

Development and application of precision timing silicon detectors (LGAD)

Koji Nakamura (KEK)

2019/11/8

Contents

- Tracking detector for High energy hadron collider.
 - Current situation
 - What is necessary for the future collider?
- Low gain avalanche detector (LGAD)
 - What is LGAD?
 - History and recent R&D devices.
 - Next plan
- Possible application of LGAD based device?

Motivations for the R&D

also to introduce myself...

2019/11/8

Large Hadron Collider (LHC)

8th Dec, 2018

LGADWS

LHC and ATLAS/CMS experiment

Great achievement in 4th July: **Higgs observation** Events / 2 GeV Selected diphoton sample Data 2011+2012 Sig+Bkg Fit (m_=126.8 GeV) Bkg (4th order polynomial) ATLAS Preliminary vs = 7 TeV. Ldt = 4.8 fb 2000 vs = 8 TeV, Ldt = 20.7 fb Lac Leman **Geneva Air port** Fitted bkg **Englert and Higgs** m_{γγ} [GeV] ATLAS Celebration 4th July @ CERN B40 Thanks to the operation of LHC, ATLAS & CMS recorded : 5fb⁻¹ 7TeV data 20fb⁻¹ 8TeV data 145fb⁻¹ 13TeV data 27km

21st Sep, 2018

Observation of Higgs couplings

8th Dec, 2018

LGADWS

What we are now?

LGADWS

What we want to know next?

- <u>"Vacuum"</u>
 - "Vacuum" is nothing? Filled by Higgs boson?
 - How Higgs boson/field condensed to the "Vacuum"?
 - Need to determine/observe the shape of Higgs Potential.
 - →Observe/measure "Higgs self coupling".

nark Enerow

<u>"Dark Matter/Energy"</u>

- We only know 4%. What's the others?
- Beyond the Standard Model?
 - Super Symmetry?

Future High Energy Colliders

Need "Higher Luminosity" and/or "Higher Energy"

Discussion

Started

Jura

decision

Schematic of a

Mandalaz

80 - 100 km long tunne

- High Luminosity LHC (HL-LHC)
 - 20 times more data (~3000-4000fb⁻¹)
 - Plan : Start at 2026
- High Energy LHC (HE-LHC)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - 28TeV collider in the same tunnel as LHC. Discussion
- Future Circular Collider (FCC)
 - Started Use Super Conducting Magnet with Higher Magnetic field(16T)
 - 100TeV collider with 100km tunnel at CERN.
- International Linear Collider (ILC)
 - 250GeV e+ e- collider in Japan

Aravis

Prealps

Future High Energy Colliders

Need "Higher Luminosity" and/or "Higher Energy"

— <u>High Luminosity LHC (HL-LHC)</u>

8th Dec, 2018

Challenge for Detector building

- Design Luminosity of HL-LHC
 - Current LHC: $L=2x10^{34} cm^{-2} s^{-1}$

Number of Interaction per Crossing

21st Sep, 2018

Challenge for Detector building

- Design Luminosity of HL-LHC
 - Current LHC: $L=2x10^{34} cm^{-2} s^{-1}$
 - HL-LHC : L=7x10³⁴cm⁻²s⁻¹

Number of Interaction per Crossing

Mean Number of Interactions per Crossing

HL-LHC : 140 interaction per bunch crossing

Need to identify the primary vertices to reduce Pileup oriented background

21st Sep, 2018

Challenge for Detector building

- Design Luminosity of HL-LHC
 - Current LHC: $L=2x10^{34} cm^{-2} s^{-1}$
 - HL-LHC : L=7x10³⁴cm⁻²s⁻¹

Number of Interaction per Crossing

HL-LHC : 140 interaction per bunch crossing

21st Sep, 2018

Specification for Upgrade detector

21st Sep, 2018

Radiation environment

- Expected radiation level for 4000fb⁻¹
 - Non Ionizing Energy Loss (NIEL):
 - 3^{rd} layer: 2.8x10¹⁵ n_{eq} /cm² 1st layer : 2.6x10¹⁶neq/cm²
 - Total Ionizing Dose (TID) :
 - 3rd layer : 1.6MGy 1st layer : 19.8MGy 4

21st Sep, 2018

Could replace detector

at the middle of runs.

ATLAS inner tracker(ITK) project for HL-LHC

- Larger coverage area
 - Pixel : current 2.7m² → upgrade 8.2m²
 - Strip : current 34m² → upgrade 165m²
- Higher Forward coverage
 - Current $\eta < 2.5 \rightarrow$ upgrade $\eta < 4.0$
 - Better Pileup removal
- Mechanics : inclined
 - Reduce material
 - Higher tracking resolution.

8th May, 2019

FJPPL 2019

What's the issue in tracker for future?

- Most serious issue in the future hadron collider should be a number of multiple interaction per bunch crossing.
 - About 140-200 at the HL-LHC and 1400 in future colliders.
 - Idea to solve the issue?
 - 1. <u>Pixel size</u>: Construct smaller pixel size detector and make better vertices separation → May be hard to improve 10 times...
 - 2. <u>Time resolution</u> : If we could use timing information for the hit in the track, may have better track finding using the information. \rightarrow If the timing resolution is less than 1cm/c = 50ps it should help a lot.

2019/11/8

Impact to the Physics

8th Dec, 2018

LGADWS

Timing sensitive semi-conductor tracking detector

2019/11/8

Timing resolution

• What is driving the timing resolution of detector?

Time walk and time jitter

Time Walk

Time Jitter

Due to various noise souces

Jitter effect

Fast turn on (i.e high dV/dt) should have better timing resolution. Need lower noise level.

2019/11/8

Low gain avalanche detector (LGAD)

- To make faster turn-on
 - Need faster drift velocity of the electron-hole pair.

 $v_{e/h} = \mu_{e/h} \times E$ (where μ_e is mobility, E is electric field.)

- How to realize 100kV/cm field?
 - Higher bias voltage?
 - If need 100 times velocity we need 100 times bias voltage → a few 10kV bias is necessary → impossible due to break down.
 - Is it possible to make localized higher field?
 - Doping p+ under the n+ implant electrode makes around 300kV/cm field locally
 →Low Gain Avalanche Detector (LGAD)

Low gain avalanche detector (LGAD)

- Sources of signal on the electrode.
 - Initial e/h is not contributing much.
 - e/h pair produced by avalanche is high contribution.
 - e have short driving length (not dominant)
 - h have longer drift length (Dominant) ← Ramo's theorem

2019/11/8

Why "Low" Gain?

It is important to reduce noise even faster turn-on n++ electrode with higher gain gain layer p+ ds da Bulk Leakage current Surface currer p++ electrode $\underline{i_{Shot}^{2} = 2eI_{Det} = 2e\left[I_{Surface} + (I_{Bulk})M^{2}F\right]$ $F = Mk + \left(2 - \frac{1}{M}\right)\left(1 - k\right) \quad \begin{array}{l} k = e/h \text{ ionization rate} \\ x = excess \text{ noise index} \end{array}$ $\sigma_t = \frac{\sigma_n}{|\underline{dV}|}$ M = gain $F \sim M^x$ Jitter effect Shot-noise increase by Signal: $I_{T}M$ output power of Gain Shot noise: Noise will be increased Best S/N ratio faster by increasing gain Noise floor, gain independent → Best S/N ratio can be optimized : G=10-20? 10 100 1000 Gain M opt

History of LGAD

2015-

- In 2015, first LGAD detector build with HPK.
 - Although this is the same technology to the Avalanche photo diode(APD) since 1970s...
- First detector is 1mm monitor diode.

2019/11/8

LGAD-1mmp-monitor 4type

First pad detector – IV measurement

- <u>Pad detector</u>
 - Size 2.5mm x 2.5mm
 - Opening windows 1mmφ
 - Leakage current
 - measured w/ and w/o LED light on.

Thinner detector is just better (could operate with lower voltage.)

2019/11/8

First pad detector – CV measurement

- Bulk capacitance measurement
 - Two (or three?) step function.
 - Side region
 - Multiplication region \rightarrow higher p+ doping need higher depletion voltage
 - bulk

Irradiation Facilities

Gamma irradiation (surface damage by TID)
 – ⁶⁰Co irradiation at QST, Takasaki, Japan

Proton irradiation (bulk damage by NIEL)
 Proton irradiation by CYRIC Tohoku University

Gamma Irradiation Facility in Japan

• QST, Takasaki is gamma irradiation facility with ⁶⁰Co source

2019/11/8

Proton Irradiation Facility in Japan

- CYRIC@Tohoku Univ. is an irradiation facility with 70MeV proton beam (~1µA).
 - This allows 5-6 pixel modules with backing Al plate at the same time(3% E loss/pixel).
 - Operated at -15° C temperature with dry N₂ gas.
- Programmable X-Y stage and "push-pull" mechanism are implemented to the machine.
 - Choose to irradiate one or more target samples in max 15 pre-installed samples.
- Scanning over full pixel range during irradiation.
- Actual Fluence difference relative to the target fluence is within ~10%.

15th Oct 2019

Vertex 2019

I-V performance after irradiation

- Gamma irradiation
 - Irradiated 0.1/1.0/2.5MGy
 - Leakage current w/o LED on
 - Increases but no dose dependence.
 - Probably due to only surface damage.
 - Gain w/ LED on
 - Slight degraded but can be recovered by 20% higher voltage.
- Proton/Neutron irradiation
 - 0.3/1.0/3.0 x 1015 n_{eq}/cm²
 - After 60°C 80min Annealing.
 - Gain degraded a lot.
 - May not possible to have Gain=10 after 3x10¹⁵ n_{eq}/cm² irradiation.
 - Effect is smaller in case of higher p+ dope.

Timing resolution measurement

- Testbeam @ Fermilab
 - 120GeV proton beam
 - Telescope by pixel detector
 - Stacked 3 LGAD sensor

31

Signal readout by Flash ADC(V1742, 5GS/s)

IPMU Seminar

2019/11/8

Discrete Amplifire & Flash ADC

- Bi-polar high-speed transistor
 - Frequency Band :<75GHzGain : 100
- Flash ADC (VME)
 - CAEN : V1742 (DRS4)
 - Pulse Height
 - 12bit / 1Vpp
 - 1V/4096~0.25mV
 - Time
 - 10bit / 5GS/s
 - 200ps * 1024 ~ 200ns

Pulse shape

- Pulse height distributions shows 3 components.
 - 1 Noise
 - 2 Region w/o p+ implant (G=1)
 - 3 Region w/ p+ (Gain~10)
- Evaluated time resolution by the hits with gain.

2019/11/8

Timing resolutions

- Fit pulse shape by a polynomial function
- Define V_{theshold} depending on peak height

$$- V_{\text{threshold}} = f \times V_{\text{peak}}$$

- Calculated time difference of two different devices. $(T_1 - T_2)$ $- \sigma(T_1 - T_2) = \sqrt{(\sigma_1)^2 + (\sigma_2)^2}$
- In case the sample 1 and 2 is the same type :
 - resolution should be $\sigma(T_1-T_2)/\sqrt{2}$
- As a result, single sensor timing resolution is
 - 30ps for 50um thick
 - 45ps for 80um thick.

Timing resolution degradation

 After Proton/Neutron irradiation, timing resolution is depredated rapidly @ 1-5x10¹⁵ n_{eq}/cm².

Strip detector

- First strip detector
 - 6mm x 12mm size
 - 80um strip pitch
 - Implemented windows in the top Aluminum to inject Laser.
- Nd:YAG Layser
 - 1.165eV laser which is slight above Si band gap energy and penetrates the Si sensor. (similar signal to MIP signal)
 - 2-3um square spot with 1.5um step stepping motor.
 - Nuclear Instruments and Methods in Physics Research A 541 (2005) 122–129
- Evaluated position dependence Charge collection and Gain

2019/11/8

Gain Uniformity

- Position dependence of Gain has been observed.
 - Strip center have close to Gain=10.
 - Only about 20% of the region have gain.
 - Due to the smaller p+ implant.

This is critical problem for finer granularity detector.

What we are planning next.

2019/11/8

Application for Tracking detector

Radiation Torelance

Depends on the target collider but $5x10^{15}$ -1x10¹⁶n_{ea}/cm² at least.

Granularity

Need 50um pitch detector (strip or pixel)

Low noise high speed amp

(a)

130ns CMOS technorogy PMOS-based resistors **MOS Discriminator** HIT LATCH To Logic Pixel CAL DAC

130nm for TT-PET

2019/11/8

Fine granularity detector

- Trench protection
 - Physical separation of electrode by trench.
 - Need to study of electric field uniformity

- AC coupled LGAD
 - Uniform n+ and p+ layers
 - Put electrode on the SiO₂ to readout signal with AC.
 - Need to reduce doping concentration of n+ implant.

The AC read-out sees only a small part of the sensor:

Need carful simulation for these technology.

Deep Trenches

Deep trench

(2018 CNM)

2019/11/8

Secondary Ion Mass Spectrometry and Simulation

- SIMS measurement
 - Analytical technique to characterize the impurities near surface(<30um) by ionized secondary particles.
 - Good detection sensitivity for B, P, Al, As, Ni, O, Si etc down to 10¹³ atoms/cm³ with 1-5nm depth resolution.
- Synopsys TCAD simulation
 - Process simulation:
 - Simulate implantation and resulting concentrations.
 - Can compare to SIMS result.
 - Device Simulation :
 - Simulate Electric field to understand the performance of silicon device.
 - Possible to perform simulation of charge correction of MIP signal.

SIMS system at Versailles

FJPPL 2019

TCAD simulation

- Implement detector structure to a simulation.
- Reproduced measurement results by simulation.
- This allows to understand what is the issue more quantitatively.
 - Impact ionization dencity:

Smaller charge multiplication except the center of strip.

2019/11/8

Trench Electrode separation

- Simulated Trench electrode separation.
- Uniform gain except the region close to the trench.
- Impact ionization is higher around trench.
 - Deeper trench helps to reduce the effect.

2019/11/8

AC coupled LGAD 3D simulation

- Simple 6x6 pixel with 50um pitch.
- Red pixel is DC pixels and inner 4x4 pixels are AC coupled.
- Simulation done for MIP signal.
- Impact Ionization density spread ~500ps

Doping concentration

n

2019/11/8

-100

45

40

35

0

Electric field

-100

45

40

35

100

AC coupled LGAD 3D simulation

2019/11/8

Parameter scan

- Fixed p+ dope to 3e16.
- Varied n+ doping concentration.
- Lower cross talk for lower dope. But all cross talk is slow component.

2019/11/8

Parameter scan

- Fixed n+ dope to 3e16.
- Varied p+ doping concentration.
- Larger(wider) signal in case higher p+ doping
- Turn on shape seems the same.

2019/11/8

Proposed mask for 2019 run

Plan for 2020

Processing new LGAD photo mask

- Motivation : finer granularity detector
- Performed TCAD simulations
- Design is on-going
- Finish processing in this FY.

• Design for the Fast amplifier board.

- Low noise discrete amplifier board.
- Tested shingle and 16 channel board.
- Need fix a couple of point to reduce noise.
- By the end of year.

Possibility of application for the other disciplinary.

- Check timing Sensitivity to the γ-ray detection (X ray – IR ray?)

- Need Idea for the Biology, Medical and Industry application by this.

Application for the other disciplinary

We have 30ps timing resolution detector in hand

Application for the other disciplinary

2019/11/8

Application for the other disciplinary

2019/11/8

2019/11/8

Available Front End ASICs

- Three FE, FE-I4, FE65p2 and RD53A were produced.
 - Hybridization study was based on FE-I4 the same outer size of production chip.
 - For Module performance study, RD53A was used the same pixel pitch of production chip.

	FE-I4 (2012)	FE65p2 (2016)	RD53A (Nov. 2017)
ASIC demention	17mm	3mm 4mm	20mm 11.8mm
CMOS process	130nm	65nm	65nm
Pixel size	50um x 250um (25um x 500um)	50um x 50um (25um x 100um)	50um x 50um (25um x 100um)
Pixel matrix	336 x 80	64 x 64	400 x 192
Max data output rate	160Mbps	160Mbps	1.28Gbps x 4
stable threshold (typical threshold)	~1500 e⁻ (2000-3000 e⁻)	500 e⁻ (700 e⁻)	500 e ⁻ (1000-1500e ⁻)

ATLAS Upgrade for HL-LHC

High Luminosity LHC (HL-LHC)

- Start around 2026- with new crab cavity in the interaction region.
- Target : \sqrt{s} =14TeV L=5-7x10³⁴cm⁻²s⁻¹ $\int Ldt$ =3000-4000fb⁻¹
- Physics program focus on the precise measurements of the Higgs couplings (e.g. $Y_{\tau},\,Y_{b}$ and $\lambda_{HHH})$ and BSM searches.

• Tracking detector is key element

- To keep B/ τ -tagging performance up to μ =200 pileup in an event.
- Need to launch innovative solution for detectors, mechanics, efficient triggering and advanced analysis technics.

The ATLAS upgrade plans full replacement of Inner Tracker

- All silicon tracker (Pixel & Microstrip)
- <u>Requirements for Pixel detector</u>
 - Pixel Size : 50um x 50um (or 25um x 100um)
 - Radiation @ outer layer : 3x10¹⁵n_{eq}/cm²
 - Thickness : 100 or 150um
 - Low noise (<100e) \rightarrow 600e stable threshold
 - High Readout Rate : 5.2Gbps (or 4x1.28Gbps)

FJPPL 2019

- Japan group : Pixel Detector development Target : 3rd – 5th layers
 - High Efficiency Sensor design
 - Readout ASIC and DAQ development
 - Sensor ASIC attachment
 - Flex PCB design and assembly
 - Module loading to the support

HPK: n+ in p type Pixel Size : 50umx50um Requirement : 97% after irradiation (3x10¹⁵n_{eg}/cm²)

- Japan group : Pixel Detector development Target : 3rd – 5th layers
 - High Efficiency Sensor design
 - Readout ASIC and DAQ development
 - Sensor ASIC attachment
 - Flex PCB design and assembly
 - Module loading to the support

HPK: n+ in p type Pixel Size : 50umx50um Requirement : 97% after irradiation (3x10¹⁵n_{eo}/cm²)

Planar type Pixel module

21st Sep, 2018

- Japan group : Pixel Detector development Target : 3rd – 5th layers
 - High Efficiency Sensor design
 - Readout ASIC and DAQ development
 - Sensor ASIC attachment
 - Flex PCB design and assembly
 - Module loading to the support

Bump bonding @ HPK SnAg solder bump no flux / no support wafer 200 Thickness sensor/ASIC →150um/150um

Established in 2016 High production Yield ready for mass production

⁹⁰Sr Source test (improved)

21st Sep, 2018

- Japan group : Pixel Detector development Target : 3rd – 5th layers
 - High Efficiency Sensor design
 - Readout ASIC and DAQ development
 - Sensor ASIC attachment
 - Flex PCB design and assembly
 - Module loading to the support

Development of Assembly jig Radiation Tolerance test for Glue Wire bonding

21st Sep, 2018

- Japan group : Pixel Dete Target : 3rd – 5th layers
 - High Efficiency Sensor
 - Readout ASIC and DAG
 - Sensor ASIC attachn
 - Flex PCB design and a
 - Module loading to the support

21st Sep, 2018

Module Assembly

- Assembly of Quad module to the Flex Printed circuit.
 - Radiation hard glue choice
 - CTE matching to avoid stress for modules.
 - Cooling cell on the back side of modules

Module loading to support

Irradiation and Testbeam

- CYRIC@Tohoku Univ.
 - An irradiation facility with 70MeV proton beam (~1µA beam current).
 - 3-5 hours for 3x10¹⁵n_{eq}/cm² irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N_2 gas.
 - Scanning over full pixel surface at irradiation.
- Testbeam
 - Extremely important to test device performance
 - Efficiency/Noise monitoring during production
 - Testbeam facility
 - CERN SPS : 120GeV π + beam
 - DESY : 4-5GeV e+ beam
 - FNAL : 120GeV proton beam
 - Telescope planes (Track pointing to device)
 - EUDET based on MIMOSA26 monolithic CMOS detector placed in beamline at CERN/DESY/SLAC (~3um pointing resolution).
 - Huge experience of the testbeam operation as having testbeam 3-4 times a year

FJPPL 2019

Semiconductor tracking detector

- Basic principle :
 - Backside is negative bias and n+ is ground.
 - Detect electron-hole pairs created by ionizing energy loss from MIP particle.
- Strip detector
 - n+ can easily ground at the end of strip.
 - Readout usually via "wire bonding" strips to the readout ASIC.

Semiconductor tracking detector

- Basic principle :
 - Backside is negative bias and n+ is ground.
 - Detect electron-hole pairs created by ionizing energy loss from MIP particle.
- Strip detector
 - n+ can easily ground at the end of strip.
 - Readout usually via "wire bonding" strips to the readout ASIC.
- Pixel detector (new technology)
 - Electrode placed two dimensionally.
 - To ground all pixels, high resistivity biasing grid is necessary.
 - Readout ASIC is connected by "bumpbonding".

Our development is together with Hamamatsu Photonics K.K (HPK)

21st Sep, 2018

Hybrization at HPK

- To readout signals from 2 dimensionally placed electrodes (pixels), readout ASIC needed to be connected.
 - the signal from each channel is read out through a solder bump
 - Bump bonding :
 - Solder bump deposition to the ASIC side
 - Under bump metallization to Sensor side
 - Flip-chipping : 4 chips to one sensor.
- ATLAS Japan group investigated with HPK using bias resistor to each pixel. This allows us to sensor testing before costly bump bonding process

Vertex 2019

Flip chipping development at HPK

Development of Lead-free(SnAg) Bumpbonding (Since 2012)

- 1. No Flux used (to avoid corrosion)
 - confirmed flux improve connection, though

2. No backside compensation

- Improvement of Vacuum chuck jig to hold and flatten the ASIC/Sensor...(jig size ~ FE-I4 area)
- 3. <u>Special UBM</u> (key element: confidential...)
 - Simple Ni/Au UBM do not reach 100% yield ...
- 4. Hydrogen plasma reflow to remove surface oxide
- Thin sensor/Thin ASIC : 150um/150um
 - Established Bumpbonding method in the beginning of 2016.
 - Quite stable quality for both single and four ASICs. 100% yield for last one year (>100 chips are bumpbonded.)

Vertex 2019

Final Sensor design

- Basic Sensor structure is almost final after years of development.
- Current fine pitch (50umx50um) pixel size sensors are attached to half size prototype ASIC (RD53A).
- Full size sensor and ASIC need to be produced in 2019.
 - RD53B (ITKpix-v1) and 7th HPK mask.

8th May, 2019

FJPPL 2019

Efficiency result (irrad 3x10¹⁵n_{eq}/cm²)

- Efficiencies of HV scan 200-800V have been evaluated.
 - Analyzed both 1500e and 2400e threshold data for different types.
 - All types have over 98% efficiency at 600V.
 - 1500e threshold results have over 99% efficiency.
 - Small n+ w/ BR have low efficiency at 200V

15th Oct 2019

Vertex 2019

K. Nakamura Pixel 2018