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Motivations

• Non-local operators in QFT are disturbances supported on
submanifolds of space-time that can be used to probe the theory in the
bulk.

• They provide us valuable information about the phases,
non-perturbative features of the QFT.

• They are classified by the dimension of their support.

• Line operators(d=1) e.g. Wilson lines: 〈O1(x1) . . .On(xn) L〉
• Surface operators(d=2): 〈O1(x1) . . .On(xn) S〉
• Domain walls(d=3)

• In supersymmetric gauge theories, it is possible to compute these
exactly using localization methods Nekrasov, Pestun, . . ..
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Goal

• We study half-BPS surface operators in four dimensional N = 2
supersymmetric QCD with gauge group SU(N) and 2N fundamental
flavours using equivariant localization and coupled 2d/4d quiver gauge
theories.

• We want to understand the precise relationship between the above two
descriptions of surface operators.

• This has been done for pure N = 2 gauge theory Sujay, SB et al..

• In addition, we want to understand Seiberg duality in the context of
surface operators in N = 2 supersymmetric QCD.
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Plan of the talk

• Surface operators as monodromy defects and as flavour defects in pure
N = 2 theory. Dictionary between the two approaches

• Seiberg duality in pure N = 2 theory.

• Surface operators in N = 2 supersymmetric QCD.

• Seiberg duality in 2d SQCD

• Generalized Seiberg duality and its application on 3-node quivers.

• Conclusion
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Review: monodromy defects in pure N = 2
theory with SU(N) gauge group
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Surface operators as monodromy defects

• Surface operators are co-dimension-2 defects in the 4d gauge theory. It
is supported on a surface D in R4.

• In this approach the defect is defined by introducing a singularity
structure of the four dimensional gauge field.

• On the plane transverse to the defect D, the gauge field behaves as :
Gukov, Witten

• In the path integral, one integrates over all gauge field configurations
with this prescribed singular boundary condition.
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Surface operators as monodromy defects

• One can also add a phase factor to the path integral :

exp
(

2πi
M∑

I=1

ηI

∫
D

Tr FU(nI )

)
• At the defect, the gauge group SU(N) is broken to a Levi subgroup

L = S[U(n1)× U(n2)× . . .× U(nM )]

• For every partition N = n1 + . . .+ nm, there is a surface operator.

• A surface operator is specified by :

• Discrete labels : [n1,n2, . . . ,nM ]
• Continous labels : (α1, . . . , αM) and (η1, . . . , ηM)
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The twisted superpotential

• Our interest is in the low-energy effective action of such theories on the
Coulomb branch, in the presence of a surface operator. This effective
action is encoded in two holomorphic functions.

• The prepotential (F) describes the effective 4d dynamics.

• The (twisted) superpotential (W) describes the effective 2d/4d
dynamics on the 2d defect.

• The instanton contributions to F andW are obtained from the instanton
partition function Z inst[~n] :

lim
εi→0

log(1 + Z inst[~n]) = −F
inst

ε1ε̂2
+
W inst

ε1

where ε̂2 = ε2
M , and ε1 and ε2 are the Ω-deformation parameters.
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Instanton partition function

• The partition function is calculated using equivariant localization.
Kanno-Tachikawa.

• The Ω-deformation parameters (ε1, ε̂2) regulate the volume of R4 and
localize the partition function. Nekrasov.

• The 4d Coulomb vevs {au} also split according to the Levi subgroup:

〈Φ〉 =
{

a1, . . . , ar1 | . . .
∣∣arI−1+1, . . . arI

∣∣ . . . |arM−1+1, . . . , aN
}
.

where rJ =
∑J

I=1 nI .

• The partition function is calculable (order by order in the instanton
counting parameter qI):

Zinst[~n] =
∑
{dI}

(qI)
dI Z{dI}(au, ε1, ε2)

where dI ’s the number of ramified instantons.
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Instanton partition function

Zinst[~n] =
∑
{dI}

(qI)
dI Z{dI}[~n] with Z{dI}[~n] =

M∏
I=1

[ (−1)dI

dI!

∫ dI∏
σ=1

dχI,σ

2πi

]
z{dI}

where

z{dI} =
M∏

I=1

dI∏
σ,τ=1

(χI,σ − χI,τ + δσ,τ )

(χI,σ − χI,τ + ε1)
×

M∏
I=1

dI∏
σ=1

dI+1∏
ρ=1

(χI,σ − χI+1,ρ + ε1 + ε̂2)

(χI,σ − χI+1,ρ + ε̂2)

×
M∏

I=1

dI∏
σ=1

1∏
s∈NI

(
as − χI,σ + 1

2 (ε1 + ε̂2)
)∏

t∈NI+1

(
χI,σ − at + 1

2 (ε1 + ε̂2)
) .
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Contour prescription

• The ramified instanton partition function is a multi-dimensional contour
integral.

• So far we have not been very precise about the contour of integration
on the localization side.

• One has to specify the contour of integration to evaluate the integral.

• Which poles contribute to the partition function?

• Assign Re(au) = 0 and Im(ε1) >> Im(ε̂2) >> 0. Then, contour amounts
to closing in the upper (+) or lower (-) half plane for each set of χI .

• An elegant way to fully specify the contour of integration for all variables
is using the Jeffrey-Kirwan (JK) residue prescription.
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Flavour defects in pure N = 2 theory
• To describe a surface operator of Levi type L in SU(N) theory, one

considers a σ-model with target space: Gukov-Witten, Gadde-Gukov

M =
SU(N)

L
• The defect is 1/2-BPS and preserves (2, 2) supersymmetry in two

dimensions.
• Such sigma models have a gauged linear sigma model (GLSM)

description whose gauge and matter content can be summarized in the
quiver diagram :Witten ’93

• This is a U(r1)× U(r2)× . . . gauge theory in 2d with bi-fundamental
matter and SU(N) flavour group.

• The ranks rJ = n1 + n2 + . . . nJ . The flavour group or global symmetry
group of the 2d theory is identified with the 4d gauge group:
flavour defects Gaiotto-Gukov-Seiberg
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2d/4d quivers: low energy physics

• We integrate out the massive chiral multiplets and write an effective
action for the vector multiplets of the 2d theory.

• (2, 2) supersymmetry on the defect ensures that the low energy
effective action is completely specified by a twisted chiral superpotential
W(σ

(I)
s ):

W = 2πi
M−1∑
I=1

rI∑
s=1

τI σ
(I)
s −

M−2∑
I=1

rI∑
s=1

rI+1∑
t=1

$
(
σ
(I)
s − σ

(I+1)
t

)
−

rM−1∑
s=1

〈
Tr$

(
σ
(M−1)
s − Φ

)〉
where

$(x) = x
(

log
x
µ
− 1
)
,

µ is the UV cut-off scale, and τI is the complexified FI parameter of the
I th node at the scale µ, τI = θI

2π + i ζI .
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Twisted chiral ring equations

• The term in angular bracket corresponds to the double-integral of the
resolvent of the 4d gauge theory :〈

Tr
1

σ − Φ

〉
=
∞∑
`=1

1
σ`+1

〈
Tr Φ`

〉
• The massive vacua are obtained by extremizingW(σ

(I)
s ):

exp

(
∂W
∂σ

(I)
s

)
= 1

- twisted chiral ring equations.

• Solve the twisted chiral ring equations order by order in the dynamically
generated scales Λ

bI
I and Λ4d (via the resolvent) to find the massive

vacua σ(I)
? .

bI = nI + nI+1 .
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The match

• Evaluate the twisted chiral superpotential on the solution :

W(σ∗) =W(au,ΛI ,Λ4d )

where ΛI is the strong coupling scale of the I-th 2d gauge node.

• W(σ
(I)
? ) matchesWinst. calculated using localization provided :

q1 = Λ
b1
1 , q2 = Λ

b2
2 , . . . qM−1 = Λ

bM−1
M−1 , qM =

Λ2N
4d

q1q2 . . . qM−1
.
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Seiberg duality in pure N = 2 gauge theory

• There is a duality in the two dimensional gauge theory that allows one
to write distinct 2d/4d quivers that all have the same infrared behaviour.

• All these quivers provide different realizations of the same surface
operator.

• For dual quivers the low energy effective superpotentials, evaluated in
particular vacua, match exactly.
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Duality: the basic move

• We begin with a 2d U(N) gauge theory with Nf fundamental flavours
and Nf anti-fundamental flavours and assume NF > NA:

NA r NF

• We now perform a Seiberg duality operation on the 2d gauge node, and
obtain the quiver diagram :

NA NF − r NF

• There is an ordinary superpotential induced by the loop in the diagram.
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Seiberg duality on 3-node quivers in pure N = 2
theory
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Comments

• All these quivers provide different realizations of the same surface
operator:

SU(N) −→ S [U(n1)× U(n2)× U(n3)] .

• W evaluated in their respective vacua are all equal.

• How do we understand these dual quivers from the localization point of
view?

• On the localization side, each Seiberg dual realization of the surface
operator is associated to a contour prescription.

• Residue theorems guarantee the equality of the low energy effective
superpotentials.

• For pure gauge theory, distinct contour choices are equivalent.
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Localization results at one-instanton level
Quiver 1 : Integration contour

(
χ1|+, χ2|+, χ3|−

)
WQ1

1−inst =
∑

s∈N1

(−1)n1 q1∏
r∈N̂1∪N2

(as − ar )
+
∑
t∈N2

(−1)n2 q2∏
r∈N̂2∪N3

(at − ar )

+
∑

s∈N1

(−1)n3+1q3∏
r∈N3∪N̂1

(as − ar )
.

Quiver 2 : Integration contour
(
χ1|−, χ2|+, χ3|−

)
:

WQ2
1−inst =

∑
t∈N2

(−1)n1+1q1∏
r∈N1∪N̂2

(at − ar )
+
∑
t∈N2

(−1)n2 q2∏
r∈N̂2∪N3

(at − ar )

+
∑

s∈N1

(−1)n3+1q3∏
r∈N3∪N̂1

(as − ar )
.

Although there is no term by term match of the superpotentials, the difference
vanishes exactly as a consequence of Residue theorem.
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Surface operators in N = 2 SQCD
• The main difference with the pure case is that the matter multiplets now

provide flavours to the 2d gauge nodes as well.
• A new feature of surface operators in SQCD is that they break the

SU(2N) flavour symmetry to the following subgroup:

F = S [U(n1 + n2)× U(n2 + n3)× . . .× U(nM + n1)] .

• The additional constraint we impose is that for every quiver the
complexified FI parameters of the 2d gauge nodes do not run, so that
the 2d gauge theories are conformal.
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Surface operators in N = 2 SQCD

• On the localization side, if we consider the form of Zinst for SQCD, the
denominator and its singularity structure is same as that of pure gauge
theory. The fundamental flavours only add factors in the numerator of
the instanton partition function.

• For a given contour prescription, the set of poles that contribute to the
localization integral is identical to those that contribute in the pure
gauge theory.

• Therefore, the quiver we may associate to a given integration contour
has the same 2d gauge content of the one in the corresponding case
without flavour. In particular the ranks of the 2d gauge nodes remain
identical.
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2-node case: [p, N-p] defect
The quiver Q0:

• After the massive chiral multiplets are integrated out, the twisted chiral
superpotential takes the following form:

WQ0 = log x
∑

s∈N1

σs −
∑

s∈N1

∑
i∈F1

$(mi − σs)−
∑

s∈N1

〈
Tr$(σs − Φ)

〉
where x is the exponentiated FI parameter of the 2d theory and the mi

are the masses of the 4d flavours that also act as twisted masses for
the 2d chiral multiplets.
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2-node case: [p, N-p] defect
• Write down the twisted chiral ring equations.
• Find the vacuum by solving the twisted chiral ring equations.
• EvaluateW on that particular vacuum.

•

WQ0 (σ?) = log x
∑

s∈N1

as + (−1)Nx
∑

s∈N1

B1(as)

P′1(as)P2(as)

+ (−1)N+1 q0

x

∑
s∈N1

B2(as)

P′1(as)P2(as)

• It can be easily checked that the 1-instanton terms match the
localization result with the (+−) prescription, namely

W(σ?)
∣∣
1-inst =W+−

1-inst ,

provided we make the following identifications:

q1 = (−1)N+p+1 x , q2 = (−1)p+1 q0

x
.

25 / 38



2-node case: [N-p, p] defect

The quiver Q1:

• The twisted chiral superpotential takes the following form:

WQ1 = log y
∑

s∈N2

σs −
∑

s∈N2

∑
i∈F1

$(σs −mi )−
∑

s∈N2

〈
Tr$(Φ− σs)

〉
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2-node case: [N-p, p] defect

• Follow the same prescription and evaluateW on its vacuum.

•

WQ1 (σ?) = log y
∑

s∈N2

as + (−1)N+1 1
y

∑
s∈N2

B1(as)

P1(as)P′2(as)

+ (−1)Nq0 y
∑

s∈N2

B2(as)

P1(as)P′2(as)

• If we now impose that the classical contributions inWQ0 andWQ1

match, we find :

y =
1
x
.

• Using this identification and the (q1, q2) vs (q0, x) map, it can be
checked that

WQ1 (σ?)
∣∣
1-inst =W−+

1-inst
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Seiberg duality in 2d SQCD theory

• For conformal SQCD, residue theorems include a non-vanishing
contribution from infinity : distinct contours are inequivalent.

• For instance, in the 2-nodes case

W−+
inst −W

+−
inst = −

[
log(1 + (−1)pq1) + log(1 + (−1)N−pq2)

]∑
i∈F1

mi .

• This has a parallel in the flavour defect :

WQ1 (σ?)−WQ0 (σ?) =

(
log
(

1− (−1)N x
)

+ log
(

1− (−1)N q0

x

))∑
i∈F1

mi

28 / 38



Seiberg duality in 2d SQCD theory

• We interpret these extra terms as modified Seiberg duality rules that
are needed to make the quivers equivalent in the IR.

• The quiver theory that is actually dual to Q0 (denoted by Q̃1), is the one
whose superpotential differs from that of Q1 by non-perturbative
corrections according to

WQ̃1
= − log x

∑
s∈N2

σs −
∑
i∈F1

∑
s∈N2

$(σs −mi )−
∑

s∈N2

〈
Tr$(Φ− σs)

〉

+

(
log
(

1− (−1)N x
)

+ log
(

1− (−1)N q0

x

))∑
i∈F1

mi .

29 / 38



Seiberg duality in 2d SQCD theory: basic rules

Seiberg duality on a 2d conformal gauge node with Nf fundamental and Nf

anti-fundamental flavours.
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Basic duality rules

• For such a duality move, the exponentiated FI couplings of the pair of
dual quivers are related by inversion : y = 1/x .

• If the dualized node is only connected to flavour or other 2d gauge
nodes, the twisted chiral superpotential of the dual quiver is corrected
by a non-perturbative piece given as Benini, Park, Zhao

δW = log
(

1− (−1)Nf x
) (

Tr m̃ − Tr m
)
.

where x is the exponentiated FI parameter of the 2d gauge node that is
dualized, and Tr m and Tr m̃ denote respectively the sum of twisted
masses for all Nf fundamental and Nf anti-fundamental flavours
attached to that node.

• The twisted masses are replaced by the twisted scalars of the vector
multiplet in case the flavour is realized by a 2d gauge node.
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Generalized Seiberg duality

• We now study Seiberg duality in the 2d/4d quiver realization of the
defect in N = 2 SQCD and propose a relation between the twisted
superpotentials of dual quivers.

• If the dualized node is connected to the dynamical 4d gauge node, we
claim

δW =

[
log
(

1− (−1)Nf x
)

+ log
(

1− (−1)Nf
q0

x

)](
Tr m̃ − Tr m

)
• When dualized node is connected to another 2d gauge node (instead of

flavour node) :
Tr m −→ Trσ

This affects the form of the twisted chiral ring equations.

• The nonperturbative terms affect the dynamics in case of a generic
quiver.
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Case study: 3-node quivers
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Case study: 3-node quivers
• The twisted chiral superpotential for the first quiver Q0 is:

WQ0

(
{x}
)

= log x1 Trσ(1) + log x2 Trσ(2) −
∑

s∈N1

∑
t∈N1∪N2

$(σ
(1)
s − σ

(2)
t )

−
∑

s∈N1

∑
i∈F1

$(mi − σ(1)
s )−

∑
s∈N1∪N2

∑
i∈F2

$(mi − σ(2)
s )

−
∑

s∈N1∪N2

〈
Tr$(σ

(2)
s − Φ)

〉
.

• We now perform a duality on the U(n1) gauge node in Q0 to obtain the
quiver Q̃1 whose twisted superpotential is

WQ̃1

(
{x}
)

= − log x1 Trσ(1) + log(x1x2) Trσ(2) −
∑

s∈N2

∑
i∈F1

$(σ
(1)
s −mi )

−
∑

s∈N2

∑
t∈N1∪N2

$(σ
(2)
t − σ

(1)
s )−

∑
s∈N1∪N2

∑
i∈F1∪F2

$(mi − σ(2)
s )

−
∑

s∈N1∪N2

〈
Tr$(σ

(2)
s − Φ)

〉
+ log

(
1− (−1)n1+n2 x1

)(∑
i∈F1

mi − Trσ(2)
)
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Comments

• Upon evaluating the respective superpotentials on the resulting
solutions of the TCR’s, we find a perfect match up to purely
q0-dependent terms.

• We have checked this order by order in instantons for several low rank
cases. This agreement is a confirmation of the proposal for 2d Seiberg
duality at the level of the low energy effective action.
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Conclusion

• Given the localization integrand, one could choose any contour
prescription to evaluate the partition function. On the 2d/4d quiver side,
this corresponds to choosing a particular quiver Qk .

• One could then perform a set of Seiberg dualities:

Q̂0
D1←→ Q̂1

D2←→ Q̂2 · · · ←→ Qk ←→ Q̂k+1 ←→ · · ·

• All the others Q̂` are related to it by Seiberg-dualtiy and their
superpotentials would differ from those one would write for the quiver
Q` by non-perturbative pieces determined by the sequence of dualities
involved.
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Conclusion

• The low energy superpotentials for each quiver in the chain are identical
to that obtained for Qk (up to purely q0-dependent terms).

• The results match along the rows of dual quiver: these are interpreted
as the result of deforming the integration contour from one set of poles
to another, keeping into account the residues at infinity.
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