Volume Conjecture and Topological Recursion

Hiroyuki FUJI

Nagoya University

Collaboration with R.H.Dijkgraaf (ITFA) and M. Manabe (Nagoya Math.)

6th April @ IPMU

Papers:

R.H.Dijkgraaf and H.F., Fortsch.Phys.57(2009),825-856, arXiv:0903.2084 [hep-th]

R.H.Dijkgraaf, H.F. and M.Manabe, to appear.

1. Introduction

Asymptotic analysis of the knot invariants is studied actively in the knot theory.

Volume Conjecture [Kashaev][Murakami²]

Asymptotic expansion of the colored Jones polynomial for knot K

 \Rightarrow The geometric invariants of the knot complement $\mathbb{S}^3 \setminus K$.

Recent years the asymptotic expansion is studied to higher orders.
$$\begin{split} & \textbf{S}_k(\textbf{u}) \colon \text{Perturbative invariants, } \textbf{q} = e^{2\hbar} \quad \text{[Dimofte-Gukov-Lenells-Zagier]} \\ & \textbf{J}_n(\textbf{K};\textbf{q}) = exp\left[\frac{1}{\hbar}\textbf{S}_0(\textbf{u}) + \frac{\delta}{2}\log\hbar + \sum_{k=0}^{\infty}\hbar^k\textbf{S}_{k+1}(\textbf{u})\right], \, \textbf{u} = 2\hbar n - 2\pi \textbf{i}. \end{split}$$

Topological Open String

Topological B-model on the local Calabi-Yau X^{\vee}

$$\mathsf{X}^{\vee} = \big\{ (\mathsf{z},\mathsf{w},\mathsf{e}^\mathsf{p},\mathsf{e}^\mathsf{x}) \in \mathbb{C}^2 \times \mathbb{C}^* \times \mathbb{C}^* | \mathsf{H}(\mathsf{e}^\mathsf{p},\mathsf{e}^\mathsf{x}) = \mathsf{z}\mathsf{w} \big\}.$$

D-brane partition function $Z_D(u_i)$

Topological Recursion [Eynard-Orantin]

Eynard and Orantin proposed a spectral invariants for the spectral curve \mathcal{C}

$$\mathcal{C}=\{(\mathsf{x},\mathsf{y})\in (\mathbb{C}^*)^2|\mathsf{H}(\mathsf{y},\mathsf{x})=0\}.$$

 \bullet Symplectic structure of the spectral curve ${\boldsymbol {\cal C}},$

- Riemann surface $\Sigma_{g,h} = \text{World-sheet.}$
- \Rightarrow Spectral invariant $\mathcal{F}^{(g,h)}(u_1, \cdots, u_h)$ u_i :open string moduli

Eynard-Orantin's topological recursion is applicable.

 $\begin{array}{ccc} \pmb{\Sigma}_{g,h+1} & \pmb{\Sigma}_{g-1,h+2} & \pmb{\Sigma}_{\ell,k+1} & \pmb{\Sigma}_{g-\ell,h-k} \\ \text{Spectral invariant} = \text{D-brane free energy in top. string} & \text{[BKMP]} \end{array}$

Correspondences

Heuristically we discuss a relation between the perturbative invariants $S_k(u)$ and the free energies $\mathcal{F}^{(g,h)}(u_1,\cdots,u_h)$ á la BKMP. [Dijkgraaf-F.]

3D Geometry	Topological Open String
Character variety	Spectral curve
$\left\{ (\ell, m) \in \mathbb{C}^* imes \mathbb{C}^* \tilde{A}_{K}(\ell, m) = 0 ight\}$	$\{(\mathbf{e}^p,\mathbf{e}^x)\in\mathbb{C}^* imes\mathbb{C}^* H(\mathbf{e}^p,\mathbf{e}^x)=0\}$
u = log m : Holonomy	u: Open string moduli
Neumann-Zagier fn. H(u) /2	Disk Free Energy $ar{\mathcal{F}}^{(0,1)}(u)$
Reidemeister Torsion $\mathcal{T}(M;u)$	Annulus Free Energy $ar{\mathcal{F}}^{(0,2)}(u)$
$\mathbf{q} = \mathbf{e}^{2\hbar}$	$\mathbf{q} = \mathbf{e}^{\mathbf{g}_{s}}$

In this talk we will explore the following relation:

$$\mathsf{S}_{\mathsf{k}}(\mathsf{u}) \leftrightarrow \mathsf{F}_{\mathsf{k}}(\mathsf{u}) = 2^{\mathsf{k}-2} \sum_{2\mathsf{g}+\mathsf{h}=\mathsf{k}+1, \ \mathsf{h} \geq 0} \frac{1}{\mathsf{h}!} \bar{\mathcal{F}}^{(\mathsf{g},\mathsf{h})}(\mathsf{u}).$$

Motivation of Our Research

- Realization of 3D quantum gravity in top. string
- Dual description of quantum CS theory as free boson on character variety
- Large **n** duality not for rank but for level
 - \Rightarrow Novel class of duality

CONTENTS

- 1. Introduction
- 2. Volume Conjecture and Perturbative Invariants
- 3. Topological Recursion on Character Variety
- 4. Summary, Discussions and Future Directions

2. Volume Conjecture and Perturbative Invariants

Volume Conjecture [Kashaev][Murakami²]

In 1997 Kashaev proposed a striking conjecture on the asymptotic expansion of the colored Jones polynomial $J_n(K;q)$.

The hyperbolic knot complement admits a hyperbolic structure.

Generalized Volume Conjecture

In 2003, Gukov generalized the volume conjecture to 1-parameter version.

$$(\mathsf{u}+2\pi\mathsf{i})\lim_{\mathsf{n}\to\infty}\frac{\log \mathsf{J}_\mathsf{n}(\mathsf{K}; \mathbf{e}^{(\mathsf{u}+2\pi\mathsf{i})/\mathsf{n}})}{\mathsf{n}}=\mathsf{H}(\mathsf{u}), \quad \mathsf{u}\in\mathbb{C}.$$

H(u): Neumann-Zagier's potential function

$$\frac{\partial \mathsf{H}(\mathsf{u})}{\partial \mathsf{u}} = \mathsf{v} + 2\pi \mathsf{i}.$$

u and **v** satisfies an algebraic equation.

$$A_{\mathsf{K}}(\ell,m)=0, \quad \ell=e^{\mathsf{v}}, \quad m=e^{\mathsf{u}}.$$

 $A_{K}(\ell, m)$: A-polynomial for a knot K. incomplete \Rightarrow Up to linear term of u and v, the Neumann-Zagier potential H(u) yields to

$$H(u) = \int_{2\pi i}^{u+2\pi i} du \ v(u) + \text{linear terms.}$$

AJ conjecture and higher order terms

In 2003 Garoufalidis proposed a conjecture on **q**-difference equation for the colored Jones polynomial. (Quantum Riemann Surface)

$$\begin{split} &\mathsf{A}_{\mathsf{K}}(\hat{\ell},\hat{m};q)\mathsf{J}_{\mathsf{n}}(\mathsf{K};q)=0, \quad \mathsf{A}_{\mathsf{K}}(\ell,m;q=1)=(\ell-1)\mathsf{A}_{\mathsf{K}}(\ell,m).\\ &\hat{\ell}f(\mathsf{n})=f(\mathsf{n}+1), \quad \hat{m}f(\mathsf{n})=q^{\mathsf{n}/2}f(\mathsf{n}), \quad \hat{\ell}\hat{m}=q^{1/2}\hat{m}\hat{\ell}. \end{split}$$

U meridian

Commutation relation of the Chern-Simons gauge theory

$$\begin{split} \rho(\mu) &= \operatorname{P} \exp\left[\oint_{\mu} \mathsf{A}\right], \quad \rho(\nu) = \operatorname{P} \exp\left[\oint_{\nu} \mathsf{A}\right], \\ \left\{\mathsf{A}^{\mathrm{a}}_{\alpha}(\mathsf{x}), \mathsf{A}^{\mathrm{b}}_{\beta}(\mathsf{y})\right\} &= \frac{2\pi}{\mathsf{k}} \delta^{\mathrm{ab}} \epsilon_{\alpha\beta} \delta^{2}(\mathsf{x}-\mathsf{y}). \end{split}$$

Meridian μ and longitude ν intersect at one point.

$$\hat{\ell}\hat{\mathbf{m}} = \mathbf{q}^{1/2}\hat{\mathbf{m}}\hat{\ell} \Rightarrow [\hat{\mathbf{u}}, \hat{\mathbf{v}}] = \frac{2\pi}{\mathbf{k}}. \quad (\theta = \mathbf{v}\mathbf{d}\mathbf{u}, \quad \omega = \mathbf{d}\theta.)$$

q-difference Equation for Fig.8 Knot

Example: Figure 8 knot 4_1 [Garoufalidis]

$$\begin{split} \mathsf{A}_{4_1}(\hat{\ell},\hat{\mathfrak{m}};\mathfrak{q}) \\ &= \frac{q^5\hat{\mathfrak{m}}^2(-\mathfrak{q}^3+\mathfrak{q}^3\hat{\mathfrak{m}}^2)}{(\mathfrak{q}^2+\mathfrak{q}^3\hat{\mathfrak{m}}^2)(-\mathfrak{q}^5+\mathfrak{q}^6\hat{\mathfrak{m}}^4)} \\ &- \frac{(\mathfrak{q}^2-\mathfrak{q}^3\hat{\mathfrak{m}}^2)(\mathfrak{q}^8-2\mathfrak{q}^9\hat{\mathfrak{m}}^2+\mathfrak{q}^{10}\hat{\mathfrak{m}}^2-\mathfrak{q}^9\hat{\mathfrak{m}}^4+\mathfrak{q}^{10}\hat{\mathfrak{m}}^4-\mathfrak{q}^{11}\hat{\mathfrak{m}}^4+\mathfrak{q}^{10}\hat{\mathfrak{m}}^6-2\mathfrak{q}^{11}\hat{\mathfrak{m}}^6+\mathfrak{q}^{12}\hat{\mathfrak{m}}^8)}{\mathfrak{q}^5\hat{\mathfrak{m}}^2(\mathfrak{q}+\mathfrak{q}^3\hat{\mathfrak{m}}^2)(\mathfrak{q}^5-\mathfrak{q}^6\hat{\mathfrak{m}}^4)}\hat{\ell} \\ &+ \frac{(-\mathfrak{q}+\mathfrak{q}^3\hat{\mathfrak{m}}^2)(\mathfrak{q}^4+\mathfrak{q}^5\hat{\mathfrak{m}}^2-2\mathfrak{q}^6\hat{\mathfrak{m}}^2-\mathfrak{q}^7\hat{\mathfrak{m}}^4+\mathfrak{q}^8\hat{\mathfrak{m}}^4-\mathfrak{q}^9\hat{\mathfrak{m}}^4-2\mathfrak{q}^{10}\hat{\mathfrak{m}}^6+\mathfrak{q}^{11}\hat{\mathfrak{m}}^6+\mathfrak{q}^{12}\hat{\mathfrak{m}}^8)}{\mathfrak{q}^4\hat{\mathfrak{m}}^2(\mathfrak{q}^2+\mathfrak{q}^3\hat{\mathfrak{m}}^2)(-\mathfrak{q}+\mathfrak{q}^6\hat{\mathfrak{m}}^4)}\hat{\ell}^2 \\ &+ \frac{\mathfrak{q}^4\hat{\mathfrak{m}}^2(-1+\mathfrak{q}^3\hat{\mathfrak{m}}^2)}{(\mathfrak{q}-\mathfrak{q}^6\hat{\mathfrak{m}}^4)}\hat{\ell}^3. \end{split}$$

AJ conjecture for Wilson loop

$$\begin{split} & \mathsf{W}_{n}(\mathsf{K};q) := \mathsf{J}_{n}(\mathsf{K};q) \mathsf{W}_{n}(\mathsf{U};q), \quad \tilde{\mathsf{A}}_{\mathsf{K}}(\hat{\ell},\hat{m};q) \mathsf{W}_{n}(\mathsf{K};q) = 0. \\ & \text{q-difference equation is factorized.} \\ & \tilde{\mathsf{A}}_{4_{1}}(\hat{\ell},\hat{m};q) = (\mathsf{q}^{1/2}\hat{\ell}-1)\hat{\mathsf{A}}_{4_{1}}(\hat{\ell},\hat{m};q), \\ & \hat{\mathsf{A}}_{4_{1}}(\hat{\ell},\hat{m};q) = \frac{q\hat{m}^{2}}{(1+q\hat{m}^{2})(-1+q\hat{m}^{4})} - \frac{(-1+q\hat{m}^{2})(1-q\hat{m}^{2}-(q+q^{3})\hat{m}^{4}-q^{3}\hat{m}^{6}+q^{4}\hat{m}^{8})}{q^{1/2}\hat{m}^{2}(-1+q\hat{m}^{4})(-1+q^{3}\hat{m}^{4})}\hat{\ell} \\ & + \frac{q^{2}\hat{m}^{2}}{(1+q\hat{m}^{2})(-1+q^{3}\hat{m}^{4})}\hat{\ell}^{2}. \end{split}$$

Perturbative Invariants

WKB expansion of the Wilson loop expectation value:

$$\begin{split} W_n(\mathsf{K};\mathsf{q}) &= \exp\left[\frac{1}{\hbar}\mathsf{S}_0(\mathsf{u}) + \frac{\delta}{2}\log\hbar + \sum_{k=1}^{\infty}\hbar^{k-1}\mathsf{S}_k(\mathsf{u})\right],\\ \mathsf{q} &:= \mathsf{e}^{2\hbar}, \quad \mathsf{q}^n = \mathsf{m} = \mathsf{e}^{\mathsf{u}}. \end{split}$$

Applying this expansion into \mathbf{q} -difference equation, one finds a hierarchy of differential equations :

$$\begin{split} \hat{A}_{K}(\ell,m;q) &= \sum_{k=0}^{d} \sum_{k=0}^{\infty} \ell^{j} \hbar^{k} a_{j,k}(m). \\ \sum_{j=0}^{d} e^{jS'_{0}} a_{j,0} &= 0, \quad \leftarrow \quad A - \mathrm{polynomial} \\ \sum_{j=0}^{d} e^{jS'_{0}} \left[a_{j,1} + a_{j,0} \left(\frac{1}{2} j^{2} S''_{0} + j S'_{1} \right) \right] = 0, \\ \sum_{j=0}^{d} e^{jS'_{0}} \left[a_{j,2} + a_{j,1} \left(\frac{1}{2} j^{2} S''_{0} + j S'_{1} \right) + a_{j,0} \left(\frac{1}{2} (\frac{1}{2} j^{2} S''_{0} + j S'_{1})^{2} + \frac{1}{6} j^{3} S'''_{0} + \frac{1}{2} j^{2} S''_{1} + j S'_{2} \right) \right] = 0, \\ \cdots , \end{split}$$

Computational Results top1 top2

Solving **q**-difference equation, one obtains the expansion of the expectation value of the Wilson loop around a non-trivial flat connection.

• Figure eight knot: [DGLZ]

$$\begin{split} \ell(m) &= \frac{1-2m^2-2m^4-m^6+m^8+(1-m^4)\sqrt{1-2m^2+m^4-2m^6+m^8}}{2m^4},\\ S_0'(u) &= \log\ell(m),\\ S_1(u) &= -\frac{1}{2}\log\left[\frac{\sqrt{\sigma_0(m)}}{2}\right], \quad \sigma_0(m) := m^{-4}-2m^{-2}+1-2m^2+m^4,\\ S_2(u) &= \frac{-1}{12\sigma_0(m)^{3/2}m^6}(1-m^2-2m^4+15m^6-2m^8-m^{10}+m^{12}),\\ S_3(u) &= \frac{2}{\sigma_0(m)^3m^6}(1-m^2-2m^4+5m^6-2m^8-m^{10}+m^{12}). \end{split}$$

 $S_1(u)$ coincides with the Reidemeiser torsion. [Porti]

$$T(\mathsf{M}; \mathsf{u}) = \exp\left[-\frac{1}{2}\sum_{n=0}^{3}n(-1)^n\log \det' \Delta_n^{\mathsf{E}_\rho}\right]$$

 \mathbf{E}_{ρ} : flat line bdle, $\mathbf{\Delta}_{n}^{\mathbf{E}_{\rho}}$: Laplacian on **n**-forms.

3. Topological Recursion on Character Variety

BKMP's Free Energy

Topological B-model amplitudes are computed in the similar way as the matrix models.

The general structure of the amplitudes is capctured by the symplectic structure of the spectural curve C.

$$\mathcal{C} = \{(x, y) \in \mathbb{C}^* \times \mathbb{C}^* | H(y, x) = 0\}.$$

- Free energies for closed world-sheet: Symplectic invariants $\mathcal{F}^{(g,0)}$
- Free energies for world-sheet with boundaries: Spectral invariants $\mathcal{F}^{(g,h)}(u_1, \cdots, u_h)$, u_i : open string moduli

These free energies are integrals of the meromorphic forms $W_h^{(g)}$.

$$\mathcal{F}^{(g,h)}(u_1,\cdots,u_h) = \int_{e^{u_1^*}}^{e^{u_1}} dx_1 \cdots \int_{e^{u_h^*}}^{e^{u_h}} dx_h W_h^{(g)}(x_1,\cdots,x_h).$$

D-brane Partition Function

The D-brane partition function is defined by

$$\begin{split} & \mathsf{Z}_{\mathsf{D}}(\xi_1,\cdots,\xi_n) = \sum_{\mathsf{R}} \mathsf{Z}_{\mathsf{R}} \mathrm{Tr}_{\mathsf{R}} \mathsf{V} \\ & \mathsf{log} \: \mathsf{Z}_{\mathsf{D}} = \sum_{g=0}^{\infty} \sum_{h=1}^{\infty} \sum_{w_1,\cdots,w_h} \frac{1}{h!} \mathsf{g}_s^{2g-2+h} \mathsf{F}_{w_1,\cdots,w_h}^{(g)} \mathrm{Tr} \mathsf{V}^{w_1} \cdots \mathrm{Tr} \mathsf{V}^{w_h}, \end{split}$$

$$\begin{split} \mathsf{V} &= \operatorname{diag}(\xi_i, \cdots \xi_n)\\ \xi_i \ (\mathsf{i} = 1, \cdots n) \text{ are location of non-compact D-brane in } \mathsf{X}. \end{split}$$

Hiroyuki FUJI Volume Conjecture and Topological Recursion

BKMP's Free Energy and D-brane Partition Function

D-brane partition function is related with BKMP's free energies $\mathcal{F}^{(g,h)}(u_1, \cdots, u_h)$. [Marino] Dictionary

 $\mathrm{Tr} V^{w_1} \cdots \mathrm{Tr} V^{w_h} \quad \leftrightarrow \quad x_1^{w_1} \cdots x_h^{w_h}, \ x_i = e^{u_i}.$

Identification of the free energy:

$$\mathcal{F}^{(\mathrm{g},\mathrm{h})}(\mathrm{u}_1,\cdots \mathrm{u}_{\mathrm{h}}) = \sum_{\mathrm{w}_1,\cdots,\mathrm{w}_{\mathrm{h}}} \frac{1}{\mathrm{h}!} \mathsf{F}^{(\mathrm{g})}_{\mathrm{w}_1,\cdots \mathrm{w}_{\mathrm{h}}} x_1^{\mathrm{w}_1} \cdots x_{\mathrm{h}}^{\mathrm{w}_{\mathrm{h}}}.$$

Topological Recursion

Eynard-Orantin's topological recursion $(2g + h \ge 3)$:

$$\begin{split} W^{(g)}_{h+1}(x,x_1,\cdots,x_h) \\ &= \sum_{x_i} \mathop{\rm Res}_{q=q_i} \frac{d\mathsf{E}_q(x)}{y(q) - y(\bar{q})} \Bigg[W^{(g-1)}_{h+2}(q,\bar{q},x_1,\cdots,x_h) \\ &\quad + \sum_{\ell=0}^g \sum_{J \subset H} W^{(g-\ell)}_{|J|+1}(q,p_J) W^{(\ell)}_{|H|-|J|+1}(\bar{q},p_{H\setminus J}) \Bigg] \end{split}$$

q, $\bar{\mathbf{q}}$: points $\mathbf{x} = \mathbf{q}$ on the 1st sheet and 2nd sheet of the spectral curve \mathbf{q}_i : End points of cuts in the double covering of \mathcal{C} .

dE_q(**x**): Meromorphic 1-form w/ properties.

- Simple pole at $\mathbf{x} = \mathbf{q}$ with residue +1
- \bullet Zero A-period on the spectral curve ${\cal C}.$

Disk invariant

The initial condition for $W_1^{(0)}(x)$:

$$W_1^{(0)}(x) = 0.$$

The top. string free energy is determined independently. [Aganagic-Vafa]

 $\mathcal{F}^{(0,1)}(u) = \int_{u_*}^{u} d\log x \ \log y(x), \ \ H(y,x) = 0, \ \ u := \log x.$

Annulus invariant

The initial condition for $W_2^{(0)}(x)$:

 $\mathsf{W}_2^{(0)}(\mathsf{x},\mathsf{y})=\mathsf{B}(\mathsf{x},\mathsf{y}).$

B(x, y): Bergmann kernel on the spectral curve

$$\begin{split} \mathsf{B}(\mathsf{x},\mathsf{y}) &\overset{\mathsf{x}\sim\mathsf{y}}{\sim} \frac{d\mathsf{x}\;d\mathsf{y}}{(\mathsf{x}-\mathsf{y})^2}, \quad \oint_{\mathsf{A}_{\mathsf{I}}} \mathsf{B}(\mathsf{x},\mathsf{y}) = 0, \quad \frac{1}{2} \int_{\mathsf{q}}^{\bar{\mathsf{q}}} \mathsf{B}(\mathsf{x},\mathsf{p}) = \mathsf{d}\mathsf{E}_{\mathsf{q}}(\mathsf{p}). \end{split}$$

The top. string free energy is regularized. [Marino][F-Mizoguchi]
$$\mathcal{F}^{(0,2)}(\mathsf{u}_1,\mathsf{u}_2) = \int_{\mathsf{x}_1^*}^{\mathsf{x}_1} \int_{\mathsf{x}_2^*}^{\mathsf{x}_2} \left[\mathsf{B}(\mathsf{x},\mathsf{y}) - \frac{1}{(\mathsf{x}-\mathsf{y})^2} \right], \quad \mathsf{x}_{\mathsf{i}} = \mathsf{e}^{\mathsf{u}_{\mathsf{i}}} \end{split}$$

Hiroyuki FUJI

Volume Conjecture and Topological Recursion

Topological Recursion in Lower Orders

$$\begin{split} W^{(0)}_{3}(x_{1},x_{2},x_{3}) &= \sum_{q_{i}} \operatorname*{Res}_{q=q_{i}} \frac{dE_{q}(x_{1})}{y(q) - y(\bar{q})} B(x_{2},q) B(x_{3},\bar{q}) \\ W^{(1)}_{1}(x) &= \sum_{q_{i}} \operatorname*{Res}_{q=q_{i}} \frac{dE_{q}(x)}{y(q) - y(\bar{q})} B(q,\bar{q}), \\ W^{(0)}_{4}(x_{1},x_{2},x_{3},x_{4}) &= \sum_{q_{i}} \operatorname*{Res}_{q=q_{i}} \frac{dE_{q}(x_{1})}{y(q) - y(\bar{q})} \left(B(x_{2},\bar{q}) W^{(0)}_{3}(x_{3},x_{4},q) + \operatorname{perm}(x_{2},x_{3},x_{4}) \right), \\ W^{(1)}_{2}(x_{1},x_{2}) &= \sum_{q_{i}} \operatorname*{Res}_{q=q_{i}} \frac{dE_{q}(x_{1})}{y(q) - y(\bar{q})} \left(W^{(0)}_{3}(x_{2},q,\bar{q}) + 2W^{(1)}_{1}(q)B(x_{2},\bar{q}) \right). \end{split}$$

2-cut Solutions

$$\begin{split} \mathsf{W}_{3}^{(0)}(\mathsf{x}_{1},\mathsf{x}_{2},\mathsf{x}_{3}) &= \frac{1}{2} \sum_{q_{i}} \mathsf{M}_{i}^{2} \sigma_{i}' \mathsf{x}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{2}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{3}), \\ \mathsf{W}_{1}^{(1)}(\mathsf{x}) &= \frac{1}{16} \sum_{q_{i}} \chi^{(2)}(\mathsf{x}) + \frac{1}{4} \sum_{q_{i}} \left(\frac{\mathsf{G}}{\sigma_{i}'} - \frac{\sigma_{i}''}{12\sigma_{i}'} \right) \mathsf{x}_{i}^{(1)}(\mathsf{x}), \\ \mathsf{W}_{4}^{(0)}(\mathsf{x}_{1},\mathsf{x}_{2},\mathsf{x}_{3},\mathsf{x}_{4}) &= \frac{1}{4} \sum_{q_{i}} \left\{ 3\mathsf{M}_{i}^{2} \left(\mathsf{G} + \frac{2}{3}\sigma_{i}'' + 3\sigma_{i}' \frac{\mathsf{M}_{i}'}{\mathsf{M}_{i}} \right) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{2}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{3}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{4}) \\ &\quad + \sum_{j \neq i} \mathsf{M}_{i} \mathsf{M}_{j} \left(\mathsf{G} + \frac{2\mathsf{f}(\mathsf{q}_{i},\mathsf{q}_{j})}{(\mathsf{q}_{i} - \mathsf{q}_{j})^{2}} \right) \left(\mathsf{x}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{2}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{3}) \mathsf{x}_{j}^{(1)}(\mathsf{x}_{4}) + \operatorname{perm}(\mathsf{x}_{2},\mathsf{x}_{3},\mathsf{x}_{4}) \right) \\ &\quad + 3\mathsf{M}_{i}^{2} \sigma_{i}' \left(\mathsf{x}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{2}) \mathsf{x}_{i}^{(1)}(\mathsf{x}_{3}) \mathsf{x}_{i}^{(2)}(\mathsf{x}_{4}) + \operatorname{perm}(\mathsf{x}_{1},\mathsf{x}_{2},\mathsf{x}_{3},\mathsf{x}_{4}) \right) \right\}, \\ \mathsf{W}_{2}^{(1)}(\mathsf{x}_{1},\mathsf{x}_{2}) &= \frac{1}{32} \sum_{q_{i}} \left\{ \left\{ \frac{\mathsf{B}\mathsf{G}^{2}}{\sigma_{i}'^{2}} - \left(\frac{2\sigma_{i}''}{\sigma_{i}''} - \frac{1\mathsf{I}\mathsf{M}_{i}'}{\sigma_{i}'\mathsf{M}_{i}} \right) \mathsf{G} - \frac{\sigma_{i}''^{2}}{12\sigma_{i}'^{2}} - \frac{5\sigma_{i}'''}{18\sigma_{i}'} - \frac{7\sigma_{i}''\mathsf{M}_{i}'}{6\sigma_{i}'\mathsf{M}_{i}} + \frac{\mathsf{5}\mathsf{M}_{i}''}{2\mathsf{M}_{i}} - \frac{\mathsf{3}\mathsf{M}_{i}'^{2}}{\mathsf{M}_{i}^{2}} \right) \\ &\quad + \sum_{j\neq i} \frac{\mathsf{M}_{i}}{\mathsf{M}_{j}} \sigma_{j}'^{2} \left[- \frac{\sigma_{i}'\sigma_{j}'}{3(\mathsf{q}_{i} - \mathsf{q}_{j})^{2}} + \left(4\mathsf{G} - \frac{2}{3}\sigma_{j}'' - \sigma_{j}' \frac{\mathsf{M}_{j}}{\mathsf{M}_{j}} \right) \left(\mathsf{G} + \frac{2\mathsf{f}(\mathsf{q}_{i},\mathsf{q}_{j})}{(\mathsf{q}_{i} - \mathsf{q}_{j})^{2}} \right) \right] \right\} \mathsf{X}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{X}_{i}^{(1)}(\mathsf{x}_{2}) \\ &\quad + \sum_{j\neq i} \frac{\mathsf{4}}{\sigma_{i}'\sigma_{j}'} \left(\mathsf{G} + \frac{2\mathsf{f}(\mathsf{q}_{i},\mathsf{q}_{j})}{(\mathsf{q}_{i} - \mathsf{q}_{j})^{2}} \right)^{2} \mathsf{X}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{X}_{j}^{(1)}(\mathsf{x}_{2}) + \left(\frac{12\mathsf{G}}{\sigma_{i}'} - \frac{\sigma_{i}''}{2\sigma_{i}'} + \frac{2\mathsf{M}_{i}'}{\mathsf{M}_{i}} \right) \left(\mathsf{X}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{X}_{i}^{(2)}(\mathsf{x}_{2}) + (\mathsf{x}_{1} \leftrightarrow \mathsf{x}_{2}) \right) \\ &\quad + \sum_{j\neq i} \frac{\mathsf{4}}{\sigma_{i}'\sigma_{j}'} \left(\mathsf{G} + \frac{2\mathsf{f}(\mathsf{q}_{i},\mathsf{q}_{j})}{2} \right)^{2} \mathsf{X}_{i}^{(1)}(\mathsf{x}_{1}) \mathsf{X}_{j}^{(1)$$

Notations:

$$\begin{split} \sigma(x;q_i) &:= \sigma(x)/(x-q_i), \quad \sigma'_i := \sigma(q_i;q_i) \quad \sigma''_i := 2\sigma'(q_i;q_i), \quad \sigma'''_i := 3\sigma''(q_i;q_i), \\ \chi_i^{(n)}(x) &:= \underset{q=q_i}{\operatorname{Res}} \left(\frac{d\mathsf{E}_q(x)}{y(q) - y(\bar{q})} \frac{1}{(q-q_i)^n} \right), \quad \mathsf{M}_i := \mathsf{M}(q_i). \end{split}$$

Our Set-up: 1

Character variety as spectral curve

We choose the character variety as the spectral curve. character variety of knot **K**.

$$\begin{split} \mathcal{C} &= \big\{(\ell,m) \in \mathbb{C}^* \times \mathbb{C}^* | \tilde{A}_{\mathsf{K}}(\ell,m) = 0 \big\}, \quad \tilde{A}_{\mathsf{K}}(\ell,m^2) := A_{\mathsf{K}}(\ell,m). \\ & \text{i.e. } \mathsf{H}(\mathsf{y},\mathsf{x}) = \tilde{A}_{\mathsf{K}}(\mathsf{y},\mathsf{x}). \end{split}$$

Location of D-brane

On the information of D-brane we identify

$$V = \operatorname{diag}(\xi_1, \xi_2) \quad \leftrightarrow \quad \rho(\mu) = \operatorname{diag}(\mathsf{m}, \mathsf{m}^{-1}), \quad \mathsf{m} = \mathsf{e}^{\mathsf{u}}.$$

Actually this choice of D-brane locus is computed as

$$ar{\mathcal{F}}^{(\mathsf{g},\mathsf{h})}(\mathsf{u}) := \sum_{\mathrm{All \ signs}} \mathcal{F}^{(\mathsf{g},\mathsf{h})}(\pm \mathsf{u},\cdots,\pm \mathsf{u}).$$

Our Set-up: 2

Expansion Parameters

We identify the expansion parameters

 $2\hbar \leftrightarrow g_s.$

Therefore we compare the free energies with a fixed Euler number. Fixed Euler Number

We discuss the following correspondence:

$$\mathsf{S}_{\mathsf{k}}(\mathsf{u}) \leftrightarrow \mathsf{F}_{\mathsf{k}}(\mathsf{u}) := 2^{\mathsf{k}-2} \sum_{2\mathsf{g}+\mathsf{h}=\mathsf{k}+1} \frac{1}{\mathsf{h}!} \bar{\mathcal{F}}^{(\mathsf{g},\mathsf{h})}(\mathsf{u})$$

Computational Results perturbative

In the following, we summarize the spectral invariants on the character variety for the figure eight knot.

• Disk invariant:

$$\mathsf{F}_0(u) = \int_{u_*}^u d\log x \ \log y, \quad \mathsf{A}_\mathsf{K}(y,x) = 0.$$

This satisfies the Neumann-Zagier's relation up to constant shift.

$$\partial F_0(u)/\partial u = \log y = v, \ \Rightarrow \ H(u) = F_0(u) + (\mathrm{linear \ terms}).$$

Essential **u**-dependence is consistent with the perturbative invariant $S_0(u)$.

• Annulus invariant:

$$\begin{aligned} &\frac{1}{2!}\bar{\mathcal{F}}^{(0,2)}(x) = \log\frac{1}{\sqrt{\sigma(x)}},\\ &\sigma(x) = x^2 - 2x - 1 - 2x^{-1} + x^{-2}, \quad x = m^2. \end{aligned}$$

Comparing with $F_1(u) = \overline{\mathcal{F}}^{(0,2)}(u)/2$, we recover the subleading term of the perturbative invariant $S_1(u)$.

• <u>2nd order term</u>: perturbative The spectral invariants $\bar{\mathcal{F}}^{(0,3)}$ and $\bar{\mathcal{F}}^{(1,1)}$ are

•
$$\frac{1}{3!}\bar{\mathcal{F}}^{(0,3)}(x) = -\frac{12w^2 - 12w + 7}{12\sigma(x)^{3/2}}, \quad w := \frac{x + x^{-1}}{2},$$

• $\bar{\mathcal{F}}^{(1,1)}(x) = -\frac{8(1 + 6G)w^3 - 4(11 + 21G)w^2 + 30w + 87 + 27G}{180\sigma(x)^{3/2}}.$

G: Constant in the Bergmann kernel on 2-cut curve

$$\mathsf{G} = \frac{(\mathsf{q}_1 + \mathsf{q}_2)(\mathsf{q}_3 + \mathsf{q}_4) - 2(\mathsf{q}_1\mathsf{q}_2 + \mathsf{q}_3\mathsf{q}_4)}{12} - \frac{\mathsf{E}(\mathsf{k})}{\mathsf{K}(\mathsf{k})}(\mathsf{q}_1 - \mathsf{q}_2)(\mathsf{q}_3 - \mathsf{q}_4).$$

The function F_2 yields to

 $\mathsf{F}_2 = -\frac{192 + 27\mathsf{G} - 150\mathsf{w} + 136\mathsf{w}^2 - 84\mathsf{G}\mathsf{w}^2 + 8\mathsf{w}^3 + 48\mathsf{G}\mathsf{w}^3}{180\sigma(\mathsf{x})^{3/2}}.$

•
$$\frac{3\text{rd order term}}{\text{The spectral invariants }} \bar{\mathcal{F}}^{(0,4)} \text{ and } \bar{\mathcal{F}}^{(1,2)} \text{ are}$$

• $\frac{1}{4!} \bar{\mathcal{F}}^{(0,4)}(x) = \frac{25 - 67w + 44w^2 + 24w^3 - 32w^4 + 16w^5}{12\sigma(x)^3},$
• $\frac{1}{2!} \bar{\mathcal{F}}^{(1,2)}(x) = \frac{1280w^6 - 9088w^5 + 13136w^4 + 22176w^3 - 17928w^2 - 26352w + 23193}{6480\sigma(x)^3}$
 $+ G \frac{64w^4 - 232w^3 + 156w^2 + 378w - 243}{1080\sigma(x)^2} + G^2 \frac{(4w - 3)^2}{3600\sigma}.$

Summing these contributions, we find \mathbf{F}_3 .

$$\begin{split} \mathsf{F}_3 &= 2 \Bigg[\frac{1280 \mathsf{w}^6 - 448 \mathsf{w}^5 - 4144 \mathsf{w}^4 + 35136 \mathsf{w}^3 + 5832 \mathsf{w}^2 - 62532 \mathsf{w} + 36693}{6480 \sigma(\mathsf{x})^3} \\ &+ \mathsf{G} \frac{64 \mathsf{w}^4 - 232 \mathsf{w}^3 + 156 \mathsf{w}^2 + 378 \mathsf{w} - 243}{1080 \sigma(\mathsf{x})^2} + \mathsf{G}^2 \frac{(4 \mathsf{w} - 3)^2}{3600 \sigma} \Bigg]. \end{split}$$

Change of Gⁿ

Unfortunately both of the contributions does not coincide because of the constant $\mathbf{G} \in \mathbb{C}$ in the Bergmann kernel. Bergmann kernel

$$\mathsf{G} = \frac{(\mathsf{q}_1 + \mathsf{q}_2)(\mathsf{q}_3 + \mathsf{q}_4) - 2(\mathsf{q}_1\mathsf{q}_2 + \mathsf{q}_3\mathsf{q}_4)}{12} - \frac{\mathsf{E}(\mathsf{k})}{\mathsf{K}(\mathsf{k})}(\mathsf{q}_1 - \mathsf{q}_2)(\mathsf{q}_3 - \mathsf{q}_4).$$

But the coincidence is found by the following small changes.

• Change 1:

We discard the red part which consists of the elliptic functions.

$$\mathsf{G}_{\mathrm{reg}}^{(1)} = rac{(\mathsf{q}_1+\mathsf{q}_2)(\mathsf{q}_3+\mathsf{q}_4)-2(\mathsf{q}_1\mathsf{q}_2+\mathsf{q}_3\mathsf{q}_4)}{12}.$$

 $\label{eq:change 2: We regularize G^2 independent of G. $G^2 \to G_{\rm reg}^{(2)} = (G_{\rm reg}^{(1)})^2 - (1-k^2)(q_1-q_3)^2(q_2-q_4)^2$, $$

Conjecture : By changing **G**ⁿ independently we will find

$$\mathsf{G}^{\mathsf{n}}
ightarrow \mathsf{G}^{(\mathsf{n})}_{\mathrm{reg}}, \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \mathsf{S}_{\mathsf{k}}(\mathsf{u}) = \mathsf{F}^{(\mathrm{reg})}_{\mathsf{k}}(\mathsf{u}).$$

$$\begin{split} y(x) &= \frac{1-2x-2x^2-x^3+x^4+(1-x^2)\sqrt{1-2x+x^2-2x^3+x^4}}{2x^2} \\ F_0 &= \int d\log x \ \log y(x), \\ F_1 &= \frac{1}{2}\log\frac{1}{\sqrt{-3+4w+4w^2}}, \quad w = \frac{x+x^{-1}}{2}, \\ F_2^{(\mathrm{reg})} &= -\frac{192+27\mathsf{G}_{\mathrm{reg}}^{(1)}-150w+136w^2-84\mathsf{G}_{\mathrm{reg}}^{(1)}w^2+8w^3+48\mathsf{G}_{\mathrm{reg}}^{(1)}w^3}{180\sigma(x)^{3/2}}. \\ F_3^{(\mathrm{reg})} &= \frac{1280w^6-448w^5-4144w^4+35136w^3+5832w^2-62532w+36693}{6480\sigma(x)^3} \\ &+\mathsf{G}_{\mathrm{reg}}^{(1)}\frac{64w^4-232w^3+156w^2+378w-243}{1080\sigma(x)^2}+\mathsf{G}_{\mathrm{reg}}^{(2)}\frac{(4w-3)^2}{3600\sigma}. \end{split}$$

We find

$$\mathsf{S}_0=\mathsf{F}_0+\mathrm{linear},\quad \mathsf{S}_1=\mathsf{F}_1,\quad \mathsf{S}_2=\mathsf{F}_2^{(\mathrm{reg})},\quad \mathsf{S}_3=\mathsf{F}_3^{(\mathrm{reg})}.$$

We also checked this coincidence for SnapPea census manifold m009 under the same assumption.

Conclusions & Discussions:

- On hyperbolic 3-manifold side, we have shown the systematic computation of the WKB expansion of the Jones polynomial.
- On topological string side, we have computed the free energies on the basis of Eynard-Orantin's topological recursion.
- \bullet We compared $\boldsymbol{S_k}$ and $\boldsymbol{F_k}$ explicitly for figure eight knot case.
- For disk (NZ function) and annulus (Reidemeister torsion), we find the exact correspondence under our set-up.
- We expect that coincidence is found, if the regularizations for constant ${\bf G}^{\bf n}$ is assumed.

Future Direcrtions

- The higher order terms in topological recursion. [Brini]
- Stokes phenomenon with higher order terms (Exact WKB)

[Witten], [F-Manabe-Murakami-Terashima]

• Abelian branch:

There is another expansion point with trivial holonomy representation at $\ell = 1$. \Rightarrow Different expansion is found:

$$J_n(K;q) = exp\left[S_1^{(\rm abel)}(u) + \sum_{k=1}^\infty \hbar^k S_{k+1}^{(\rm abel)}(u)\right], \quad S_1^{(\rm abel)}(u) = \frac{1}{\Delta_K(m)}.$$

 $\Delta_{\kappa}(m)$: Alexander polynomial

• Investigations on the arithmeticity conjecture [DGLZ]

$$S_n^{(\text{geom})}(0) \in \mathbb{K} = \mathbb{Q}(\operatorname{tr}\Gamma).$$

e.g. Fig.8 case $\Rightarrow \mathbb{K} = \mathbb{Q}(\sqrt{-3})$.

• Toward the free fermion realization of **SU(2)** Chern-Simons gauge theory.

Back-ups

On Hyperbolic Geometry

Non-Euclidean Geometry

Hyperbolic Geometry: One of non-Euclidean Geometry

Gauss, Boyai, and Lobachevsky found in 19th century.

 \Rightarrow The parallel postulate of Euclidean geometry is not imposed. Poincaré's disk model

- The line is an arc of a circle orthogonal to the horocircle.
- If two lines are not intersecting, they are called parallel.
- The area A of triangle is determined by three inner angles.

$$\mathbf{A} = \pi - \alpha - \beta - \gamma.$$

Vertices are located at horocircle \Rightarrow ideal triangle (A = π)

Hyperbolic 3-manifold

- The hyperbolic 3-manifold admits a complete hyperbolic metric $\mathbf{R}_{ij} = -2\mathbf{g}_{ij}$.
- Volume w.r.t. the hyperbolic metric is finite.
- The hyperbolic 3-manifold is simplicially decomposed into the ideal tetrahedra .

Simplicial Decomposition

Simplicial decomposition of the knot complement [Yokota]

Assign octahedron on each crossing of a knot

Q Reduce the number of ideal tetrahedra by Pachner 2-3 moves

Example: Figure Eight Knot Complement:

For figure eight knot one can assign 4 octahedron for each crossings.

Reducing the number of ideal tetrahedra, one finds that the complement is decomposed into 2 ideal tetrahedra.

Hyperbolic Volume

The volume of each ideal tetrahedra is determined w.r.t. hyperbolic metric on $\mathbb{H}^3.$

$$\begin{aligned} (\mathbf{x},\mathbf{y}) \in \mathbb{R}^2, \quad \mathbf{z} \in \mathbb{R}_+ \\ ds^2_{\mathbb{H}^3} = \frac{d\mathbf{x}^2 + d\mathbf{y}^2 + d\mathbf{z}^2}{\mathbf{z}^2}. \end{aligned}$$

After some elementary computations, one obtains [Milnor]

 $\operatorname{Vol}(\mathsf{T}_{\alpha\beta\gamma}) = \mathsf{\Lambda}(\alpha) + \mathsf{\Lambda}(\beta) + \mathsf{\Lambda}(\gamma)$

 $\Lambda(\mathbf{x})$: Lobachevsky's function Dihedral angles for each ideal tetrahedra \Rightarrow hyperbolic volume Mostow's rigidity theorem

All topological informations are determined by $\pi_1(M)$

- ⇒ Dihedral angles are determined uniquely, if we solve gluing conditions .
- \Rightarrow Unique hyperbolic volume.
Gluing Conditions

There are two kinds of gluing conditions for ideal tetrahedra.

• Gluing conditions (bulk):

• Gluing conditions (boundary $\partial M \simeq T^2$):

Boundary is realized by chopping off small tetrahedra.

 \Rightarrow Each triangles are glued together completely.

Cut around ideal points by horospheres

Volume of Fig.8 Knot Complement

Solving two conditions \rightarrow Hyperbolic volume

Completeness condition Meridian μ : w(1 - z) = 1Longitude ν : $(z^2 - z)^2 = 1$ Solution:

$$\alpha_{i} = \beta_{i} = \gamma_{i} = \pi/3, \quad i = 1, 2,$$

 $Vol(S^{3}\setminus 4_{1}) = 6\Lambda(\pi/3) = 2,0298832....$

Incomplete Structure Generalized

Neumann and Zagier discussed the deformation of the hyperbolic structure by changing the gluing condition of the boundary.

(Edge condition z(z - 1)w(w - 1) = 1 is not deformed.)

- Meridian μ : $w(1 z) = m^2$
- Longitude ν : $(z/w)^2 = \ell^2$

Dehn surgery \Rightarrow M_u has non-trivial $SL(2; \mathbb{C})$ holonomy.

Complete Structure

Developing map of the boundary torus:

• Completeness condition:

$$\sum_{\mathbf{i}\in\mu}\mathbf{p}_{\mathbf{i}}=\mathbf{0},\quad\sum_{\mathbf{i}\in\nu}\mathbf{p}_{\mathbf{i}}=\mathbf{0}.$$

μ: Meridian cycle, ν: Longitude cycle
Deformation of the completeness condition:

$$\sum_{\mathbf{i}\in\mu}\mathbf{p}_{\mathbf{i}}=2\mathbf{u},\quad\sum_{\mathbf{i}\in\nu}\mathbf{p}_{\mathbf{i}}=\mathbf{v}.$$

Explicit Gluing Processes

źК°

źК°

http://web.archive.org/web/20070713165857/http://www1.kcn.ne.jp/□iittoo/

Knot is localized at the tip of ideal tetrahedra.

Knot Invariants

Colored Jones Polynomial Volume Conjecture SU(2) Chern-Simons gauge theory:

$$S_{\mathrm{CS}}[\mathsf{A}] = rac{\mathsf{k}}{4\pi}\int\mathrm{Tr}(\mathsf{A}\mathsf{d}\mathsf{A} + rac{2}{3}\mathsf{A}\wedge\mathsf{A}\wedge\mathsf{A}).$$

The Wilson loop operator with spin j (n = 2j + 1) representation:

$$W_n(K; \mathbb{S}^3) = \operatorname{tr}_n \left[P \exp\left(\oint_K A \right) \right].$$

The colored Jones polynomial $J_n(K;q)$ is related with the Wilson loop expectation value.

$$\begin{split} &J_n(K;q=e^{4\pi i/(k+2)})=\Big\langle W_n(K;\mathbb{S}^3)\Big\rangle/\Big\langle W_n(U;\mathbb{S}^3)\Big\rangle,\\ &\Big\langle W_n(U;\mathbb{S}^3)\Big\rangle=\frac{q^n-q^{-n}}{q-q^{-1}},\quad U: \text{ unknot.} \end{split}$$

Examples of Colored Jones Polynomial Trefoil **3**₁ and figure eight knot **4**₁

$$\begin{split} J_n(3_1;q) &= \sum_{k=0}^{n-1} \prod_{j=1}^k (-1)^k q^{k(k+3)/2} (q^{(n-j)/2} - q^{-(n-j)/2}) (q^{(n+j)/2} - q^{-(n+j)/2}), \\ J_n(4_1;q) &= \sum_{k=0}^{n-1} \prod_{j=1}^k (q^{(n-j)/2} - q^{-(n-j)/2}) (q^{(n+j)/2} - q^{-(n+j)/2}). \end{split}$$

Hyperbolic Knots : $Vol(S^3 \setminus K) \neq 0$

Non-hyperbolic Knots : $Vol(S^3 \setminus K)=0$

Figure eight knot

Borromean Ring

Trefoil (3,2)-torus knot

Solomon' s Seal knot (5,2)-torus k

Colored Jones Polynomial J_n(K; q)

- **①** Assign $\mathbf{i}_{h} = \mathbf{0}, \cdots, \mathbf{a} \mathbf{1}$ for each segments in **K**.
- 2 Assign R-matrix for each crossings: $(a)_q := q^{a/2} q^{-a/2}$

Sum all possible i_h's

Surgery and holonomy

In the topological field theory, the partition function is computed via the surgery procedure. $\cite[Atiyah]$

$$\label{eq:ZCS} \mathsf{Z}_{\mathrm{CS}}(\mathsf{M}) = \int \mathcal{D} a \; \mathsf{Z}(\mathsf{M}_1;a) \mathsf{Z}(\mathsf{M}_2;a).$$

a: Gauge field on the boundary $\partial M_1 = \partial M_2$.

The holonomy $\rho(\mu)$ on $\partial \mathbf{M}$ is related with the **SL(2**; \mathbb{C}) holomony around Wilson loop: $\mathbf{m}_0 = \exp\left(\frac{4\pi j\sqrt{-1}}{k+2}\right)$. [Murayama]

$$\begin{split} \left\langle \mathsf{W}_{\mathsf{n}}(\mathsf{K};\mathsf{S}^{3})\right\rangle &= \int_{\mathcal{M}_{\partial\mathsf{M}}} \mathcal{D}\mathsf{A} \;\mathsf{Z}_{\mathsf{k}}(\mathsf{n};\mathsf{S}^{1}\times\mathsf{D}^{2})[\mathsf{A}]\cdot\mathsf{Z}_{\mathsf{k}}(\mathsf{S}^{3}\backslash\mathsf{N}(\mathsf{K}))[\mathsf{A}] \\ &= \int\mathsf{d}\mathsf{u}\;\delta\left(\mathsf{u} - \frac{\mathsf{n}-1}{\mathsf{k}}\pi\sqrt{-1}\right)\mathsf{Z}_{\mathsf{k}}(\mathsf{M})[\mathsf{u}] = \mathsf{Z}_{\mathsf{k}}(\mathsf{M})[\mathsf{u}_{0}]. \end{split}$$

Computation of Volume Conjecture [Kashaev], [Murakami²]

$$\lim_{n\to\infty}\frac{\log|J_n(\mathsf{K},\mathsf{q}=\mathrm{e}^{\frac{2\pi\sqrt{-1}}{n}})|}{n}=\frac{1}{2\pi}\mathrm{Vol}(\mathsf{S}^3\backslash\mathsf{N}(\mathsf{K})).$$

J_n(**K**; **q**): **n**-colored Jones Polynomial Example: Figure 8 knot

$$J_n(4_1,q) = \sum_{k=0}^{n-1} \prod_{j=1}^k (q^{(n+j)/2} - q^{-(n+j)/2})(q^{(n-j)/2} - q^{-(n-j)/2}).$$

Specialize to $\mathbf{q} = \mathbf{e}^{2\pi\sqrt{-1}/n}$

$$J_{n}(4_{1}, e^{2\pi\sqrt{-1}/n}) = \sum_{k=0}^{n-1} |(q)_{k}|^{2}, \quad (q)_{k} := \frac{L(q^{k+1/2}; q)}{L(q^{1/2}; q)} \to \frac{S_{\frac{\pi}{n}}(\frac{\pi}{n} - \pi)}{S_{\frac{\pi}{n}}(\pi - 2\pi k/n)}$$

$$\mathsf{S}_{\gamma}(\mathsf{p}) := \exp\left[\frac{1}{4}\int_{-\infty}^{\infty} \frac{\mathrm{e}^{\mathsf{px}}}{\sinh(\pi \mathsf{x})\sinh(\gamma \mathsf{x})}\right]: \text{ Faddeev integral of q-dilog}$$

Asymptotic behavior $\mathbf{n}
ightarrow \infty$ $(\gamma = rac{\pi}{\mathbf{n}}
ightarrow \mathbf{0})$

$$\begin{split} & \mathsf{S}_{\gamma}(\mathsf{p})\sim \exp\left[\frac{1}{2\sqrt{-1}\gamma}\mathrm{Li}_{2}(-\mathrm{e}^{\sqrt{-1}\mathsf{p}})\right], \\ & \rightarrow \quad \mathsf{J}_{\mathsf{n}}(\mathsf{4}_{1};\mathrm{e}^{2\pi\sqrt{-1}})\sim \int \mathsf{d}z\exp\left[\frac{\sqrt{-1}\mathsf{n}}{2\pi}\left(\mathrm{Li}_{2}(\mathsf{z})-\mathrm{Li}_{2}(\mathsf{z}^{-1})\right)\right] \end{split}$$

 $z:=q^k$ The saddle point of $log~|J_n(4_1,e^{2\pi\sqrt{-1}}/n)|\Rightarrow z_0=e^{\pi\sqrt{-1}/3}$

Asymptotic value of Jones polynomial

$$\begin{array}{rl} & 2\pi \lim_{n \to \infty} \frac{\log |J_n(4_1; q = e^{2\pi \sqrt{-1}/n})|}{n} \\ = & 2 \text{Im}[\text{Li}_2(z_0)] = 2,02988 \cdots = \text{Vol}(\text{S}^3 \setminus \text{N}(\text{K})) \end{array}$$

Fundamental Group and A-polynomial Generalized

A-polynomial is determined by the fundamental group $\pi_1(\mathbb{S}^3 \setminus K)$.

$$\pi_{1}(\mathbb{S}^{3}\backslash \mathsf{K}) = \left\{ \mathbf{x}, \mathbf{y} | \mathbf{x}\boldsymbol{\omega} = \boldsymbol{\omega}\mathbf{y} \right\},\$$
$$\boldsymbol{\omega}_{4_{1}} := \mathbf{x}\mathbf{y}^{-1}\mathbf{x}^{-1}\mathbf{y}, \quad \boldsymbol{\omega}_{3_{1}} := \mathbf{x}\mathbf{y}.$$

The meridian and longitude holonomies are identified as

$$\mu = \mathbf{x}, \nu_{4_1} = \mathbf{x}\mathbf{y}^{-1}\mathbf{x}\mathbf{y}\mathbf{x}^{-2}\mathbf{y}\mathbf{x}^{-2}\mathbf{y}\mathbf{x}\mathbf{y}^{-1}\mathbf{x}^{-1}, \quad \nu_{3_1} = \mathbf{y}\mathbf{x}^2\mathbf{y}\mathbf{x}^{-4},$$

Holonomy rep. of hyperbolic mfd. $\rho \in \mathsf{PSL}(2;\mathbb{C})/\Gamma$, Γ : discrete subgp.

$$\rho(\mu) = \begin{pmatrix} m & * \\ 0 & m^{-1} \end{pmatrix}, \quad \rho(\nu) = \begin{pmatrix} \ell & * \\ 0 & \ell^{-1} \end{pmatrix}.$$

Hiroyuki FUJI

Wirtinger

Examples of A-polynomial

Applying these holonomy representations, one finds the constraint equation on (ℓ, \mathbf{m}) .

$$\begin{split} \mathsf{A}_{4_1}(\ell,m) &= \ell + \ell^{-1} + (m^4 - m^2 - 2 - m^{-2} + m^{-4}) = 0, \\ \mathsf{A}_{3_1}(\ell,m) &= \ell + m^6 = 0. \end{split}$$

Generalized Volume Conjecture

Wirtinger Presentation of Knot Group Generalized A-polynomial

The fundamental group for the knot complement is computed via Wirtinger presentation. The algorithm is briefly summarized as follows:

• For each intervals, non-commuting operators are assigned.

Assign non-commuting operators x, y, z, w,... for each line segments.

Solution Eliminate extra operators except for **x** and **y** by crossing rule.

Meridian and Longitude in Wirtinger Algorithm Generalized

• The meridian is identified with the operator at the base point on the knot.

$$\mu = x.$$

• The longitude ν is identified with the ordered product of x_i 's which are assigned for the transversal interval at each crossings.

$$\nu = \prod_{i:under \ crossings} \mathbf{x}_{i}^{\epsilon_{i}},$$

$$\nu_{4_1} = wx^{-1}yz^{-1}, \quad \nu_{3_1} = yxzx^{-3}.$$

Properties of A-polynomial [CCGLS]

- Reciprocal $A_K(m, \ell) = \pm A_K(1/m, 1/\ell)$
- Under the change of $\pi_1(\partial \mathsf{M})$ basis $(\gamma_{\mathsf{m}}, \gamma_{\ell})$

$$\left(\begin{array}{c} \gamma_{\ell} \\ \gamma_{m} \end{array} \right) \rightarrow \left(\begin{array}{c} a & b \\ c & d \end{array} \right) \left(\begin{array}{c} \gamma_{\ell} \\ \gamma_{m} \end{array} \right), \quad \left(\begin{array}{c} a & b \\ c & d \end{array} \right) \in SL(2; C)$$
$$\Rightarrow A_{K}(m, \ell) \rightarrow A_{K}(m^{a}\ell^{-c}, m^{-b}\ell^{d})$$

Tempered

Face of Newton polygon define cyclotomic polynomial in 1-variable

Logarithmic Mahler Measure

The logarithmic Mahler measure for the polynomial $P(z_1, \dots, z_n)$ are defined as follows:

$$\mathsf{m}(\mathsf{P}) = \frac{1}{(2\pi \mathsf{i})^n} \int_{|z_1|=1} \frac{\mathsf{d} z_1}{z_1} \cdots \int_{|z_n|=1} \frac{\mathsf{d} z_n}{z_n} \log |\mathsf{P}(z_1, \cdots, z_n)|.$$

Jensen's formula

Let P(z) be a 1-parameter polynomial with complex coefficients.

$$\begin{split} \frac{1}{2\pi i} \int_{|z|=1} \frac{dz}{z} \log |\mathsf{P}(z)| &= \log |a_0| + \log^+ |a_i| \\ \mathsf{P}(z) &= a_0 \prod_{i=1}^d (z-a_i), \\ \log^+ x &= \begin{cases} \log x \ \text{ for } |x| > 1, \\ 0 \ \text{ for } |x| < 1. \end{cases} \end{split}$$

where

Applying the Jensen's formula for each variable z_i , one can evaluate the logarithmic Mahler measure.

,

Logarithmic Mahler Measure for A-polynomial

A-polynomial is a reciprocal polynomial with 2-variable $A(\ell^{-1}, m^{-1}) = m^a \ell^b A(\ell, m)$. This property simplifies the logarithmic Mahler measure m(A)

$$\begin{split} \pi m(\mathsf{A}) &= \sum_{i=1}^d \int_0^\pi \mathsf{log}^+ |\ell_k(e^{2\pi\sqrt{-1}u})| \mathsf{d} \mathsf{u}, \\ \mathsf{A}(\ell,\mathsf{m}) &= \ell^\mathsf{p} \mathsf{m}^\mathsf{q} \prod_{i=1}^d (\ell - \ell_k(\mathsf{m})). \end{split}$$

Examples: Logarithmic Mahler measure [Boyd]

$$\pi m(A_{4_1}) = 2\pi d_3, \quad \pi m(A_{m009}) = \frac{1}{2}\pi d_7.$$

where

$$d_f = L'(\chi_{-f}, -1), \quad L(\chi_{-f}, s) = \sum_{n=1}^{\infty} \chi_{-f}(n) \frac{1}{n^s}.$$

 $\chi_{-\mathbf{f}}$: real odd primitive character for the discrimiant $-\mathbf{f}$.

Bianchi manifold M_f : $M_f = \mathbb{H}^3/\Gamma$, $\Gamma = PSL(2; \mathcal{O}_{\mathbb{Q}(\sqrt{-f})})$

$$\operatorname{Vol}\mathsf{M}_{\mathsf{f}} = rac{\mathsf{f}\sqrt{\mathsf{f}}}{24}\mathsf{L}(\chi_{-\mathsf{f}},2).$$

<u>Once Punctured Torus Bundle over S^1 </u>

Once punctured torus bundle over $\mathbb{S}^{\mathbf{1}}$ is classified by the holonomy group.

$$\mathsf{M}(\varphi) = (\mathbb{T}^2 \setminus \{0\}) / (\mathsf{x}, 0) \sim (\varphi(\mathsf{x}), 1).$$

The holonomy φ has two distinct eigenvalue \Rightarrow **M**(φ) admit hyperbolic structure.

$$\begin{split} \varphi &= \mathsf{L}^{\mathsf{s}_1}\mathsf{R}^{\mathsf{t}_1}\mathsf{L}^{\mathsf{s}_2}\mathsf{R}^{\mathsf{t}_2}\cdots\mathsf{L}^{\mathsf{s}_n}\mathsf{R}^{\mathsf{t}_n}, \quad \mathsf{s}_i, \ \mathsf{t}_i \in \mathbb{N} \\ \mathsf{L} &= \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \quad \mathsf{R} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right). \end{split}$$

• $\varphi = \mathsf{LR} \Rightarrow \mathsf{M}(\mathsf{LR}) = \mathbb{S}^3 \setminus 4_1.$

• $\varphi = L^2 R \Rightarrow M(L^2 R) =$ SnapPea census manifold m009.

3D Gravity

Physical meaning of the volume conjecture Einstein-Hilbert action for 3D Euclidean gravity

$$I_{\rm EH}[g_{ij}] = -rac{1}{4\pi}\int_{\mathsf{M}} \mathsf{d}^3 \mathsf{x} \sqrt{\mathsf{g}}(\mathsf{R}-2\mathsf{\Lambda}).$$

Normalizing the cosmological constant to $\Lambda = 1$, the Einstein equation yields to

$$R_{ij} = -2g_{ij}$$
. \Rightarrow (Hyperbolic 3 – manifold)

The same equation is also derived from the equation of motion of the following action. (1st order formulation)

$$\mathsf{I}_{ ext{grav}}[\mathsf{e},\omega] = rac{1}{2\pi}\int_{\mathsf{M}}\mathrm{Tr}\left(\mathsf{e}\wedge\mathsf{R}(\omega)-rac{1}{3}\mathsf{e}\wedge\mathsf{e}\wedge\mathsf{e}
ight),$$

 $e^a_i{:}{\text{dreibein}},~\omega^a_i{:}{\text{spin connection}}~(a,i=1,\cdots,3)$

$$\mathbf{g}_{ij} := \sum_{a=1}^{3} \mathbf{e}^{a}_{i} \mathbf{e}^{a}_{j}, \quad \mathsf{R}(\omega) := \mathsf{d}\omega + \omega \wedge \omega, \quad \mathbf{e} = \sum_{a,i=1}^{3} \mathbf{e}^{a}_{i} \mathsf{T}^{a}_{\mathsf{SU}(2)\mathrm{adj}} \mathsf{d}\mathsf{x}^{i}.$$

There is a topological term which gives rise to the same equation of motion.

$$\begin{split} \mathsf{I}_{\mathrm{CS}}[\mathsf{e},\omega] &= \frac{1}{4\pi} \int_{\mathsf{M}} \mathrm{Tr} \Big(\,\omega \wedge \mathsf{d}\omega - \mathsf{e} \wedge \mathsf{d}\mathsf{e} \\ &+ \frac{2}{3} \omega \wedge \omega \wedge \omega - 2\omega \wedge \mathsf{e} \wedge \mathsf{e} \Big). \end{split}$$

In general, the 1st order action yields to

$$I_{\rm gCS} = kI_{\rm CS} + \sqrt{-1}\sigma I_{\rm grav}.$$

Let \mathbf{A} , $\mathbf{\bar{A}}$ and \mathbf{t} , $\mathbf{\bar{t}}$ be the linear combinations

$$A := \omega + \sqrt{-1}e, \quad \overline{A} := \omega - \sqrt{-1}e, \quad t := k + \sigma, \quad \overline{t} := k - \sigma.$$

3D grav.w/ neg. c.c. \Leftrightarrow **SL(2**; \mathbb{C}) Chern-Simons gauge theory

$$\begin{split} I_{\rm gCS} &= \; \frac{t}{8\pi} \int_{\mathsf{M}} {\rm Tr} \left[\mathsf{A} \wedge \mathsf{d} \mathsf{A} + \frac{2}{3} \mathsf{A} \wedge \mathsf{A} \wedge \mathsf{A} \right] \\ &+ \frac{\bar{t}}{8\pi} \int_{\mathsf{M}} {\rm Tr} \left[\bar{\mathsf{A}} \wedge \mathsf{d} \bar{\mathsf{A}} + \frac{2}{3} \bar{\mathsf{A}} \wedge \bar{\mathsf{A}} \wedge \bar{\mathsf{A}} \right]. \end{split}$$

Under on-shell condition, the value of the action yields to

$$egin{aligned} & \mathsf{I}_{\mathrm{grav}}[\mathsf{e},\omega] \sim \int_\mathsf{M} \mathrm{Tre} \wedge \mathsf{e} \wedge \mathsf{e} = \mathrm{Vol}(\mathsf{M}). \ & \mathsf{I}_{\mathrm{CS}}[\mathsf{e},\omega] \sim \mathrm{CS}(\mathsf{M}). \end{aligned}$$

 $\Rightarrow \text{ Leading terms of } \log \mathsf{Z}_{\mathrm{CS \ grav.}} \text{ in the WKB expansion} \\ \text{gives rise to the volume and Chern-Simons invariants} . \\ \text{Classical solution of } \mathsf{SL}(2;\mathbb{C}) \text{ Chern-Simons gauge theory} \\ \text{The classical solution } \mathsf{F} = \mathsf{0} = \bar{\mathsf{F}} \text{ is given by the holonomy} \\ \text{representation } \rho. \qquad \rho: \pi_1(\mathsf{M}) \longrightarrow \mathsf{SL}(2;\mathbb{C}) \\ \end{array}$

$$\overset{\mathbb{U}}{\mathcal{C}} \mapsto \rho = \overset{\mathbb{U}}{\mathrm{P}} \exp\left[\oint_{\mathsf{C}} \mathsf{A}\right].$$

Moduli space L of the solution for $F = \overline{F} = 0$ on $M = \mathbb{S}^3 \setminus N(K)$:

$$\begin{split} \mathsf{L} &= \operatorname{Hom}_{\mathbb{C}}\big(\pi_1(\mathbb{S}^3 \setminus \mathsf{N}(\mathsf{K})); \mathsf{SL}(2;\mathbb{C})\big) / \operatorname{Gauge equiv.} \\ &= \left\{ (\mathsf{m}, \ell) \in \left(\mathbb{C}^{\times}\right)^2 | \mathsf{A}_{\mathsf{K}}(\mathsf{m}, \ell) = \mathbf{0} \right\}. \end{split}$$

The partition function for $SL(2; \mathbb{C})$ Chern-Simons gauge theory on M is expanded perturbatively as

$$\mathsf{Z}_{\mathsf{gCS}}(\mathsf{M};\mathsf{m}) = \exp(\sqrt{-1}\mathsf{S})\sqrt{\mathsf{T}_{\mathsf{K}}(\mathsf{M};\mathsf{m})} + \mathcal{O}(1/\mathsf{k},1/\sigma).$$

 \bullet Geometric quantization on $L \Rightarrow$ Leading term S $_{\rm [Gukov]}$

$$S = \sqrt{-1} \frac{\sigma}{\pi} \int_{\gamma} (-\log |\ell| d(\operatorname{argm}) + \log |m| d(\operatorname{arg}\ell)),$$
$$+ \frac{k}{\pi} \int_{\gamma} (\log |m| d(\log |m|) + \operatorname{arg}\ell d(\operatorname{argm})),$$

 γ : 1-dimensional cycle in L In the case of **k** = σ , the leading term simplifies.

$$\mathsf{S} = rac{\mathsf{k}}{\pi} \int_{\gamma} \log \ell(\mathsf{m}) \mathsf{d}(\log \mathsf{m})$$

 One loop term T_K(M; m) is the Reidemeister torsion of the hyperbolic manifold.

On Hikami's Invariant

State Integral Model

Hikami proposed a state integral model which gives a topological invariant for hyperbolic 3-manifold. This model can be seen as the $SL(2; \mathbb{C})$ analogue of Turaev-Viro model.

For each ideal tetrahedra the following factors are assigned.

$$\begin{split} \langle \mathbf{p}_{1}^{(-)}, \mathbf{p}_{2}^{(-)} | \mathbf{S} | \mathbf{p}_{1}^{(+)}, \mathbf{p}_{2}^{(+)} \rangle &= & \frac{\delta \left(\mathbf{p}_{1}^{(-)} + \mathbf{p}_{2}^{(-)} - \mathbf{p}_{1}^{(+)} \right)}{\sqrt{4\pi\hbar/i}} \Phi_{\hbar} (\mathbf{p}_{2}^{(+)} - \mathbf{p}_{2}^{(-)} + i\pi + \hbar) \\ &\times e^{\frac{1}{2\hbar} \left[\mathbf{p}_{1}^{(-)} (\mathbf{p}_{2}^{(+)} - \mathbf{p}_{2}^{(-)}) + \frac{i\pi\hbar}{2} - \frac{\pi^{2} - \hbar^{2}}{6} \right]}, \quad \mathbf{z} = e^{\mathbf{p}_{2}^{(+)} - \mathbf{p}_{2}^{(-)}} \\ \langle \mathbf{p}_{1}^{(-)}, \mathbf{p}_{2}^{(-)} | \mathbf{S}^{-1} | \mathbf{p}_{1}^{(+)}, \mathbf{p}_{2}^{(+)} \rangle &= & \frac{\delta \left(\mathbf{p}_{1}^{(-)} - \mathbf{p}_{1}^{(+)} - \mathbf{p}_{2}^{(+)} \right)}{\sqrt{4\pi\hbar/i}} \frac{1}{\Phi_{\hbar} (\mathbf{p}_{2}^{(-)} - \mathbf{p}_{2}^{(+)} - i\pi - \hbar)} \\ &\times e^{\frac{1}{2\hbar} \left[-\mathbf{p}_{1}^{\prime} (\mathbf{p}_{2}^{(-)} - \mathbf{p}_{2}^{(+)}) - \frac{i\pi\hbar}{2} + \frac{\pi^{2} - \hbar^{2}}{6} \right]}, \quad \mathbf{z} = e^{\mathbf{p}_{2}^{(-)} - \mathbf{p}_{2}^{(+)}} \end{split}$$

Hiroyuki FUJI Volume Conjecture and Topological Recursion

Quantum Dilogarithm

The function $\Phi_{\hbar}(\mathbf{p})$ is called quantum dilogarithm

$$\Phi_{\hbar}(\mathbf{p}) = \exp\left[\frac{1}{4}\int_{\mathbb{R}_{+}}\frac{e^{xz/(\pi i)}}{\sinh x \sinh \hbar x/(\pi i)}\frac{dx}{x}\right].$$

This function satisfies the pentagon relation

$$\Phi_{\hbar}(\hat{\mathbf{p}})\Phi_{\hbar}(\hat{\mathbf{q}}) = \Phi_{\hbar}(\hat{\mathbf{q}})\Phi_{\hbar}(\hat{\mathbf{p}}+\hat{\mathbf{q}})\Phi_{\hbar}(\hat{\mathbf{p}}), \quad [\hat{\mathbf{q}},\hat{\mathbf{p}}] = 2\hbar.$$

The perturbative expansion:

$$\begin{split} \Phi_{\hbar}(p_0+p) &= \exp\left[\sum_{n=0}^{\infty} B_n(\frac{1}{2}+\frac{p}{2\hbar}) \mathrm{Li}_{2-n}(-\mathrm{e}^{p_0}) \frac{(2\hbar)^{n-1}}{n!}\right].\\ \mathrm{Li}_k(z) &:= \sum_{n=0}^{\infty} \frac{z^n}{n^k}, \ B_n(x) = \sum_{k=0}^n {}_n C_k b_k x^{n-k}. \end{split}$$

Hikami's Invariant

The partition function for the simplicially decomposed hyperbolic 3-manifold is defined by

$$Z_{\hbar}(\mathsf{M};\mathsf{u}) = \sqrt{2} \int dp \delta_{\mathsf{C}}(\mathsf{p};\mathsf{u}) \delta_{\mathsf{G}}(\mathsf{p}) \prod_{i=1}^{\mathsf{N}} \langle \mathsf{p}_{2i-1}^{(-)}, \mathsf{p}_{2i}^{(-)} | \mathsf{S}^{\epsilon_i} | \mathsf{p}_{2i-1}^{(+)}, \mathsf{p}_{2i}^{(+)} \rangle,$$

 $\delta_{G}(\mathbf{p})$ Gluing condition along edges. $(\mathbf{z}_{i} = \mathbf{e}^{\epsilon_{i}(\mathbf{p}_{2i}^{(+)} - \mathbf{p}_{2i}^{(-)})})$ $\delta_{C}(\mathbf{p}; \mathbf{u})$: Gluing condition around meridian and longitude.

$$\sum_{\mathbf{i}\in\mu}\mathsf{p}_{\mathsf{i}}=2\mathsf{u},\quad\mathsf{u}=\mathbf{0}\Rightarrow\mathbf{Complete}$$

This partition function is invariant under 2-3 Pachner moves by pentagon relation.

Saddle Point of Hikami's Invariant

Now we discuss $\hbar \to 0$ limit of the partition function of the state integral model. The leading term $\mathcal{O}(1/\hbar)$ is found by the steepest descent method.

Example: Figure eight knot complement

$$\begin{split} \mathsf{Z}_{\hbar}(\mathbb{S}^{3}\backslash 4_{1}; \mathsf{u}) &= \quad \frac{\mathsf{e}^{\mathsf{u}+2\pi\mathsf{i}\mathsf{u}/\hbar}}{\sqrt{2\pi\hbar}} \int \mathsf{d}\mathsf{p} \frac{\Phi_{\hbar}(\mathsf{p}+\mathsf{i}\pi+\hbar)}{\Phi_{\hbar}(-\mathsf{p}-2\mathsf{u}-\pi\mathsf{i}-\hbar)} \\ &\sim \quad \frac{\mathsf{e}^{\mathsf{u}+2\pi\mathsf{i}\mathsf{u}/\hbar}}{\sqrt{2\pi\hbar}} \int \mathsf{d}\mathsf{p} \; \mathsf{e}^{-\frac{1}{2\hbar}\mathsf{V}(\mathsf{p})}, \\ \mathsf{V}(\mathsf{p}) &= \left[\mathrm{Li}_{2}(\mathsf{e}^{\mathsf{p}})-\mathrm{Li}_{2}(\mathsf{e}^{-\mathsf{p}-2\mathsf{u}})-4\mathsf{u}(\mathsf{u}+\mathsf{p})\right]. \end{split}$$

Saddle Point Value of Figure Eight Knot Complement The solution of the saddle point $\partial V(p; u) / \partial p = 0$ is

$$p_0(u) = \log\left[\frac{1-m^2-m^4+\sqrt{1-2m^2-m^4-2m^6+m^8}}{2m^3}\right], \quad m:=e^u.$$

Complete case:

For $\mathbf{u} = \mathbf{0}$, the saddle point value yields to $\mathbf{p}_0 = \mathbf{e}^{\pi \mathbf{i}/3}$. Plugging this value into the above $\mathbf{V}(\mathbf{p})$, one finds

$$V(p_0) = Li_2(e^{\pi i/3}) - Li_2(e^{-\pi i/3}) = 2,02988.. = Vol(S^3 \setminus 4_1).$$

Incomplete case:

The saddle point value of the potential $V(p_0, u)$ satisfies the Neumann-Zagier's relation.

$$\begin{split} v &:= \frac{\partial V(p_0(u))}{\partial u}, \quad \ell = e^v, \\ A_{4_1}(\ell,m) &= \ell + \ell^{-1} + m^4 + m^2 + 1 + m^{-2} + m^{-4} = 0, \end{split}$$

 $\begin{array}{l} \hline \mbox{Perturbative Expansion of Hikami's Invariant}_{\mbox{[Dimofte et.al.]}} \\ \hline \mbox{Utilizing the expansion of the quantum dilogarithm function, one} \\ \mbox{can expand the partition function $Z_{\hbar}(M;u)$ w.r.t. \hbar.} \end{array}$

$$\begin{split} \mathsf{Z}_{\hbar}(\mathsf{M};\mathsf{u}) &= \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{2\pi i u}{\hbar} + u} \int dp \ e^{\Upsilon(\hbar,\mathsf{p};\mathsf{u})} \\ &= \frac{1}{\sqrt{2\pi\hbar}} e^{u + \mathsf{V}(\mathsf{p}_0)/\hbar} \int dp \ e^{-\frac{b^2}{2\hbar}\mathsf{p}^2} \exp\left[\frac{1}{\hbar}\sum_{j=3}^{\infty}\Upsilon_{j,-1}\mathsf{p}^j + \sum_{j=0}^{\infty}\sum_{k=1}^{\infty}\Upsilon_{i,k}\mathsf{p}^j\hbar^k\right] \\ \Upsilon(\hbar,\mathsf{p}_0 + \mathsf{p};\mathsf{u}) &= \sum_{j=0}^{\infty}\sum_{k=-1}^{\infty}\Upsilon_{j,k}(\mathsf{p}_0,\mathsf{u})\mathsf{p}^j\hbar^k, \quad \mathsf{b}(\mathsf{p},\mathsf{u}) := -\frac{\partial^2}{\partial\mathsf{p}^2}\mathsf{V}(\mathsf{p};\mathsf{u}). \end{split}$$

Neglecting $\mathcal{O}(e^{-\mathrm{const}/\hbar}) \Rightarrow$ Gaussian integral $\int dp \ p^n e^{-\frac{b}{2\hbar}p^2}$.

$$\mathsf{Z}_{\hbar}(\mathsf{M};\mathsf{u}) = \exp\left[\frac{1}{\hbar}\mathsf{V}(\mathsf{p}_0) - \frac{1}{2}\log\mathsf{b} + \mathsf{u} + \sum_{\mathsf{k}=1}^{\infty}\hbar^\mathsf{k}\mathsf{S}_{\mathsf{k}+1}\right].$$

Computational Results

$$\begin{split} \ell(m) &= \frac{1-2m^2-2m^4-m^6+m^8+(1-m^4)\sqrt{1-2m^2+m^4-2m^6+m^8}}{2m^4},\\ S_0'(u) &= \mathsf{V}'(p_0(u)) = \log \ell(m), \quad \sigma_0(m) := m^{-4}-2m^{-2}+1-2m^2+m^4,\\ S_1(u) &= -\frac{1}{2}\log b(p,u) = -\frac{1}{2}\log \left[\frac{\sqrt{\sigma_0(m)}}{2}\right], \quad u = \log m\\ S_2(u) &= \frac{-1}{12\sigma_0(m)^{3/2}m^6}(1-m^2-2m^4+15m^6-2m^8-m^{10}+m^{12}).\\ S_3(u) &= \frac{2}{\sigma_0(m)^3m^6}(1-m^2-2m^4+5m^6-2m^8-m^{10}+m^{12}). \end{split}$$

Topological Recursion for 2-cut
Bergmann Kernel for 2-cut Curve

For the curve $y^2 = \sigma(x)$ with 2-cuts, the Bergmann kernel is given explicitly. [Akemann][BKMP][Manabe]

$$\frac{\mathsf{B}(\mathsf{x}_1,\mathsf{x}_2)}{\mathsf{d}\mathsf{x}_1\;\mathsf{d}\mathsf{x}_2} = \frac{\mathsf{d}\mathsf{x}_1\;\mathsf{d}\mathsf{x}_2}{\sqrt{\sigma(\mathsf{x}_1)\sigma(\mathsf{x}_2)}} \left(\frac{\sqrt{\sigma(\mathsf{x}_1)\sigma(\mathsf{x}_2)} + \mathsf{f}(\mathsf{x}_1,\mathsf{x}_2)}{2(\mathsf{x}_1 - \mathsf{x}_2)^2} + \frac{\mathsf{G}}{\mathsf{4}}\right),$$

$$f(p,q) := p^2q^2 - pq(p+q) - \frac{1}{6}(p^2 + 4pq + q^2) - (p+q) + 1.$$

G: Constant that makes $B(x_1, x_2)$ zero A-period.

$$G = \frac{e_3}{3} - \frac{E(k)}{K(k)}(q_1 - q_2)(q_3 - q_4),$$

$$e_3 = \frac{(q_1 + q_2)(q_3 + q_4) - 2(q_1q_2 + q_3q_4)}{12}, \quad k = \frac{(q_1 - q_2)(q_3 - q_4)}{(q_1 - q_3)(q_2 - q_4)}.$$

From curve on \mathbb{C} to \mathbb{C}^*

One has to change variables from $\mathbb C$ to $\mathbb C^*$ to discuss the mirror

CUTVE. [Marino]

$$\mathbf{y}(\mathbf{x}) = rac{\mathbf{a}(\mathbf{x}) \pm \sqrt{\sigma(\mathbf{x})}}{\mathbf{c}(\mathbf{p})}, \quad \sigma(\mathbf{x}) := \prod_{i=1}^{2n} (\mathbf{x} - \mathbf{q}_i).$$

• Change of variables:

$$\mathbf{y} \rightarrow \mathbf{v} := \log \mathbf{y} = \log \left[\frac{\mathbf{a}(\mathbf{x}) + \sqrt{\sigma(\mathbf{x})}}{\mathbf{c}(\mathbf{x})} \right]$$

The branching structure of \mathbf{v} is captured by the following identity:

$$\log\left[\frac{a+\sqrt{\sigma}}{c}\right] = \frac{1}{2}\log\frac{a^2-\sigma}{c^2} + \tanh^{-1}\left(\frac{\sqrt{\sigma}}{a}\right).$$

The effective curve is given by

$$y(x) = \frac{1}{x} \tanh^{-1} \left[\frac{\sqrt{\sigma(x)}}{a(x)} \right] =: M(x) \sqrt{\sigma(x)},$$
$$M(x) = \frac{1}{x\sqrt{\sigma(x)}} \tanh^{-1} \left[\frac{\sqrt{\sigma(x)}}{a(x)} \right] : \text{Moment fn.}$$

Hiroyuki FUJI Volume Conjecture and Topological Recursion

.

Results for m009

<u>Once Punctured Torus Bundle over \mathbb{S}^1 [Jorgensen]</u> Once punctured torus bundle over \mathbb{S}^1 is classified by the holonomy group.

$$\mathsf{M}(arphi) = (\mathbb{T}^2 \setminus \{0\}) / (\mathsf{x}, 0) \sim (\varphi(\mathsf{x}), 1).$$

The holonomy φ has two distinct eigenvalue $\Rightarrow M(\varphi)$ admit hyperbolic structure.

Examples of Simplicial Decomposition

The simplicial decomposition of the once punctured torus bundle over circle is performed explicitly.

• $\varphi = LR$ case:

Gluing Conditions for m009 • Gluing condition for edges $z_1 z_2 z_3$ $z_1 z_2$ z_1 $z_1 z_2$ z_1 $z_1 z_2 \cdots z_{k-1}$ Gluing Condition $\prod_{i=1}^{k} z_i = 1$

 Gluing conditions (boundary ∂M ≃ T²): Boundary is realized by chopping off small tetrahedra.
 ⇒ Each triangles are glued together completely.

Complete Structure Developing map of the boundary torus:

• Completeness condition:

$$\sum_{\mathbf{i}\in\mu}\mathbf{p}_{\mathbf{i}}=\mathbf{0},\quad\sum_{\mathbf{i}\in\nu}\mathbf{p}_{\mathbf{i}}=\mathbf{0}.$$

μ: Meridian cycle, ν: Longitude cycle
Deformation of the completeness condition:

$$\sum_{\mathbf{i}\in\mu}\mathbf{p}_{\mathbf{i}}=2\mathbf{u},\quad\sum_{\mathbf{i}\in\nu}\mathbf{p}_{\mathbf{i}}=\mathbf{v}.$$

Example: SnapPea Census Manifold m009

Shape parameters & Meridian holonomy:

$$\begin{split} z_1 &= e^{p_1-p_2}, \quad w_1 = e^{p_3-p_5}, \quad w_2 = e^{p_5-p_4}, \\ p_3 &- p_4 - p_1 + p_2 = 2u. \end{split}$$

Saddle Point of Hikami's Invariant

Now we discuss $\hbar \to 0$ limit of the partition function of the state integral model. The leading term $\mathcal{O}(1/\hbar)$ is found by the steepest descent method.

$$\mathsf{Z}_{\hbar}(\mathsf{M};\mathsf{u})\sim\int\prod_{i}\mathsf{dp}_{i}\mathsf{e}^{rac{\mathsf{V}(\mathsf{p}_{i})}{2\hbar}},\ \ \Phi_{\hbar}(\mathsf{p})\sim\exp\left[rac{1}{\hbar}\mathrm{Li}_{2}(-\mathsf{e}^{\mathsf{p}})
ight],$$

Example: SnapPea census manifold m009

$$\begin{split} \mathsf{Z}_\hbar(\textbf{m009;u}) &\sim \int dp_1 dp_2 \; e^{-\frac{1}{2\hbar} \mathsf{V}(p_1,p_2;u)}, \\ \mathsf{V}(p_1,p_2) &= \mathrm{Li}_2(e^{-p_1-2u}) - \mathrm{Li}_2(e^{-p_1-2p_2-2u}) - \mathsf{Li}_2(e^{2p_1+2p_2+2u}) \\ &-4u(u+p_1+2p_2) - 2(p_1+p_2)^2 + \frac{\pi^2}{6}. \end{split}$$

A solution of the saddle point $\partial V(p_j;u)/\partial p_i=0$ is

$$\begin{split} p_1^{(0)}(u) &= \log\left[\frac{-1+m^2+m^4+\sqrt{1-2m^2-5m^4-2m^6+m^8}}{2m^3}\right],\\ p_2^{(0)}(u) &= \frac{1}{2}\log\frac{1+m^2e^{p_1^{(0)}}}{m^2(1+m^2)e^{2p_1^{(0)}}}, \quad m:=e^u. \end{split}$$

Saddle Point Value of m009

Complete case:

For $\mathbf{u} = \mathbf{0}$ the saddle point is $(\mathbf{e}^{\mathbf{p}_1^{(0)}}, \mathbf{e}^{2\mathbf{p}_2^{(0)}}) = (\frac{7+i\sqrt{7}}{4}, \frac{-1-i\sqrt{7}}{2})$. Plugging these values into $V(\mathbf{p}_1^{(0)}, \mathbf{p}_2^{(0)})$, one finds

$$V(p_1^{(0)}, p_2^{(0)}) = i[2, 66674... - i2\pi^2 \cdot 0, 02083...]$$

= i[Vol(m009) + 2\pi^2 iCS(m009)].

Incomplete case:

The saddle point value of the potential $V(p_0, u)$ satisfies the Neumann-Zagier's relation.

$$\begin{split} v &:= \frac{\partial V(p_0(u), p_1(u))}{\partial u}, \quad \ell = e^v, \\ A_{m009}(\ell, m) &= m^2 \ell^{-1} + m^4 \ell - 1 + 2m^2 + 2m^4 - m^6 = 0. \end{split}$$

Remark [Boyd-Rodriguez-Villegas]

The volume is also given by the logarithmic Mahler measure

 $Vol(m009) = \pi m(A_{m009}) = d_7/2.$

Perturbative Expansion of Hikami's Invariant

Utilizing the expansion of the quantum dilogarithm function, one can expand the partition function $Z_{\hbar}(M; u)$ w.r.t. \hbar .

$$\begin{split} \mathsf{Z}_{\hbar}(\mathsf{m009};\mathsf{u}) &= \frac{e^{\mathsf{u}+\frac{1}{\hbar}\mathsf{V}(\mathsf{p}_{1}^{(0)},\mathsf{p}_{2}^{(0)})}}{2\sqrt{2}\pi\hbar} \int d\mathsf{p}_{1}d\mathsf{p}_{2} \; e^{-\frac{\mathsf{b}_{11}\mathsf{p}_{1}^{2}+\mathsf{b}_{22}\mathsf{p}_{2}^{2}+2\mathsf{b}_{12}\mathsf{p}_{1}\mathsf{p}_{2}}} \\ &\quad \times \exp\left[\frac{1}{\hbar}\sum_{i+j=3}^{\infty}\Upsilon_{i,j,-1}\mathsf{p}_{1}^{i}\mathsf{p}_{2}^{j} + \sum_{i,j=0}^{\infty}\sum_{k=0}^{\infty}\mathsf{p}_{1}^{i}\mathsf{p}_{2}^{j}\hbar^{k}\right], \\ \mathsf{b}_{ij}(\mathsf{p}_{1},\mathsf{p}_{2}) &:= -\frac{\partial^{2}}{\partial\mathsf{p}_{i}\partial\mathsf{p}_{j}}\mathsf{V}(\mathsf{p}_{1},\mathsf{p}_{2}). \\ \end{split}$$
Neglecting $\mathcal{O}(e^{-\mathrm{const}/\hbar}) \\ \Rightarrow \text{ Gaussian integrals} \int d\mathsf{p}_{1}d\mathsf{p}_{2} \; \mathsf{p}_{1}^{a}\mathsf{p}_{2}^{b}e^{-\frac{\mathsf{b}_{ij}\mathsf{p}_{1}\mathsf{p}_{j}}}. \\ \mathsf{Z}_{\hbar}(\mathsf{M};\mathsf{u}) &= \exp\left[\frac{1}{\hbar}\mathsf{V}(\mathsf{p}_{i}^{(0)}(\mathsf{u})) - \frac{1}{2}\log\det\mathsf{b} + \sum_{k=1}^{\infty}\hbar^{k}\mathsf{S}_{k+1}(\mathsf{u})\right]. \end{split}$

Computational Results

$$\begin{split} \ell(m) &= \frac{-1+m^2+m^4+\sqrt{1-2m^2-5m^4-2m^6+m^8}}{2m^3} \\ S_0'(u) &= V'(p_1^{(0)}(u),p_2^{(0)}(u)) = \log \ell(m), \quad \sigma_0(m) := m^{-4}-2m^{-2}-5-2m^2+m^4, \\ S_1(u) &= -\frac{1}{2}\log \det b(p,u) = -\frac{1}{2}\log \left[\frac{\sqrt{\sigma_0(m)}}{2}\right], \quad u = \log m \\ S_2(u) &= \frac{-1}{48\sigma_0(m)^{3/2}m^6}(5-11m^2+22m^4+105m^6+22m^8-11m^{10}+5m^{12}). \\ S_3(u) &= \frac{2}{\sigma_0(m)^3m^{12}}m^4(1-m^2+m^4)(1+9m^2+4m^4-9m^6+4m^8+9m^{10}+m^{12}). \end{split}$$

 $S_1(u)$ coincides with the Reidemeister torsion. [Porti]

Computational Results for m009 in top. string

• 2nd order term:

The spectral invariants $ar{\mathcal{F}}^{(0,3)}$ and $ar{\mathcal{F}}^{(1,1)}$ are

•
$$\frac{1}{3!}\bar{\mathcal{F}}^{(0,3)}(x) = -\frac{8w^2 + 36w^2 + 6w + 19}{48\sigma(x)^{3/2}}, \quad w := \frac{x + x^{-1}}{2},$$

• $\bar{\mathcal{F}}^{(1,1)}(x) = -\frac{(40 - 72G)w^3 + (-12 + 156G)w^2 + (-210 + 42G)w - 217 - 147G}{336\sigma(x)^{3/2}}.$

 ${\bf G}:$ Constant in the Bergmann kernel on 2-cut curve

$$\begin{split} G &= \frac{(q_1+q_2)(q_3+q_4)-2(q_1q_2+q_3q_4)}{12} - \frac{\mathsf{E}(\mathsf{k})}{\mathsf{K}(\mathsf{k})}(q_1-q_2)(q_3-q_4).\\ \end{split}$$
 The function F_2 yields to
$$\mathsf{F}_2 &= -\frac{(16+72\mathsf{G})\mathsf{w}^3+(264-156\mathsf{G})\mathsf{w}^2+(252-42\mathsf{G})\mathsf{w}+350+147\mathsf{G}}{336\sigma(\mathsf{x})^{3/2}}. \end{split}$$

•
$$\frac{3 \text{rd order term:}}{\text{The spectral invariants }} \bar{\mathcal{F}}^{(0,4)} \text{ and } \bar{\mathcal{F}}^{(1,2)} \text{ are}$$

 $\frac{1}{4!} \bar{\mathcal{F}}^{(0,4)}(x) = \frac{64w^6 + 832w^5 - 144w^4 + 3168w^3 + 1532w^2 - 2060w + 1257}{768\sigma(x)^3},$
 $\frac{1}{2!} \bar{\mathcal{F}}^{(1,2)}(x) = \frac{7862w^6 - 116544w^5 + 341968w^4 + 841120w^3 - 443884w^2 - 350644w + 556003}{112896\sigma(x)^3}$
 $+ G \frac{144w^4 - 816w^3 + 952w^2 + 1988w - 931}{4704\sigma(x)^2} + G^2 \frac{(6w - 7)^2}{12544\sigma(x)}.$

Summing these contributions, we find \mathbf{F}_3 .

$$\begin{split} F_3 &= \frac{370391 - 326732w - 109340w^2 + 653408w^3 + 160400w^4 + 2880w^5 + 8635w^6}{56448\sigma(x)^3} \\ &+ G\frac{144w^4 - 816w^3 + 952w^2 + 1988w - 931}{4704\sigma(x)^2} + G^2\frac{(6w-7)^2}{12544\sigma(x)}. \end{split}$$

Comparing Results

$$\begin{split} y(x) &= \frac{1 - 2x - 2x^2 - x^3 + (1 - x)\sqrt{1 - 2x - 5x^2 - 2x^3 + x^4}}{2x^2} \\ F_0 &= \int d\log x \, \log y(x), \\ F_1 &= \frac{1}{2} \log \frac{1}{\sqrt{-7 - 4w + 4w^2}}, \quad w = \frac{x + x^{-1}}{2}, \\ F_2^{(\mathrm{reg})} &= -\frac{(16 + 72 \mathsf{G}_{\mathrm{reg}}^{(1)})w^3 + (264 - 156 \mathsf{G}_{\mathrm{reg}}^{(1)})w^2 + (252 - 42 \mathsf{G}_{\mathrm{reg}}^{(1)})w + 350 + 147 \mathsf{G}_{\mathrm{reg}}^{(1)}}{336 \sigma(x)^{3/2}} \\ F_3^{(\mathrm{reg})} &= \frac{370391 - 326732w - 109340w^2 + 653408w^3 + 160400w^4 + 2880w^5 + 8635w^6}{56448\sigma(x)^3} \\ &+ \mathsf{G}_{\mathrm{reg}}^{(1)} \frac{144w^4 - 816w^3 + 952w^2 + 1988w - 931}{4704\sigma(x)^2} + \mathsf{G}_{\mathrm{reg}}^{(2)} \frac{(6w - 7)^2}{12544\sigma(x)}. \end{split}$$

We find

$$S_0 = F_0 + {\rm linear}, \quad S_1 = F_1, \quad S_2 = F_2^{\rm (reg)}, \quad S_3 = F_3^{\rm (reg)}.$$

We also checked this coincidence for fig.8 knot complement under the same assumption.

Level-Rank Large n Duality

Topological Vertex/CS computation

$$\begin{split} & \mathsf{Z}_{\mathsf{D}}(x_1,\cdots,x_n) = \sum_{\mathsf{R}} \mathsf{Z}_{\mathsf{R}} \mathrm{Tr}_{\mathsf{R}} \mathsf{V}, \quad \mathsf{V} = \mathrm{diag}(x_1,\cdots,x_p). \\ & \mathsf{log} \: \mathsf{Z}_{\mathsf{D}} = \sum_{g=0}^{\infty} \sum_{h=1}^{\infty} \sum_{w_1,\cdots,w_h} \frac{1}{h!} \mathsf{g}_s^{2g-2+h} \mathsf{F}_{w_1,\cdots,w_h}^{(g)} \mathrm{Tr} \mathsf{V}^{w_1} \cdots \mathrm{Tr} \mathsf{V}^{w_h}. \end{split}$$

We have identified

$$\mathsf{V} = \operatorname{diag}(\mathsf{x}_1,\mathsf{x}_2) \leftrightarrow \rho(\mu) = \operatorname{diag}(\mathsf{m},\mathsf{m}^{-1}) \in \mathsf{SL}(2;\mathbb{C}), \quad \mathsf{m} = \mathsf{e}^{\mathsf{u}}.$$

Hiroyuki FUJI Volume Conjecture and Topological Recursion

Motivation of Our Research

- Realization of 3D quantum gravity in top. string
- Non-perturbative completion (e.g. Witten's ECFT)
- Integrability (\mathcal{D} -module structure) of knot invariants
- Large **n** duality not for rank but for level
 - \Rightarrow Novel class of duality

Hiroyuki FUJI Volume Conjecture and Topological Recursion

\mathcal{D} -module structure in top. string

Large **N** transition [Gopakumar-Vafa],[Ooguri-Vafa]

One of the famous open/closed duality in topological string is large ${\sf N}$ transition .

On N D-branes, U(N) Chern-Simons gauge theory is realized.

$$\begin{split} \mathsf{Z}_{\mathrm{open}}\big(\mathcal{O}(-1)\oplus\mathcal{O}(-1)\to\mathbb{P}^1;\mathsf{u}\big) &= \sum_{\mathsf{R}} \mathrm{e}^{-\mathsf{u}\mathsf{R}}\Big\langle\mathsf{W}_{\mathsf{R}}(\bigcirc;\mathsf{q})\Big\rangle^{\mathsf{U}(\mathsf{N})},\\ \mathsf{e}^{-\mathsf{g}_{\mathsf{s}}} &= \mathsf{q} = \mathrm{e}^{\frac{2\pi\sqrt{-1}}{\mathsf{k}+\mathsf{N}}}: \text{ string coupling,}\\ \mathsf{t} &= \mathsf{g}_{\mathsf{s}}\mathsf{N}: \text{ volume of }\mathbb{P}^1, \qquad \mathsf{u}: \text{ Area of disk.} \end{split}$$

Example: $\mathcal{O}(-1)\oplus \mathcal{O}(-1) \to \mathsf{P}^1$

$$\label{eq:zero} \begin{split} \mathsf{Z}(t,u) &= & \exp[\sum_{g,h} g_s^{2g-2+h} \mathcal{F}^{\mathsf{A}}_{g,h}(t,u)] = \mathsf{Z}_{\mathrm{closed}}(e^{-t};q) \cdot \mathsf{Z}_{\mathrm{open}}(e^{-u};q) \end{split}$$

$$= \ \mathsf{M}(\mathsf{Q};\mathsf{q}) \cdot \frac{\mathsf{L}(\mathsf{e}^{-\mathsf{u}};\mathsf{q})}{\mathsf{L}(\mathsf{Q}\mathsf{e}^{-\mathsf{u}};\mathsf{q})}. \ \mathsf{q} := \mathsf{e}^{-\mathsf{g}_s}, \ \mathsf{g}_s : \mathrm{string} \ \mathrm{coupling}$$

$$\begin{split} \mathsf{M}(\mathsf{x};\mathsf{q}) &:= & \prod_{n=1}^{\infty} \frac{1}{(1-\mathsf{x}\mathsf{q}^n)^n} \; : \; \mathrm{McMahon \; function} \\ \mathsf{L}(\mathsf{x};\mathsf{q}) &:= & \prod_{n=1}^{\infty} (1-\mathsf{x}\mathsf{q}^{n-1/2}) \; : \; \mathrm{Quantum \; Dilogarithm} \end{split}$$

A-model on
$$\mathbf{X} \simeq$$
 B-model on \mathbf{X}^{\vee}

$$\mathsf{H}^{1,1}(\mathsf{X})\simeq\mathsf{H}^{2,1}(\mathsf{X}^{\vee}),\quad\mathsf{H}^{2,1}(\mathsf{X})\simeq\mathsf{H}^{1,1}(\mathsf{X}^{\vee}).$$

The bi-rational map between A-model and B-model is so-called mirror map .

$$\langle \mathcal{O}_1^{\mathsf{B}} \cdots \mathcal{O}_{\mathsf{n}}^{\mathsf{B}} \rangle_{\mathrm{B-model}}^{\mathrm{classical}} \rightarrow \langle \mathcal{O}_1^{\mathsf{A}} \cdots \mathcal{O}_{\mathsf{n}}^{\mathsf{A}} \rangle_{\mathrm{A-model}}^{\mathrm{quantum}}$$

Mirror CY of conifold

$$\begin{split} \mathsf{X}^{\vee} &= \{ (\mathsf{z},\mathsf{w},\mathsf{x},\mathsf{y}) \in \mathbb{C}^2 \times (\mathbb{C}^{\times})^2 | \mathsf{z}\mathsf{w} = \mathsf{H}(\mathsf{x},\mathsf{y}) \}, \\ \mathsf{H}(\mathsf{x},\mathsf{y}) &= 1 - \mathsf{Q}\mathsf{x} - \mathsf{y} + \mathsf{x}\mathsf{y}, \\ \mathsf{\Sigma} &:= \{ (\mathsf{x},\mathsf{y}) \in \mathsf{C}^{\times} \times \mathsf{C}^{\times} \mid \mathsf{H}(\mathsf{x},\mathsf{y}) = \mathbf{0} \} \end{split}$$

 $Z_{\rm open}$ is given by a one-point function (BA-function) of a free fremion on Σ inside mirror CY. $_{\rm [ADKMV]}$

 $Z_{\mathrm{open}}(X; u) = \langle \psi(e^{-u}) \rangle_{\Sigma}.$

Schrödinger equation (conjecture):

$$\begin{split} \hat{H}(\mathrm{e}^{-\hat{x}},\mathrm{e}^{\hat{p}})\mathsf{Z}_{\mathrm{open}}(\mathsf{X};\mathsf{u}) &= 0,\\ \hat{x} := \mathsf{u} - \mathsf{g}_{s}/2, \quad \hat{\rho} := -\mathsf{g}_{s}\partial_{\mathsf{u}}, \quad [\hat{x},\hat{\rho}] = \mathsf{g}_{s}, \quad \mathrm{e}^{-\hat{x}}\mathrm{e}^{\hat{\rho}} = q\mathrm{e}^{\hat{\rho}}\mathrm{e}^{-\hat{x}}. \end{split}$$

Actually the open string partition function for conifold satisfies

$$\left[1-e^{-g_s\partial_u}-Qe^{-u}q^{1/2}+(e^{-u}q^{1/2})(e^{-g_s\partial_u})\right]\mathsf{Z}_{\rm open}(u)=0.$$