Unifying Lattice Models, Links and Quantum Geometric Langlands via Branes in String Theory

Meng-Chwan Tan

National University of Singapore
Kavli IPMU, 17th December 2019

Scope of Presentation

- Introduction/Motivation
- Summary of results
- 4d Chern-Simons theory from partial twist of D4-NS5 system
- Relationship with 3d Chern-Simons theory and the Geometric Langlands Program
- Conclusion and Future Work

Introduction/Motivation

- 4d Chern-Simons theory has the action*

$$
\begin{equation*}
S=\frac{1}{\hbar} \int_{Y \times \Sigma} C \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{1.1}
\end{equation*}
$$

where \mathcal{A} is a complex-valued gauge field, Y is a framed 2-manifold, and Σ is $\mathbb{C}, \mathbb{C}^{\times}$or $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ endowed with a meromorphic one-form $C=C(z) d z$ (with no zeros).

- Within the realm of perturbation theory, this gauge theory is well-defined, and realizes the Yang-Baxter equation with spectral parameter.
*. K. Costello, Supersymmetric gauge theory and the Yangian, arXiv:1303.2632
K. Costello, E. Witten, M. Yamazaki, Gauge Theory and Integrability, I, II, arXiv:1709.09993, 1802.01579
- Outside of perturbation theory, 4d CS is not well-understood path integral is exponentially divergent.
- Suggestion ${ }^{\dagger}$ - Nonperturbative definition comes from the D4-NS5 system of string theory, similar to how the D3-NS5 system realizes the nonperturbative 3d analytically-continued Chern-Simons theory. ${ }^{\ddagger}$
- Such a string realization could also allow us to relate 4d CS to 3d CS via T-duality, as well as to the geometric Langlands correspondence and Gaitsgory-Lurie conjecture via S-duality.
- This would furnish a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.
\dagger. E. Witten, Integrable Lattice Models From Gauge Theory, arXiv:1611.00592
\ddagger. E. Witten, Fivebranes and Knots, Quantum Topology 3 (1) (2012) 1-137

This talk is based on

- M. Ashwinkumar, M.-C. Tan, Unifying Lattice Models, Links and Quantum Geometric Langlands via Branes in String Theory, arXiv:1910.01134

Summary of results

- We begin with this brane configuration in type IIA string theory, where we have a stack of N D4-branes.
- Here, the D4-brane worldvolume is $Y \times \mathbb{R}_{+} \times \Sigma$, with boundary conditions determined by an NS5-brane.
- Moreover, the worldvolume theory is partially twisted along $Y \times \mathbb{R}_{+}$.
- This twisting gives us 4 supercharges that are scalar along V. We take a linear combination of 2 of them, denoted $\mathcal{Q}=\kappa Q+\lambda Q^{\prime}$ (for $\kappa, \lambda \in \mathbb{C}$), to define our theory.
- We have a \mathcal{Q}-invariant action

$$
S=\{\mathcal{Q}, \widetilde{V}\}
$$

$$
\begin{equation*}
+\frac{w-\bar{w}}{4} \frac{i \widetilde{\psi}}{2 \pi} \int_{\partial M} d z_{w} \wedge \operatorname{Tr}\left(\mathcal{A}_{w} \wedge d \mathcal{A}_{w}+\frac{2}{3} \mathcal{A}_{w} \wedge \mathcal{A}_{w} \wedge \mathcal{A}_{w}\right) \tag{2.1}
\end{equation*}
$$

that is \mathcal{Q}-exact up to a 4 d Chern-Simons action, where $\widetilde{\Psi}$ and w are variable parameters depending on $\left(g_{5}, \kappa, \lambda\right)$ and (κ, λ), respectively.

- This action can be written as that of a 1d gauged A-model, with target space the space of all possible \mathcal{A}_{w} fields, and the 4d Chern-Simons action as superpotential.
- This 1d A-model was shown by Witten§ to reduce exactly to a path integral over the boundary action, with integration cycle, $\widetilde{\Gamma}$, determined by localization equations.
- In other words, we end up (after a change of variables) with

$$
\begin{equation*}
\int_{\widetilde{\Gamma}} D \mathcal{A} \exp \left(\frac{\widetilde{\Psi} \operatorname{Im}(w)}{4 \pi} \int_{\partial M} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)\right) \tag{2.2}
\end{equation*}
$$

which for $\frac{\widetilde{\psi} \operatorname{Im}(w)}{2}=\frac{i}{\hbar}$, is the path integral for 4 d Chern-Simons theory.
§. A New Look at the Path Integral of Quantum Mechanics, arXiv:1009.6032

- The \mathcal{Q}-invariant localization equations can be written as a gradient flow equation associated with the 1d model, i.e.,

$$
\begin{equation*}
\frac{d x^{i}}{d \tau}=-g^{i \bar{j}} \frac{\partial \bar{W}}{\partial x^{\bar{j}}} \tag{2.3}
\end{equation*}
$$

for

$$
\begin{equation*}
W \sim i \int_{Y \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{2.4}
\end{equation*}
$$

where x^{i} is a coordinate in target space, and $g_{i j}$ is its metric.

- Such a gradient flow equation defines an integration cycle $\widetilde{\Gamma}$ for the path integral over (2.2) that ensures its convergence because the real part of the action is fixed along the cycle. That is, the path integral for 4d Chern-Simons theory is convergent for all \hbar.
- The D4-NS5 system we have used is T-dual to Witten's D3-NS5 system that realizes 3d analytically-continued Chern-Simons theory.
- This holds at the level of gauge theory as well, due to scale-invariance of the 5d topological-holomorphic theory along Σ, if we choose $\Sigma=\mathbb{R} \times S^{1}$.
- The lattice in 4d Chern-Simons theory is furnished by Wilson lines realized by the ends of fundamental strings. Therefore, the partition function of the lattice model is equivalent to link invariants of analytically-continued 3d Chern-Simons theory.
- Replacing \mathbb{R}_{+}with an interval / that ends on appropriate branes and further shrinking $Y=C$, we obtain a 2d A-model on $\mathbb{R} \times I$ with target Hitchin's moduli space, $\mathcal{M}_{H}(G, C)$.
- Under IIB S-duality, the effective 2d A-model with $\mathcal{M}_{H}(G, C)$ as target space is dualized to another A-model, with target $\mathcal{M}_{H}\left({ }^{L} G, C\right)$, i.e., Hitchin's moduli space for the dual gauge group ${ }^{L} G$.
- We are thus able to relate integrable lattice models, link invariants in analytically-continued 3d CS theory, and the quantum geometric Langlands correspondence that maps twisted D-modules to twisted D-modules.
- In fact, due to the presence of the lattice of Wilson lines, we have a generalized version of the quantum geometric Langlands correspondence, whereby twisted D-modules involve representations of quantum groups.
- An additional consequence of type IIB S-duality will turn out to be S-duality of 3d analytically-continued Chern-Simons theory.
- We also discuss how the Gaitsgory-Lurie conjecture (that relates representations of $U_{q}(G)$ to Whittaker D-modules on the affine Grassmannian of ${ }^{L} G$) and its vertex algebra incarnation are realized in our setup.
- Finally, we speculate on how this could lead to the realization of the quantum q-Langlands correspondence via string dualities.

$$
\mathrm{KL}_{\Psi}(G) / \widehat{\mathfrak{g}} \Psi-h^{\vee}-\bmod _{C}^{0} \quad \xrightarrow{\mathcal{S}^{\prime}} \quad \mathrm{Whit}_{\frac{1}{W}}\left({ }^{L} G\right) / \mathcal{W}_{\frac{1}{W}}\left({ }^{L} \mathfrak{g}\right)-\bmod _{C}^{0}
$$

$$
\begin{aligned}
& \mathcal{T}^{-1} \uparrow \mathcal{S}^{\prime} \mathcal{T S}^{\prime-1} \uparrow \\
& 4 \mathrm{dCS}_{\widetilde{W}}\left(G_{\mathbb{C}}\right) \quad \xrightarrow{\mathcal{T} \mathrm{T}} 3 \mathrm{dCS}_{\Psi+1}\left(G_{\mathbb{C}}\right) \quad \xrightarrow{\mathcal{S}^{\prime}} \quad 3 \mathrm{dCS}_{\frac{1}{\Psi+1}}\left({ }^{L} G_{\mathbb{C}}\right) \\
& c \rightarrow 0 \downarrow \quad c \rightarrow 0 \downarrow \\
& D-\bmod _{\Psi+1}^{U_{q^{\prime}}\left(G_{\rho^{i}}\right), \rho^{i}}(\mathcal{M}(G, C)) \xrightarrow{\mathcal{S}^{\prime}} \operatorname{D-mod}_{\frac{1}{\Psi+1}}^{\left.U_{L_{\boldsymbol{q}^{\prime}}} L^{L} G_{L \rho^{i}}\right),,^{L} \rho^{i}}\left(\mathcal{M}\left({ }^{L} G, C\right)\right)
\end{aligned}
$$

A relationship between 4d Chern-Simons theory, 3d S-dual Chern-Simons theories, the quantum group modification of quantum geometric Langlands, and the Gaitsgory-Lurie conjecture. Here, $q^{\prime}=\exp \left(\frac{\pi i}{\Psi+1}\right)$.

Now to explain our results

4d Chern-Simons theory from partial twist of D4-NS5 system

D4-brane worldvolume theory with NS5 boundary conditions

The low energy worldvolume theory of N coincident D4-branes on a flat manifold, \mathcal{M}, involves fields which transform as reps. of $S O_{\mathcal{M}}(5) \times S O_{R}(5):$

$$
\begin{align*}
& A_{M}:(\mathbf{5}, \mathbf{1}) \\
& \phi_{\widehat{M}}:(\mathbf{1}, \mathbf{5}) \tag{4.1}\\
& \rho_{A \widehat{A}}:(\mathbf{4}, \mathbf{4})
\end{align*}
$$

with the classical action of $5 \mathrm{~d} \mathcal{N}=2 \mathrm{SYM}$:

$$
\begin{aligned}
S=-\frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x \operatorname{Tr}(& \frac{1}{4} F_{M N} F^{M N}+\frac{1}{2} D_{M} \phi_{\widehat{M}} D^{M} \phi^{\widehat{M}}+\frac{1}{4}\left[\phi_{\widehat{M}}, \phi_{\widehat{N}}\right]\left[\phi^{\widehat{M}}, \phi^{\widehat{N}}\right] \\
& \left.+i \rho^{A \widehat{A}}\left(\Gamma^{M}\right)_{A}{ }^{B} D_{M} \rho_{B \widehat{A}}+\rho^{A \widehat{A}}\left(\Gamma^{\widehat{M}}\right)_{\widehat{A}} \widehat{B}\left[\phi_{\widehat{M}}, \rho_{A \widehat{B}}\right]\right)
\end{aligned}
$$

It is invariant under the SUSY transformations

$$
\begin{align*}
\delta A_{M}= & 2 \zeta^{A \widehat{A}}\left(\Gamma_{M}\right)_{A}{ }^{B} \rho_{B \widehat{A}} \\
\delta \phi^{\widehat{M}}= & -i 2 \zeta^{A \widehat{A}}\left(\Gamma^{\widehat{M}}\right)_{\widehat{A}} \widehat{B} \rho_{A \widehat{B}} \\
\delta \rho_{A \widehat{A}}= & \left(\Gamma^{M}\right)_{A}{ }^{B} D_{M} \phi^{\widehat{M}}\left(\Gamma_{\widehat{M}}\right)_{\widehat{A}} \widehat{B} \zeta_{B \widehat{B}}-\frac{i}{2}\left(\Gamma_{\widehat{M}}\right)_{\widehat{A}} \widehat{B}\left(\Gamma_{\widehat{N}}\right)_{\widehat{B} \widehat{C}}\left[\phi^{\widehat{M}}, \phi^{\widehat{N}}\right] \zeta_{A}{ }_{C}{ }^{\widehat{C}} \\
& -\frac{i}{2} F^{M N}\left(\Gamma_{M N}\right)_{A B} \zeta_{\widehat{A}}^{B} . \tag{4.2}
\end{align*}
$$

The stack of D4-branes shall be taken to end on an NS5-brane in the following type IIA brane configuration in flat Euclidean space

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
D4	\times	\times	\times	\times	\times					
NS5	\times	\times		\times	\times	\times	\times			

where, e.g., an empty entry under ' 3 ' indicates that the brane is located at $x^{3}=0$. The scalar fields $\left\{\phi_{\widehat{1}}, \phi_{\widehat{2}}, \phi_{\widehat{3}}, \phi_{\widehat{4}}, \phi_{\hat{5}}\right\}$ are understood to parametrize the $\{6,7,8,9,10\}$ directions, respectively.

The NS5-brane provides boundary conditions for the D4-brane worldvolume theory.

Partial twist

4d Chern-Simons theory on $Y \times \Sigma$ is topological-holomorphic:

- It has diffeomorphism invariance along the 2-manifold denoted Y.
- It has holomorphic dependence on the Riemann surface, Σ.

We can obtain it from the D4-NS5 system, where it affords a partial twist along the D4 worldvoume that leads to a 4d theory with the above properties at its boundary intersection with the NS5 brane.

To this end, we shall take the D4 worldvolume to be $\mathcal{M}=Y \times \mathbb{R}_{+} \times \Sigma$, whereby we wish to realize a topological twist of the D4-brane worldvolume theory along $Y \times \mathbb{R}_{+}$.

This amounts to redefining the $S O_{V}(3)$ rotation group of $V=Y \times \mathbb{R}_{+}$to be the diagonal subgroup

$$
\begin{aligned}
& \qquad S O_{V}(3)^{\prime} \subset S O_{V}(3) \times S O_{R}(3), \\
& \text { where } S O_{R}(3) \subset S O_{R}(5) \text { rotates }\left\{\phi_{\widehat{1}}, \phi_{\widehat{2}}, \phi_{\widehat{3}}\right\}
\end{aligned}
$$

Specifically, we are studying the following type IIA configuration:

The twist arises in this configuration because $V \subset \tilde{V}=Y \times \mathbb{R}$, where \tilde{V} is the zero section of the cotangent bundle $T^{*} \tilde{V}$, and 'coordinates' normal to \tilde{V} in $T^{*} \tilde{V}$ must be components of one-forms, as we shall obtain via twisting. ${ }^{\text {I }}$
9. M. Bershadsky, C. Vafa, V. Sadov, D-branes and topological field theories, Nuclear Physics B 463 (2-3) (1996) 420-434

Let us now compute the partial twist. Having performed the reductions $\mathrm{SO}_{\mathcal{M}}(5) \rightarrow S O_{V}(3) \times S O_{\Sigma}(2)$ and $S O_{R}(5) \rightarrow S O_{R}(3) \times S O_{R}(2)$, we denote the relevant indices as

	$S O_{V}(3)$	$S O_{R}(3)$	$S O_{\Sigma}(2)$	$S O_{R}(2)$
Vector	$\alpha, \beta, \gamma, \ldots$	$\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma}, \ldots$	m, n, p, \ldots	$\widehat{m}, \widehat{n}, \widehat{p}, \ldots$
Spinor	$\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \ldots$	$\widehat{\bar{\alpha}}, \widehat{\beta}, \widehat{\bar{\gamma}}, \ldots$	$\bar{m}, \bar{n}, \bar{p}, \ldots$	$\widehat{\bar{m}}, \widehat{\bar{n}}, \widehat{\bar{p}}, \ldots$

Partial twisting amounts to setting the hatted $S O_{R}(3)$ indices to unhatted indices.

As a result, the scalar fields $\left\{\phi_{\widehat{1}}, \phi_{2}, \phi_{\hat{3}}\right\}$ now transform as the components $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ of a one-form on $Y \times \mathbb{R}_{+}$.

In addition, the spinor fields $\rho_{A \widehat{A}}=\rho_{\bar{\alpha} \overline{\bar{m}} \widehat{\bar{\alpha}} \widehat{\bar{m}}}$ can be expanded after twisting as

$$
\begin{equation*}
\rho_{\bar{\alpha} \bar{m} \bar{\beta} \widehat{\bar{m}}}=\epsilon_{\bar{\alpha} \bar{\beta}} \eta_{\bar{m} \widehat{\bar{m}}}+\left(\sigma^{\alpha}\right)_{\bar{\alpha} \bar{\beta}} \psi_{\alpha \bar{m} \widehat{\bar{m}}}, \tag{4.3}
\end{equation*}
$$

where $\eta_{\bar{m} \hat{\bar{m}}}$ and $\psi_{\alpha \bar{m} \widehat{\bar{m}}}$ transform as $\mathbf{1}$ and $\mathbf{3}$ under $S O_{V}(3)^{\prime}$.
Here we have used the antisymmetric matrix $\epsilon_{\bar{\alpha} \bar{\beta}}$ and the symmetric matrix $\left(\sigma^{\alpha}\right)_{\bar{\alpha} \bar{\gamma}}=\left(\sigma^{\alpha}\right)_{\bar{\alpha}}{ }^{\bar{\beta}} \epsilon_{\bar{\beta} \bar{\gamma}}$, where ϵ is the Levi-Civita symbol and σ^{α} are the Pauli matrices.

Likewise, we can expand the SUSY transformation parameters $\zeta_{A \widehat{A}}=\zeta_{\bar{\alpha} \bar{m} \widehat{\bar{\alpha}} \widehat{\bar{m}}}$ as

$$
\begin{equation*}
\zeta_{\bar{\alpha} \bar{m} \bar{\beta} \hat{\bar{m}}}=\epsilon_{\bar{\alpha} \bar{\beta}} \zeta_{\bar{m} \widehat{\bar{m}}}+\left(\sigma^{\alpha}\right)_{\bar{\alpha} \bar{\beta}} \zeta_{\alpha \bar{m} \hat{\bar{m}}} . \tag{4.4}
\end{equation*}
$$

Substituting these expansions into the SUSY transformations, we can obtain the partially twisted SUSY transformations.

However, we wish to pick a supercharge, \mathcal{Q}, that is scalar along V, w.r.t. which we shall eventually localize the theory.

We shall consider the transformations associated with only ζ_{11} and ζ_{21}, and take a linear combination of the corresponding supercharges to be \mathcal{Q}.

This choice will eventually lead to localization equations that define an integration cycle for 4 d Chern-Simons theory such that its path integral is convergent.

Let $\zeta_{11}=\kappa$ and $\zeta_{21}=\lambda$, where $\kappa, \lambda \in \mathbb{C}$. The supercharge, \mathcal{Q}, generates the SUSY transformations

$$
\begin{aligned}
& \delta \phi_{\alpha}=2 \kappa \psi_{\alpha 22}+2 \lambda \psi_{\alpha 12} \quad \delta \eta_{12}=-i \lambda\left(D_{4}-i D_{5}\right)\binom{\phi_{\widehat{\wedge}}}{+i \phi_{\widehat{\imath}}} \\
& \delta A_{4}=2 i \kappa \eta_{12}+2 i \lambda \eta_{22} \quad \delta \eta_{21}=-i \lambda\left(F_{45}-\left[\begin{array}{c}
\phi_{4} \\
\phi_{5}
\end{array}\right]+D_{\beta} \phi^{\beta}\right) \\
& \delta A_{5}=-2 \kappa \eta_{12}+2 \lambda \eta_{22} \quad \delta \eta_{22}=-i \kappa\left(D_{4}+i D_{5}\right)\left(\underset{4}{\phi}+i \phi_{5}\right) \\
& \delta \phi_{4}=2 \kappa \eta_{21}+2 \lambda \eta_{11} \\
& \delta \phi_{5}=2 i \kappa \eta_{21}+2 i \lambda \eta_{11} \\
& \delta \psi_{\alpha 12}=\kappa\left(\left[\phi_{\alpha}, \phi_{4}+i \phi_{5}\right]-i D_{\alpha}\left(\phi_{4}+i \phi_{5}\right)\right) \\
& \delta \psi_{\alpha 22}=\kappa\left(\left[\phi_{\alpha}, \phi_{4}+i \phi_{5}\right]+i D_{\alpha}\left(\phi_{4}+i \phi_{5}\right)\right) \\
& \delta \psi_{\alpha 11}=\kappa \varepsilon_{\alpha \beta \gamma}\left(\frac{i}{2} F^{\beta \gamma}-\frac{i}{2}\left[\phi^{\beta}, \phi^{\gamma}\right]-D^{\beta} \phi^{\gamma}\right)+\lambda\left(F_{\alpha 4}-i F_{\alpha 5}+i\left(D_{4}-i D_{5}\right) \phi_{\alpha}\right) \\
& \delta \psi_{\alpha 21}=\kappa\left(-F_{\alpha 4}-i F_{\alpha 5}+i\left(D_{4}+i D_{5}\right) \phi_{\alpha}\right)+\lambda \varepsilon_{\alpha \beta \gamma}\left(\frac{i}{2} F^{\beta \gamma}-\frac{i}{2}\left[\phi^{\beta}, \phi^{\gamma}\right]+D^{\beta} \phi^{\gamma}\right)
\end{aligned}
$$

We perform the following convenient redefinitions:

$$
\begin{array}{cl}
\sigma=\frac{1}{\sqrt{2}}\left(\phi_{\widehat{5}}-i \phi_{\widehat{4}}\right), & \bar{\sigma}=\frac{1}{\sqrt{2}}\left(\phi_{\widehat{5}}+i \phi_{\widehat{4}}\right) \\
\chi_{\alpha}=\frac{(1-i)}{2^{5 / 4}} \psi_{\alpha 11}+\frac{(-1-i)}{2^{5 / 4}} \psi_{\alpha 21}, & \widetilde{\chi}_{\alpha}=\frac{(-1-i)}{2^{5 / 4}} \psi_{\alpha 11}+\frac{(1-i)}{2^{5 / 4}} \psi_{\alpha 21} \\
\eta=\frac{(1+i)}{2^{1 / 4}} \eta_{11}+\frac{(1-i)}{2^{1 / 4}} \eta_{21}, & \widetilde{\eta}=\frac{(-1+i)}{2^{1 / 4}} \eta_{11}+\frac{(-1-i)}{2^{1 / 4}} \eta_{21} \\
\psi_{\alpha}=\frac{(1+i)}{2^{3 / 4}} \psi_{\alpha 12}+\frac{(-1+i)}{2^{3 / 4}} \psi_{\alpha 22}, & \widetilde{\psi}_{\alpha}=\frac{(-1+i)}{2^{3 / 4}} \psi_{\alpha 12}+\frac{(1+i)}{2^{3 / 4}} \psi_{\alpha 22} \\
r=\frac{(1-i)}{2^{3 / 4}} \eta_{12}+\frac{(1+i)}{2^{3 / 4}} \eta_{22}, & \widetilde{\Upsilon}=\frac{(-1-i)}{2^{3 / 4}} \eta_{12}+\frac{(-1+i)}{2^{3 / 4}} \eta_{22} \\
u=\frac{1}{2^{1 / 4}}[(1+i) \kappa+(1-i) \lambda], & v=\frac{1}{2^{1 / 4}}[(-1+i) \kappa+(-1-i) \lambda] \tag{4.7}
\end{array}
$$

The supersymmetry transformations are then (upon rescaling δ)

$$
\begin{array}{cc}
\delta_{t} A_{\alpha}=i \psi_{\alpha}+i t \tilde{\psi}_{\alpha} & \delta_{t} \eta=t\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)+[\bar{\sigma}, \sigma] \\
\delta_{t} \phi_{\alpha}=i t \psi_{\alpha}-i \widetilde{\psi}_{\alpha} & \delta_{t} \tilde{\eta}=-\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)+t[\bar{\sigma}, \sigma] \\
\delta_{t} A_{4}=i \Upsilon+i t \widetilde{\Upsilon} & \delta_{t} \psi_{\alpha}=D_{\alpha} \sigma+t\left[\phi_{\alpha}, \sigma\right] \tag{4.8}\\
\delta_{t} A_{5}=i t \Upsilon-i \widetilde{\Upsilon} & \delta_{t} \widetilde{\psi}_{\alpha}=t D_{\alpha} \sigma-\left[\phi_{\alpha}, \sigma\right] \\
\delta_{t} \sigma=0 & \delta_{t} \Upsilon=D_{4} \sigma+t D_{5} \sigma \\
\delta_{t} \bar{\sigma}=i \eta+i t \tilde{\eta} & \delta_{t} \widetilde{\Upsilon}=t D_{4} \sigma-D_{5} \sigma \\
\delta_{t} \chi_{\alpha}=\frac{1}{2}\left[F_{\alpha 4}+D_{5} \phi_{\alpha}+\frac{1}{2} \varepsilon_{\alpha \beta \gamma}\left(F^{\beta \gamma}-\left[\phi^{\beta}, \phi^{\gamma}\right]\right)\right]+\frac{1}{2} t\left[F_{\alpha 5}-D_{4} \phi_{\alpha}+\varepsilon_{\alpha \beta \gamma} D^{\beta} \phi^{\gamma}\right] \\
\delta_{t} \widetilde{\chi}_{\alpha}=\frac{1}{2} t\left[F_{\alpha 4}+D_{5} \phi_{\alpha}-\frac{1}{2} \varepsilon_{\alpha \beta \gamma}\left(F^{\beta \gamma}-\left[\phi^{\beta}, \phi^{\gamma}\right]\right)\right]-\frac{1}{2}\left[F_{\alpha 5}-D_{4} \phi_{\alpha}-\varepsilon_{\alpha \beta \gamma} D^{\beta} \phi^{\gamma}\right]
\end{array}
$$

so we now have $\mathcal{Q}=\mathcal{Q}_{L}+t \mathcal{Q}_{R}, t=v / u$. Henceforth, we write $\delta \chi_{\alpha}=\mathcal{V}_{\alpha}(t)$ and $\delta \widetilde{\chi}_{\alpha}=t \widetilde{\mathcal{V}}_{\alpha}(t)$.

The transformations now take a form very similar to those of GL-twisted $\mathcal{N}=4$ SYM, as considered by Kapustin and Witten.

In fact, taking $\Sigma=\mathbb{C}^{\times}$, whereby the x^{5} direction is S^{1}, we can dimensionally reduce along the latter to obtain precisely the transformations of Kapustin and Witten via $A_{5} \rightarrow \phi_{4}, \chi_{\alpha} \rightarrow \chi_{\alpha 4}^{+}$, $\widetilde{\chi}_{\alpha} \rightarrow \chi_{\alpha 4}^{-}, \psi_{4} \rightarrow \Upsilon, \widetilde{\psi}_{4} \rightarrow \widetilde{\Upsilon}$.

To construct an action suitable for localization, we require that it is \mathcal{Q}-exact up to some metric-independent term.

To this end we require that the rescaled supersymmetry variation

$$
\begin{equation*}
\delta_{t}=\delta_{L}+t \delta_{R} \tag{4.9}
\end{equation*}
$$

is nilpotent up to gauge transformations. This is achieved by introducing auxiliary fields $\left(H_{\alpha}, H_{\alpha}, P\right)$ that modify the SUSY variations to

$$
\begin{array}{ll}
\delta_{t} \chi_{\alpha}=H_{\alpha} & \delta \bar{\sigma}=i \eta+i t \tilde{\eta} \\
\delta_{t} \widetilde{\chi}_{\alpha}=\widetilde{H}_{\alpha} & \delta \eta=t P+[\bar{\sigma}, \sigma] \\
\delta_{t} H_{\alpha}=-i\left(1+t^{2}\right)\left[\sigma, \chi_{\alpha}\right] & \delta \widetilde{\eta}=--P+t[\bar{\sigma}, \sigma] \\
\delta_{t} \widetilde{H}_{\alpha}=-i\left(1+t^{2}\right)\left[\sigma, \widetilde{\chi}_{\alpha}\right] & \delta P=-i t[\sigma, \eta]+i[\sigma, \widetilde{\eta}]
\end{array}
$$

We shall require that our action be invariant under the original transformations on-shell.

As a result, for any field Φ, we have the SUSY algebra

$$
\begin{equation*}
\delta_{t}^{2} \Phi=-i\left(1+t^{2}\right) \mathcal{L}_{\sigma}(\Phi) \tag{4.11}
\end{equation*}
$$

where $\mathcal{L}_{\sigma}(\Phi)$ is the change in Φ due to a gauge transformation generated by σ, to first order.

We shall define the \mathcal{Q}-exact part of our action to be $\delta_{t} \widetilde{V}$, where $\widetilde{V}=\widetilde{V}_{1}+\widetilde{V}_{2}$.

Here,

$$
\widetilde{V}_{1}=\frac{2}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x\left(\frac{4}{1+t^{2}}\right) \operatorname{Tr}\left(\chi_{\alpha}\left(\frac{1}{2} H^{\alpha}-\mathcal{V}^{\alpha}\right)+\widetilde{\chi}\left(\frac{1}{2} \widetilde{H}^{\alpha}-t \widetilde{\mathcal{V}}^{\alpha}\right)\right)
$$

while

$$
\widetilde{V}_{2}=-\frac{1}{2 t}\left(\delta_{L}-t \delta_{R}\right) \widetilde{V}_{2}^{\prime}
$$

with

$$
\widetilde{V}_{2}^{\prime}=\frac{2}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x \operatorname{Tr}\left(-\frac{1}{2} \eta \widetilde{\eta}-i \bar{\sigma}\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)\right) .
$$

The \mathcal{Q}-exact action, upon integrating out auxiliary fields, takes the form (suppressing fermions)

$$
\begin{aligned}
S_{1}= & \frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} x \operatorname{Tr}\left(\frac{-4}{1+t^{2}}\left(\mathcal{V}^{\alpha} \mathcal{V}_{\alpha}+t^{2} \tilde{\mathcal{V}}^{\alpha} \tilde{\mathcal{V}}_{\alpha}\right)-\left(F_{45}+D_{\alpha} \phi^{\alpha}\right)^{2}\right. \\
& \left.-2 D_{m} \bar{\sigma} D^{m} \sigma+[\bar{\sigma}, \sigma]^{2}-2\left[\phi_{\alpha}, \sigma\right]\left[\phi^{\alpha}, \bar{\sigma}\right]+2 \partial_{\alpha}\left(\bar{\sigma} D^{\alpha} \sigma\right)+\ldots\right)
\end{aligned}
$$

The first line is just

$$
\begin{aligned}
&-\frac{1}{g_{5}{ }^{2}} \int_{\mathcal{M}} d^{5} \times \operatorname{Tr}\left(F_{\alpha m} F^{\alpha m}+F_{45} F^{45}+\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta}+D_{m} \phi_{\alpha} D^{m} \phi^{\alpha}+D_{\alpha} \phi_{\beta} D^{\alpha} \phi^{\beta}\right. \\
&\left.+\frac{1}{2}\left[\phi_{\alpha}, \phi_{\beta}\right]\left[\phi^{\alpha}, \phi^{\beta}\right]+\partial_{\alpha}\left(\phi^{\alpha} D_{\beta} \phi^{\beta}\right)-\partial_{\gamma}\left(\phi_{\delta} D^{\delta} \phi^{\gamma}\right)+2 \partial_{\alpha}\left(F_{45} \phi^{\alpha}\right)\right)+S_{t}
\end{aligned}
$$

Apart from the t-dependent term S_{t} and total derivative terms, we have the standard terms of $5 \mathrm{~d} \mathcal{N}=2 \mathrm{SYM}$ (partially twisted).
S_{t} takes the form

$$
\begin{align*}
S_{t}=\frac{1}{g_{5}^{2}} \int_{\mathcal{M}} d^{5} \times \varepsilon^{\alpha \beta \gamma} \operatorname{Tr} & \left(2\left(\frac{t-t^{-1}}{t+t^{-1}}\right)\left(\frac{1}{2} F_{\alpha 4} F_{\beta \gamma}+\frac{1}{2} \partial_{\alpha}\left(\phi_{\beta} D_{4} \phi_{\gamma}\right)+\partial_{\alpha}\left(F_{\beta 5} \phi_{\gamma}\right)\right)\right. \\
& \left.-\left(\frac{4}{t+t^{-1}}\right)\left(\frac{1}{2} F_{\alpha 5} F_{\beta \gamma}+\frac{1}{2} \partial_{\alpha}\left(\phi_{\beta} D_{5} \phi_{\gamma}\right)+\partial_{\alpha}\left(F_{\beta 4} \phi_{\gamma}\right)\right)\right) \tag{4.12}
\end{align*}
$$

We choose to cancel this term by adding $-S_{t}$ to the action.

Boundary conditions/action

We may obtain the explicit (deformed) NS5 boundary data at the origin of $\mathbb{R}_{+}\left(x^{3}=0\right)$ by lifting them from GL-twisted $4 \mathrm{~d} \mathcal{N}=4$ SYM. Firstly, we obtain the Dirichlet boundary conditions

$$
\begin{equation*}
\phi_{3}=\left.0\right|_{\partial \mathcal{M}}, \quad \sigma=\left.0\right|_{\partial \mathcal{M}}, \quad \bar{\sigma}=\left.0\right|_{\partial \mathcal{M}} \tag{4.13}
\end{equation*}
$$

whereby the total derivative terms in the \mathcal{Q}-exact action are just zero.

The fields $\left\{\phi_{1}, \phi_{2}\right\}$ and $\left\{A_{1}, A_{2}, A_{4}\right\}$ obey generalized Neumann boundary conditions, while A_{3} obeys Dirichlet boundary condition.

These conditions are implied by including the boundary action
$S_{\partial \mathcal{M}}=\frac{1}{g_{5}^{2}} \int_{\partial M} d^{4} \times \operatorname{Tr}\left(\left(t+t^{-1}\right)\left(\frac{1}{2} \varepsilon^{\tilde{\alpha} \tilde{\beta}} D_{5} \phi_{\tilde{\alpha}} \phi_{\tilde{\beta}}\right)+\left(\frac{t+t^{-1}}{t-t^{-1}}\right) \varepsilon^{i j k}\left(A_{i} \partial_{j} A_{k}+\frac{2}{3} A_{i} A_{j} A_{k}\right)\right)$,
where $\tilde{\alpha}, \tilde{\beta}=1,2$ and $i, j, k=1,2,4$.

In addition, the boundary conditions on the fermionic fields are projection conditions.

Also, the 4d boundary conditions were shown to imply that $\delta\left(A_{i}+w \phi_{i}\right)=0$ for $w=\frac{t-t^{-1}}{2}$. The lift of this to 5 d gives

$$
\delta\left(A_{\tilde{\alpha}}+w \phi_{\tilde{\alpha}}\right)=0
$$

and

$$
\delta\left(A_{4}+w A_{5}\right)=0
$$

Finally, the boundary conditions restrict the complex parameter t such that $|t|=1$.

Localization to 4d Chern-Simons theory

Our total action now takes the form

$$
\begin{equation*}
S=\delta_{t} \widetilde{V}-S_{t}+S_{\partial \mathcal{M}} \tag{4.14}
\end{equation*}
$$

In fact,

$$
-S_{t}+S_{\partial \mathcal{M}}=\frac{w-\bar{w}}{4} \frac{i \widetilde{\Psi}}{2 \pi} \int_{\partial M} d z_{w} \wedge \operatorname{Tr}\left(\mathcal{A}_{w} \wedge d \mathcal{A}_{w}+\frac{2}{3} \mathcal{A}_{w} \wedge \mathcal{A}_{w} \wedge \mathcal{A}_{w}\right)
$$

where the real parameter

$$
\widetilde{\Psi}=\frac{4 \pi i}{g_{5}^{2}}\left(\frac{t-t^{-1}}{t+t^{-1}}-\frac{t+t^{-1}}{t-t^{-1}}\right)
$$

Here, we have defined the complex coordinates z_{w}, \bar{z}_{w} with corresponding derivatives

$$
\begin{align*}
& \partial_{z_{w}}=\frac{1}{2}\left(\partial_{4}+\bar{w} \partial_{5}\right) \tag{4.15}\\
& \partial_{\bar{z}_{w}}=\frac{1}{2}\left(\partial_{4}+w \partial_{5}\right),
\end{align*}
$$

and the complexified gauge fields

$$
\begin{equation*}
\mathcal{A}_{w \tilde{\alpha}}=A_{\tilde{\alpha}}+w \phi_{\tilde{\alpha}} \tag{4.16}
\end{equation*}
$$

(for $\tilde{\alpha}=1,2$) and

$$
\begin{equation*}
\mathcal{A}_{w \bar{z}_{w}}=\frac{1}{2}\left(A_{4}+w A_{5}\right) \tag{4.17}
\end{equation*}
$$

that are \mathcal{Q}-invariant along the boundary. Hence, the non- \mathcal{Q}-exact 4 d CS term is \mathcal{Q}-invariant, and we have a \mathcal{Q}-invariant $\mathbf{5 d}$ topological-holomorphic theory.

In the localization analysis, we exclude $t= \pm 1$ (as $w \neq 0$ is necessary for to obtain 4d CS) and $t= \pm i$ (whereby t can be eliminated from supersymmetry transformations) at the classical level.

Scaling up the \mathcal{Q}-exact terms in the action, the path integral localizes to

$$
\begin{align*}
\mathcal{V}_{\alpha}(t) & =0 \\
\tilde{\mathcal{V}}_{\alpha}(t) & =0 \tag{4.18}\\
\mathcal{V}_{0} & =0,
\end{align*}
$$

where $\mathcal{V}_{0}=F_{45}+D_{\alpha} \phi^{\alpha}$. The remaining localization equations (for σ) are trivial.

In fact, the 5d partially twisted theory can be interpreted as a 1d gauged \mathbf{A}-model, with target space \mathfrak{A}, the space of all \mathcal{A}_{w} fields, and gauge group H, the space of maps from $Y \times \Sigma$ to $U(N)$.

Let

$$
\begin{equation*}
\mathcal{A}_{\alpha}=A_{\alpha}+i \phi_{\alpha}, \quad \mathcal{A}_{\bar{z}}=\frac{1}{2}\left(A_{4}+i A_{5}\right) \tag{4.19}
\end{equation*}
$$

With the metric

$$
g=-\frac{1}{2 g_{5}^{2}} \int_{Y \times \Sigma} d^{2} z d^{2} \times \operatorname{Tr}\left(\delta \mathcal{A}^{\alpha} \otimes \underset{\alpha}{\mathcal{A}} \tilde{\alpha}+\delta \overline{\mathcal{A}}^{\sim} \otimes \underset{\alpha}{\mathcal{A}}+4 \delta A_{\bar{z}} \otimes \delta A_{z}+4 \delta A_{z} \otimes \delta A_{\bar{z}}\right)
$$

moment map

$$
\mu=-\frac{1}{g_{5}^{2}}\left(D_{\widetilde{\alpha}} \phi^{\widetilde{\alpha}}+F_{45}\right),
$$

and superpotential

$$
W=-\frac{e^{i \alpha^{\prime}}}{g_{5}^{2}} \int_{Y \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)
$$

the partially-twisted 5 d action can be put in the form of the 1d H-gauged A-model. In particular, the 5d bulk boson action is equivalent to

$$
\begin{aligned}
& \left.-g_{i \bar{\jmath}} F^{i} \bar{F}^{\bar{\jmath}}+\frac{1}{2} F^{i} \partial_{i} W+\frac{1}{2} \bar{F}^{\bar{\jmath}} \partial_{\bar{\jmath}} \bar{W}\right) \\
& -\frac{1}{e^{2}} \int d \tau \operatorname{Tr}{ }^{\prime}\left(D_{\tau} \widetilde{\phi} D_{\tau} \widetilde{\phi}+2 D_{\tau} \widetilde{\sigma} D_{\tau} \widetilde{\sigma}+[\widetilde{\sigma}, \bar{\sigma}][\widetilde{\sigma}, \widetilde{\sigma}]+2[\widetilde{\phi}, \widetilde{\sigma}][\widetilde{\phi}, \bar{\sigma}]\right. \\
& \left.-D^{2}+2 e^{2} \mu D\right),
\end{aligned}
$$

where $\partial_{\tau}^{A} x^{i}=\partial_{\tau} x^{i}+A_{\tau}^{a} V_{a}^{i}$. Here, x is a map from \mathbb{R}_{+}to \mathfrak{A}, while $V_{a}, a=1, \ldots, \operatorname{dim} H$ are the Killing vector fields generating the H-action

Such a 1d model localizes to its boundary action."
Hence, our 5d theory is equivalent (after $\left.x^{5} \rightarrow \operatorname{Im}(w) x^{5}\right)$ to

$$
\int_{\tilde{\Gamma}} D \mathcal{A} \exp \left(\frac{\tilde{\Psi} \operatorname{Im}(w)}{4 \pi} \int_{\partial M} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right)\right)
$$

where $\widetilde{\Gamma} \subset \mathfrak{A}$ is defined by solutions of $\mathcal{V}_{\alpha}=\widetilde{\mathcal{V}}_{\alpha}=\mathcal{V}_{0}=0$.
We have considered the case that there is no fermion number anomaly, so the partition function is nonvanishing.
II. E. Witten, A New Look at the Path Integral of Quantum Mechanics, arXiv:1009.6032

For $\frac{\tilde{\psi} \operatorname{Im}(w)}{2}=\frac{i}{\hbar}$, this is the path integral for 4 d Chern-Simons theory, defined beyond perturbation theory with integration cycle $\widetilde{\Gamma}$.

Convergence is ensured by $\widetilde{\Gamma}$ if we tune t to ± 1 by adding irrelevant \mathcal{Q}-exact terms to the action prior to localization. To see this, note that $\mathcal{V}_{\alpha}=0$ and $\widetilde{\mathcal{V}}_{\alpha}=0$ can be rewritten (for any $t \in \mathbb{R}$) via

$$
\begin{equation*}
t=\frac{\cos \alpha^{\prime}-1}{\sin \alpha^{\prime}} \tag{4.22}
\end{equation*}
$$

as

$$
\begin{align*}
& \mathcal{F}_{3 \widetilde{\gamma}}=-e^{-i \alpha^{\prime}} 2 \varepsilon_{\widetilde{\gamma}}^{\widetilde{\alpha}} \overline{\mathcal{F}}_{\widetilde{\alpha} z} \\
& \mathcal{F}_{3 \bar{z}}=-\frac{1}{4} e^{-i \alpha^{\prime}} \varepsilon^{\widetilde{\beta}} \overline{\mathcal{F}}_{\widetilde{\beta} \widetilde{\gamma}}, \tag{4.23}
\end{align*}
$$

where $\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}=1,2$.

These are gradient flow equations; in the gauge $A_{3}=0$ (with $x^{3}=\tau$) they are

$$
\begin{equation*}
\frac{d x^{i}}{d \tau}=-g^{i \bar{j}} \frac{\partial \bar{W}}{\partial x^{\bar{j}}} \tag{4.24}
\end{equation*}
$$

Now, $\operatorname{Im}(W)$ is conserved along any gradient flow. For $t= \pm 1$,

$$
\begin{equation*}
W= \pm \frac{i}{g_{5}^{2}} \int_{Y \times \Sigma} d z \wedge \operatorname{Tr}\left(\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right) \tag{4.25}
\end{equation*}
$$

Hence, the real part of the argument of the exponent of the 4d CS path integral we derived is conserved along gradient flows. Also, by setting $\mathcal{A} \in$ Crit W at infinity, means that this real part is finite. Thus, the path integral converges, since we integrate over the Lefschetz thimble, $\widetilde{\Gamma}$.

To obtain lattice, we use F-strings ending on D4-brane boundary to realize Wilson lines. The worldlines of the endpoints of these strings realize the desired \mathcal{Q}-invariant Wilson lines, given by

$$
\begin{equation*}
W=\operatorname{Tr}\left(P e^{\int_{L} \mathcal{A}_{w}}\right) \tag{4.26}
\end{equation*}
$$

where L is a line along $Y \subset \partial \mathcal{M}$.

This means that we may reproduce R-matrices and the YBE with spectral parameter from a type IIA string theory configuration involving branes and fundamental strings!

Relationship with 3d Chern-Simons Theory and the Geometric Langlands Program

T-duality and 3d Chern-Simons Theory

T-duality and 3d Chern-Simons Theory

Recall our brane configuration:

Let $\Sigma=\mathbb{R} \times S^{1}$, with S^{1} (parametrized by x^{5}) having infinitesimal radius. Taking T-duality along this infinitesimal S^{1} decompactifies it to \mathbb{R}.

T-duality and 3d Chern-Simons Theory

In this way, we arrive at the following D3-NS5 configuration

This is precisely the system studied by Witten that realizes analytically-continued 3d Chern-Simons theory on $Y \times \mathbb{R}$, with an appropriate integration cycle defined by the 4d localization equations.**

At the gauge theory level, the relationship between our 5d topological-holomorphic theory and the 4d GL-twisted theory studied by Witten follows from scale invariance along Σ, which amounts to rescaling of S^{1}.

Rescaling S^{1} to be infinitesimally small, the theory is effectively the dimensionally reduced theory, i.e., the 4d GL-twisted theory.

In this manner, we find a relationship between lattice models realized by 4d Chern-Simons theory and link invariants of analytically-continued 3d Chern-Simons theory.

The Geometric Langlands Program

The geometric Langlands correspondence is realized via 4d GL-twisted SYM on a product of Riemann surfaces, $C \times(I \times \mathbb{R})$.

To relate our 5d theory on $Y \times \mathbb{R}_{+} \times \mathbb{R} \times S^{1}$ to the geometric Langlands program, we first identify Y with C, which we take to be of genus $g>1$ (following Kapustin-Witten).

Secondly, we replace \mathbb{R}_{+}by the interval, I, with the boundary condition at infinity replaced by a suitable one at $x^{3}=s$ (equivalently, the D4-NS5 system is modified by an additional D-brane).

Upon T-duality, we obtain a modification of Witten's D3-NS5 setup. Using the topological invariance along C to shrink it, we are led to a sigma model on $I \times \mathbb{R}$ with $\mathcal{M}_{H}(G, C)$ as target.

As before, we may tune $t= \pm 1$ by adding \mathcal{Q}-exact terms, implying that the sigma model is an A-model in symplectic structure ω_{K} of $\mathcal{M}_{H}(G, C)$.

Now, the NS5-brane boundary condition on one end of the interval descends to a space-filling coisotropic brane, \mathcal{B}_{c}, of the sigma model, of type (B, A, A).

At the other end, the boundary condition picked is that of an (A, B, A) brane, \mathcal{B}^{\prime}, that is Lagrangian with respect to the symplectic structure ω_{K}.

In this manner, we arrive at a twisted D-module. Sheaf of $\left(\mathcal{B}_{c}, \mathcal{B}_{c}\right)$ strings $=$ sheaf $\mathcal{D}_{K_{\mathcal{M}}^{1 / 2} \otimes \mathcal{L}^{\psi}}$ of holomorphic differential operators acting on sections of $K_{\mathcal{M}}^{1 / 2} \otimes \mathcal{L}^{\psi}$, where $\mathcal{M}=\mathcal{M}(G, C)$ and where \mathcal{L} is the determinant line bundle on $\mathcal{M}(G, C)$. The $\left(\mathcal{B}_{c}, \mathcal{B}^{\prime}\right)$ strings $=$ sections of a tensor product bundle that includes $K_{\mathcal{M}}^{1 / 2} \otimes \mathcal{L}^{\Psi}$.

```
T-duality and 3d Chern-Simons Theory
The Geometric Langlands Program
S-duality of 3d Analytically-continued Chern-Simons Theory
Modification of the QGL Correspondence
Gaitsgory-Lurie Conjecture
```

Under type IIB S-duality, the parameter $\Psi \rightarrow-\frac{1}{\psi}$. The parameter t is not relevant, and is considered to be invariant under S-duality.

Thus, the ω_{K} A-model with target $\mathcal{M}(G, C)$ is dualized to the ω_{K} A-model with target $\mathcal{M}\left({ }^{L} G, C\right)$. Moreover, twisted D-modules get mapped to twisted D-modules, realizing the quantum Geometric Langlands correspondence, in a manner similar to Kapustin-Witten.

Why do the coisotropic branes map to each other under type IIB S-duality?

Under the $S L(2, \mathbb{Z})$ transformation that maps τ to $\tau+1$, $\theta \rightarrow \theta+2 \pi$, and NS5-brane $\rightarrow(1,1)$-brane. Since the effect is just a shift of θ, the sigma model description of the boundary condition as a B_{c} brane is unaffected.

Under the combination of orientation reversal and S-duality, we have $(1,1) \rightarrow(1,-1) \rightarrow(1,1)$, implying that the B_{c} brane is mapped to another B_{c} brane.

Note that performing an orientation reversal before S-duality also gives $\psi \rightarrow \frac{1}{\psi}$, as required.

S-duality of 3d Analytically-continued Chern-Simons Theory

Now, we have a duality of the 4d D3-brane worldvolume theory that maps G to ${ }^{L} G$ and $(1,1)$ fivebranes to themselves.

Moreover, both systems localize to 3d analytically-continued Chern-Simons theory at the boundary.

This can be interpreted as an S-duality for 3d analytically-continued Chern-Simons theory, which has been predicted previously by Terashima-Yamazaki and Dimofte-Gukov.

```
T-duality and 3d Chern-Simons Theory
The Geometric Langlands Program
S-duality of 3d Analytically-continued Chern-Simons Theory
Modification of the QGL Correspondence
Gaitsgory-Lurie Conjecture
```

Note that the $S L(2, \mathbb{Z})$ transformation that gave $N S 5 \rightarrow(1,1)$ also gives $F 1 \rightarrow(1,1)$-string. The latter are Wilson-'t Hooft lines.
G Wilson-'t Hooft lines are thus mapped to ${ }^{L} G$ Wilson-'t Hooft lines under S-duality of 3d analytically-continued CS.

Modification of the QGL Correspondence

The geometric Langlands correspondence is actually generalized in our case, as follows. In the integrable lattice models realized by 4d Chern-Simons theory, we ought to include a network of Wilson lines along $x^{3}=0$ in our setup above.

These Wilson lines (in reps. of the quantum affine algebra) are located at points on $\Sigma=\mathbb{R} \times S^{1}$, and upon shrinking S^{1}, they are located on points along \mathbb{R}.

As before, mapping $N S 5 \rightarrow(1,1)$ via an $S L(2, \mathbb{Z})$ transformation, the Wilson lines become Wilson-'t Hooft lines. Upon shrinking Y, they then become local operators located at $x^{3}=0$ and along \mathbb{R}, and therefore correspond to points on the coisotropic brane.

The aforementioned twisted D-modules are thus modified to involve data of Wilson-'t Hooft lines (labelled by i), i.e., homomorphisms $\rho^{i}: U(1) \rightarrow G$ ('t Hooft) and representations of the quantum deformation of a subgroup of G (Wilson), which is the commutant of $\rho^{i}(U(1))$.

Thus, QGL is modified in our present setup by reps. of quantum groups.

Gaitsgory-Lurie Conjecture

Correspondence between (i) Kazhdan-Luzstig category, $\mathrm{KL}_{\Psi}(G)$, of finitely generated modules over the affine Kac-Moody algebra $\widehat{\mathfrak{g}}_{\psi-h \vee}$ on which the action of $\mathfrak{g}[[z]]$ integrates to an action of the group $G[[z]]$, and (ii) category of Whittaker D-modules on the affine Grassmannian $\operatorname{Gr}\left({ }^{L} G\right)$ of ${ }^{L} G$, denoted Whit ${ }_{\frac{1}{\Psi}}\left({ }^{L} G\right) .{ }^{\dagger \dagger}$
(i) is equivalent to the category of representations of quantum groups $U_{q}(G)$, where q is related to Ψ via $q=\exp \left(\frac{\pi i}{\psi}\right)$, with $\Psi=k+h^{\vee}$ (where k is the level of the affine Kac-Moody algebra).
$\dagger \dagger$. The Whittaker category Whit c consists of c-twisted D-modules on Gr_{G} that are $N((z))$-equivariant with respect to a non-degenerate character, where N is the maximal unipotent subgroup of G.

The deformed NS5-brane boundary condition leads to 3d analytically-continued Chern-Simons theory on the boundary $C \times \mathbb{R}$.

Now, we may deform the integration cycle of 3d analytically-continued Chern-Simons theory to one that parametrizes real gauge fields, and upon making the identification $\Psi=k+h^{\vee}$, we obtain ordinary 3d Chern-Simons theory, where $k \in \mathbb{Z}_{+}$is the level.

Upon doing so, the Wilson lines will be in representations of $U_{q}(G)$, where $q=\exp \left(\frac{\pi i}{k+h^{V}}\right)$.

Moreover, the Wilson lines can be taken to lie along \mathbb{R} and on points on C, via topological invariance of Chern-Simons theory. As a result, there are local operators of the corresponding WZW theory on C associated with the quantum group representations, giving rise to the aforementioned finitely generated module over $\widehat{\mathfrak{g}}_{k}$, denoted $\widehat{\mathfrak{g}}_{\Psi-h}{ }^{\vee}-\bmod _{C}^{0}$.

Under an orientation reversal and S-duality that sends $\Psi \rightarrow \frac{1}{\psi}$, the NS5-brane becomes a D5-brane that realizes the maximal Nahm pole boundary condition on the ϕ_{1}, ϕ_{2} and ϕ_{4} fields.

Moreover, the Wilson lines realized by fundamental strings become 't Hooft lines realized by D1-branes. The category of these 't Hooft lines is precisely the Whittaker category. ${ }^{\ddagger \ddagger}$
$\ddagger \ddagger$. D. Gaiotto and E. Frenkel, Quantum Langlands dualities of boundary conditions, D-modules, and conformal block, [arXiv:1805.00203]

Vertex algebra version of the conjecture - the Whittaker category is replaced by a certain subcategory of the category of modules of the affine W-algebra, $\mathcal{W}_{\frac{1}{\mathbb{W}}}\left({ }^{L} \mathfrak{g}\right)$, whose objects arise from "magnetic" vertex operators.

We can understand how this arises physically on C. Firstly, the D5-brane boundary condition was shown by Gaiotto and Witten to have a description in terms of ${ }^{\mathfrak{g}}$ opers (with singularities due to the 't Hooft lines),* which describe $\mathcal{W}_{\frac{1}{W}}\left({ }^{L} \mathfrak{g}\right)$ conformal blocks on C in the classical limit.
*. D. Gaiotto, E. Witten, Knot invariants from four-dimensional gauge theory, Advances in Theoretical and Mathematical Physics 16 (3) (2012) 935-1086

Furthermore, with 't Hooft line knots/links, braiding along \mathbb{R} of the \mathbb{R}-independent quantum BPS states of the D3-D5 system was identified with braiding of complex integration cycles for 3d analytically-continued Chern-Simons theory on $C \times I$ with coupling $\frac{1}{\psi}$.

This in turn is related via deformation of its complex integration cycle to one that parametrizes real gauge fields, as well as the oper boundary condition, to $\mathcal{W}_{\frac{1}{\mathbb{W}}}\left({ }^{L} \mathfrak{g}\right)$ conformal blocks on C.

$$
\begin{aligned}
& \mathrm{KL}_{\Psi}(G) / \widehat{\mathfrak{g}} \Psi-h^{\vee}-\bmod _{C}^{0} \quad \xrightarrow{\mathcal{S}^{\prime}} \quad \text { Whit }_{\frac{1}{W}}\left({ }^{L} G\right) / \mathcal{W}_{\frac{1}{W}}\left({ }^{L} \mathfrak{g}\right)-\bmod _{C}^{0} \\
& \mathcal{T}^{-1} \uparrow \quad \mathcal{S}^{\prime} \mathcal{T S}^{\prime-1} \uparrow \\
& 4 \mathrm{~d}_{\widetilde{\psi}}\left(G_{\mathbb{C}}\right) \quad \xrightarrow{\mathcal{T} \mathrm{T}} 3 \mathrm{~d} \mathrm{CS}_{\Psi+1}\left(G_{\mathbb{C}}\right) \quad \xrightarrow{\mathcal{S}^{\prime}} \quad 3 \mathrm{dCS}_{\frac{1}{\Psi+1}}\left({ }^{L} G_{\mathbb{C}}\right) \\
& C \rightarrow 0 \downarrow C \rightarrow 0 \downarrow \\
& D-\bmod _{\Psi+1}^{U_{q^{\prime}}\left(G_{\rho^{i}}\right), \rho^{i}}(\mathcal{M}(G, C)) \xrightarrow{\mathcal{S}^{\prime}} \operatorname{D-mod}_{\frac{1}{\Psi+1}}^{U_{L q^{\prime}}\left({ }^{L} G_{L \rho^{i}}\right),{ }^{L} \rho^{i}}\left(\mathcal{M}\left({ }^{L} G, C\right)\right)
\end{aligned}
$$

A relationship between 4d Chern-Simons theory, 3d S-dual Chern-Simons theories, the quantum group modification of quantum geometric Langlands, and the Gaitsgory-Lurie conjecture. Here, $q^{\prime}=\exp \left(\frac{\pi i}{\psi+1}\right)$.

Quantum q-Langlands Correspondence

The quantum q-Langlands correspondence relates modules of the quantum deformation of the affine algebra, $\widehat{\mathfrak{g} \mathbb{C}}$, and the q-deformed affine W-algebra for ${ }^{L_{\mathfrak{G}}}$. We speculate that this could be realized in our setup by T-dualizing both the D3-NS5 and D3-D5 systems.

The former leads to the D4-NS5 system studied in previous sections that gave us 4 d Chern-Simons theory on $C \times \mathbb{R} \times S^{1}$, with Wilson lines in representations of the quantum deformation of $\widehat{\mathfrak{g C}}$.

On the other hand, T-dualizing the D3-D5 system in an appropriate direction gives us a D4-D6 system, which is also described by Nahm Pole boundary conditions.

```
T-duality and 3d Chern-Simons Theory
The Geometric Langlands Program
S-duality of 3d Analytically-continued Chern-Simons Theory
Modification of the QGL Correspondence
Gaitsgory-Lurie Conjecture
```

We expect that braiding along \mathbb{R} of the \mathbb{R}-independent quantum BPS states of the D4-D6 system can be identified with braiding of complex integration cycles for 4d Chern-Simons theory on $C \times I \times S^{1}$.

This in turn ought to be related via the Nahm pole boundary condition to a 3d boundary theory on $C \times S^{1}$ that realizes modules of the q-deformed affine W -algebra for ${ }^{{ }^{L}} \mathfrak{g}_{\mathbb{C}}$

Conclusion and Future Directions

- We have shown that integrable lattice models, link invariants, quantum geometric Langlands and the Gaitsgory-Lurie conjecture, are related via dualities in string theory which have field-theoretic incarnations on the respective worldvolumes.
- The crucial ingredient is the fact that the $5 \mathrm{~d} \mathcal{N}=2$ SYM theory admits a partial twist that is topological-holomorphic, and analogous to the GL-twist of $4 \mathrm{~d} \mathcal{N}=4$ SYM.
- Future work involves defining GL type twists for maximally supersymmetric Yang-Mills theory in 6d and 7d as well, which would lead to 5d and 6d Chern-Simons theories once NS5-type boundary conditions are imposed.
- Moreover, further T-dualities applied to the S-dual D3-D5 system ought to furnish higher analogues of the quantum geometric Langlands correspondence, just as the D4-NS5 and D4-D6 systems ought to realize the quantum q-Langlands correspondence via TST-duality.
- Namely, we expect the quantum q, v-geometric Langlands correspondence involving elliptic affine W -algebras to follow from T-duality to the D5-D7 system, and a further generalization to be furnished by T-duality to the D6-D8 system.

Thank you for your attention!

