute all intersection
numbers on Mg,n.

Thanks to a theorem of Kac and Schwarz, Dpt satisfies
Virasoro constraints as well.
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The generalized Witten’s conjecture

For any singularity Givental defined a total descendant
potential – formal power series similar to DX .

Fan–Jarvis–Ruan proved that in the case of singularities of
type A, D, and E , the total descendant potential of the
singularity is a generating function for certain intersection
numbers on the moduli space of W -spin curves.

Theorem (A. Givental – T.M.)

The total descendant potential of a singularity of type A, D, or E
is a tau-function for the Kac–Wakimoto hierarchies.
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W -spin curves and representation theory

Theorem (B. Bakalov–T.M.)

The intersection numbers on the moduli space of W-spin
curves, where W is of type A, D, or E, satisfy W-constraints
similar to the ones described in Question 2.

Proof amounts to showing that the total descendant
potential is a highest weight vector for certain vertex
algebra Wβ(g), with β = 1.

The W -spin intersection numbers are governed by a
certain representation of the corresponding affine Lie
algebra.
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GW theory of the projective line

Theorem

The total descendant potential of CP1 (both the equivariant and
the non-equivariant) is a tau-function.

The theorem is also known as the Toda conjecture
(Egouchi and Young).
It was proved by Getzler (non-equivariant case),
Okounkov–Pandharipande (equivariant case),
Dubrovin–Zhang (non-equivariant case), T.M. (both
equivariant and non-equivariant case).

Theorem (T.M.–H.-H. Tseng)

The total descendant potential of CP1
k ,m (both the equivariant

and the non-equivariant) is a tau-function.
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