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Introduction
In the past couple of years there has been some works on irrelevant 
deformations of  that lead to solvable non-local theories. Some of the 
well studied examples are 
1.  deformation  [(Smirnov,Zamolodchikov),(Cavagli,Negro,Szcsnyi,Tateo)]

2.  deformation  [(Giveon,Kutasov,SC),(Apolo,Song),(Guica)]

3. General linear combination of ,   and   [(Giveon,Kutasov,SC),(LeFloch,Mezei)]

CFT2

TT̄
JT̄

TT̄ JT̄ TJ̄

All these deformations are irrelevant: involves “flowing up the RG flow” 

Such processes are, in general, ambiguous: “irreversibility of RG flow”

It turns out that these theories are well defined and solvable.  
If the theory to start with is integrable, these deformations 
preserve integrability.
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Motivation and research question

Recent progress in  and related deformation raises a natural  
question: does holography shed any light on such theories?

TT̄

The spectrum of  deformed CFT has, for one sign of the  
coupling, a Hagedorn density of state. A natural question that  
arises at this point is: what is its interpretation from bulk point 
of view ?

TT̄

1. In this talk I’ll explain string worldsheet techniques to understand such 
deformations. 

2. As we will see, this could be a very concrete way of realizing holography 
beyond AdS.

We restrict ourselves to CFTs that have a string theory dual in .AdS3
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The bulk dual of 2d CFT is string theory in . The  
deformation is a double trace deformation of the theory. 
Unfortunately string theory doesn’t give a very good 
understanding of such deformations.  

It’s nowhere close to being understood from the bulk 
point of  view why such deformations are exactly 
solvable.

AdS3 TT̄

But that’s NOT the end of the story!!!
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String theory in  contains operators that are closely related 
to  . This was first realized by Itzhaki, Giveon, 
Kutasov in 2017. 

AdS3
TT̄, JT̄ & TJ̄

1. This approach to such deformations has been quite fruitful. 
The string theory techniques allows one to calculate many 
things (e.g. the deformed spectrum, modular properties of 
the deformed partition sum) that are usually hard to 
calculate from the field theory side. 

2. It provides a concrete realization of holography beyond AdS 
(e.g. climbing out of the near horizon geometry of the F1 
strings).

I’ll mostly discuss the most recent developments in these direction in 
relation to  deformations.TT̄, JT̄ & TJ̄
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Aspects of String Theory in AdS3

The worldsheet string theory in  with the only NS-NS B-field 
turned on is given by the WZW model on the  group 
manifold. The worldsheet action is invariant under  
current algebra at level . The  radius is related to the level 
as: .

AdS3
SL(2,ℝ)

sl(2,ℝ)L/R
k AdS3

RAdS = kℓs

The  symmetry algebra plays an important role in 
analyzing the symmetries, spectrum, and correlation functions 
of the spacetime theory.  

sl(2,ℝ)L/R
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Via the AdS/CFT correspondence, string theory on  is dual to  
living on the boundary of . For pure NS H-flux, the theory has the 
following properties.

AdS3 CFT2
AdS3

1. The spacetime theory has a normalizable  invariant vacuum: (a) 
the NS vacuum that corresponds to global   in the bulk, (b) the R 
vacuum that corresponds in the bulk to  BTZ blackhole. 

2. The NS sector states contain a sequence of discrete states coming from 
the discrete series representation of  followed by a continuum of 

long string states. The continuum starts at dimension  .  

(Maldacena,Ooguri 2001) 

3. The R sector states contain a continuum of long strings above a gap of 

order . Here the status of the discrete states is not very clear (to me 

at least).

SL(2,ℂ)
AdS3

M = J = 0

SL(2,ℝ)
∼

k
2

∼
1
k

In this talk I’m going to stick to the  long string states in the R sector.
7



1. The theory on a single long string was analyzed by Seiberg, Witten 
in 1999. For string theory on , the theory on a single long 
string is described by a sigma model on  . 

2. The theory on  has a linear dilaton with slope: 

. 

3. For example: String theory on , which has  
superconformal symmetry, . 

4. The effective coupling of the theory on the long string goes as 
. Thus the dynamics of the theory on the long 

strings become strongly coupled as they move towards the 
boundary. 

AdS3 × 𝒩
ℳ(L)

6k = ℝϕ × 𝒩

ℝϕ

Q(L) = (k − 1)
2
k

AdS3 × S3 × T4 (4,4)
ℳ(L)

6k = ℝϕ × SU(2)k × T4

gs ∼ exp(Q(L)ϕ)



A natural question that arises at this point is: what is the full 
boundary CFT for a given  vacuum. The answer to that 
question is, in general, not known but there are reasons to 
believe that the theory on the long strings are described by the 

symmetric product CFT: .

AdS3

(ℳ(L)
6k )p

Sp

There are strong evidences for this statement.



1. The full boundary theory has an  invariant normalizable 
vacuum but  doesn’t have a normalizable  
invariant vacuum. 

2. The entropy of the high energy states of the full boundary theory is 
given by: 

    This also agrees with the Bekenstein-Hawking entropy of BTZ  
    blackhole. But, the entropy of the high energy states of   
    is given by:   
         

SL(2,ℂ)
(ℳ(L)

6k )p/Sp SL(2,ℂ)

(ℳ(L)
6k )p/Sp

S ∼ 6pk( h + h̄) .

S ∼ 6p (2 −
1
k )( h + h̄) .

Please note
The full boundary theory is NOT !!!! (ℳ(L)

6k )p/Sp



As claimed in one of the previous slides, the theory of the 
long string sector is given by the symmetric product CFT   

There are strong evidences for this statement that I’ll discuss 
next.

(ℳ(L)
6k )p

Sp
.



Evidence 1

• Matrix string theory logic (Motl,DVV1997): If the theory on a 
string winding once around a circle is , then the symmetric 
product  provides the description of the Hilbert space of 

 free strings. The untwisted sector states describe  free 
strings each winding once around the circle; whereas the  
twisted states describe strings with winding ; general states of 

 strings with winding , where , are 
described in terms of the conjugacy classes of the permutation 
group .

ℳ
ℳN /SN

N N
ℤw

w
n (w1, w2, ⋯, wn) ∑ wi = N

SN

Long strings in  are weakly coupled in a wide range of 
positions in the radial direction, so the symmetric product 
description should be a good description of their dynamics in this 
regime.

AdS3



• Spectrum of long strings: The spectrum of the long strings in 
the Ramond sector (  BTZ) is given by:M = J = 0

Ew
L/R =

1
w [−

j( j + 1)
k

+ NL/R −
1
2 ] =

1
w

E1
L/R

Ew
L/R =

R
2

(Ew ± P), P ∈
1
R

ℤ

j = −
1
2

+ is, s ∈ ℝ

 radius of the boundary circle, 
left and right moving excitation levels, 

radial momentum of the long string.

R =
NL/R =
s ∝

Evidence 2
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To make contact with  one notes that in a symmetric 
product CFT, states in the  twisted sector have energies

(ℳ(L)
6k )p/Sp

ℤw

.Ew
L = hw −

kw
4

, Ew
R = h̄w −

kw
4

 corresponds to the original CFT. For  every state with dimension 
 in that CFT there is a state in the  twisted sector with dimension 
 given by

w = 1
h1 ℤw
hw

hw =
h1

w
+

k
4 (w −

1
w ) .

Thus    .Ew
L/R =

1
w

E1
L/R

The string theory spectrum has exactly the same form.
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Evidence 3

The third piece of evidence comes from the study of irrelevant 
deformations   that we discuss next.(TT̄, JT̄ & TJ̄)
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Solvable irrelevant deformations of string theory 
in AdS3

1. String theory on  contains an operator  (Kutasov,Seiberg1999) 
that shares many properties in common with the operator  e.g.  
is a  quasi-primary operator of the spacetime Virasoro and has the 
same OPE with the stress tensor as the  operator.  

2. However  is not equal to the  operator;  is double trace but 
 is single trace.  

3. But   where  is the  operator of 

the  theory on a single long string . Thus  is an operator of the 
symmetric product .

AdS3 D(x, x̄)
TT̄ D(x, x̄)

(2,2)
TT̄

D(x, x̄) TT̄ TT̄
D(x, x̄)

D(x, x̄) =
p

∑
i

Di(x, x̄) =
p

∑
i

TiT̄i Di = TiT̄i TT̄

ℳ(L)
6k D(x, x̄)

(ℳ(L)
6k )p/Sp

16



We will consider deformation of the long string symmetric product 
theory by . This corresponds to deforming the  block   
by the operator   and then symmetrize.

D(x, x̄) ith ℳ(L)
6k

Di(x, x̄) = TiT̄i

The deformation  of the spacetime theory induces on the 
worldsheet a truly marginal deformation:

D(x, x̄)

∫∂AdS
d2xD(x, x̄) ∼ ∫ws

d2zJ−
SLJ̄−

SL

These are current-current deformation of the worldsheet theory 
and hence exactly solvable.

where  are the left and right moving null  currents.J−
SL & J̄−

SL SL(2,ℝ)
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The above discussion has a natural generalization that involves Kac-
Moody currents. This time we start with  such that  contains 
a left moving  current  .

AdS3 × 𝒩 𝒩
U(1) J(x)

Similar to the   case, one can construct the operator  in the long 
string sector, that corresponds to  deformation of the individual block 

 and then symmetrized. As in the case of , the deformation of the 
spacetime CFT by  induces on the worldsheet theory on  a 
truly marginal deformation:

TT̄ A(x, x̄)
JT̄

ℳ(L)
6k TT̄

A(x, x̄) AdS3 × S1

where  the left moving  current on the worldsheet.K U(1)

We thus study the deformation of the sigma model on . AdS3 × S1

∫∂AdS
d2xA(x, x̄) ∼ ∫ws

d2zKJ̄−
SL

18



One can add to the boundary Lagrangian an arbitrary combination 
of single trace  coupling to get a solvable theory. The 
induced deformation on the worldsheet is given by 

 

The worldsheet deformations are truly marginal and of the form 
current-current deformation. Such worldsheet deformations are 
exactly solvable. 

We thus study deformation the sigma model on . 

TT̄, JT̄ & TT̄

δℒws = λJ−
SLJ̄−

SL + ϵ+KJ̄−
SL + ϵ−J−

SLK̄ .

AdS3 × S1



Deformation of the worldsheet theory

The worldsheet action on  is given byAdS3 × S1

S =
k

2π ∫ d2z (∂ϕ∂̄ϕ + e2ϕ∂γ̄∂̄γ +
1
k

∂y∂̄y) .

We consider deformation of the form

δℒws = λJ−
SLJ̄−

SL + ϵ+KJ̄−
SL + ϵ−J−

SLK̄ .

The full deformed action is given by

S(λ, ϵ+, ϵ−) =
k

2π ∫ d2z(∂ϕ∂̄ϕ + h∂γ̄∂̄γ +
2ϵ+h

k
∂y∂̄γ +

2ϵ−h

k
∂γ̄∂̄y +

f −1h
k

∂y∂̄y)
where   .h−1 = λ − 4ϵ+ϵ− + e−2ϕ, f −1 = λ + e−2ϕ
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Residual symmetries: 

The deformed background (after KK reduction):

ds2 = k(dϕ2 + hdγdγ̄ − fh(ϵ+dγ + ϵ−dγ̄)2),

e2Φ = g2
s e−2ϕh,

Bγγ̄ =
kf
2

.

In addition there are also KK scalar and  fields.

21

U(1)L,null × U(1)R,null × U(1)L × U(1)R

SL(2,ℝ)L,null × SL(2,ℝ)R,null × U(1)L × U(1)R



Recover known theories

1.  : setup for  deformed CFT 
• For , background interpolates between  in IR and flat 

spacetime with a linear dilaton in the UV. 
• For , the boundary field theory interpolates between  in the IR 

and “Little String Theory ” in the UV. 
• For , the bulk geometry has naked singularity and closed time like 

curves. 

2.  : setup for  deformed CFT    
• Background interpolates between  in IR and null-  spacetime 

in UV for both signs of .   
• The boundary field theory interpolates between  in the IR to 

something very similar to Null-Warpped CFT in the UV. 
• The dual spacetime has closed timelike curves. 
• This is possibly related to  but so far the connection has 

not yet been well understood.

λ ≠ 0,ϵ± = 0 TT̄
λ > 0 AdS3

λ > 0 CFT2

λ < 0

λ = 0,ϵ+ ≠ 0,ϵ− = 0 JT̄
AdS3 WAdS3

ϵ+
CFT2

WAdS3/WCFT2



Calculate Spectrum
We follow the standard textbook techniques to calculate the 
spectrum. Since we are interested in long strings propagating at large 

 it is convenient to express the deformed Hamiltonian in the free 
Wakimoto variables.
ϕ

ℒ = − ∂ϕ+∂̄ϕ− − ∂ϕ−∂̄ϕ++ ̂λ∂ϕ+∂̄ϕ+ + 2 ̂ϵ+∂y∂̄ϕ+ + 2 ̂ϵ−∂ϕ+∂̄y+∂y∂̄y + ℒϕ

ℒϕ = ∂ϕ∂̄ϕ −
2
k

R̂ϕ, (λ, ϵ2
±) =

R2

2α′ 

( ̂λ, ̂ϵ2
±)

γ = iϕ−, γ̄ = iϕ̄−, ϕ± =
1

2
(ϕ0 ± ϕ1)

ϕμ(z)ϕν(w) ∼ − ημν ln(z − w); ημν = diag(−1,1)

At large  this is a free theory.ϕ
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Low lying vertex operators

 BTZM = J = 0

  deformed massless BTZJ−
SLJ̄−

SL + KJ̄−
SL + J−

SLK̄ × S1

Vw
EL,R;qL,R

= eiwϕ++iELϕ−+iqLy × eiwϕ̄++iERϕ̄−+iqRȳ

VΔ,Δ̄ = e
2
k j(ϕ+ϕ̄)Vw

EL,R;qL,R

VΔ,Δ̄ = e
2
k j(ϕ+ϕ̄)Vw

EL,R

Vw
EL,R

= eiwϕ++iELϕ−eiwϕ̄++iERϕ̄−

Low lying vertex operators with oscillations in the transverse space:
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Physical vertex operators

Consider physical vertex operators in the (-1,-1) picture:

Vphys = e−φe−φ̄VΔ,Δ̄VN,N̄
internal .

On-shell conditions:

Δ + N −
1
2

= 0, Δ̄ + N̄ −
1
2

= 0.

Dimensions:

Δ =
PLPt

L

2
−

j( j + 1)
k

, Δ̄ =
PRPt

R

2
−

j( j + 1)
k

.

PL/R = (nt + mt(B ∓ G))e*, e*(e*)t =
G−1

2
.
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Dimensions Δ, Δ̄
Massless BTZ:

Deformed massless BTZ :× S1

 

 

Δ = − wEL −
j( j + 1)

k
, j ∈ −

1
2

+ iℝ

Δ̄ = − wER −
j( j + 1)

k
Δ̄ − Δ = nw

 

 

Δ =
q2

L

2
− EL (w +

̂λ
2

ER) + ̂ϵ+qLER + ̂ϵ−qREL +
1
2

( ̂ϵ+ER + ̂ϵ−EL)2 −
j( j + 1)

k

Δ̄ =
q2

R

2
− ER (w +

̂λ
2

EL) + ̂ϵ+qLER + ̂ϵ−qREL +
1
2

( ̂ϵ+ER + ̂ϵ−EL)2 −
j( j + 1)

k

Δ̄ − Δ =
1
2

(q2
R − q2

L) + wn
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Spectrum
Using on-shell condition and  for undeformed (  twisted) 

symmetric product CFT  with , one can read off the 
deformed spectrum as: 

 

           

 

          

EL(0) = hw −
kw
4

ℤw

(ℳ(L)
6k )N /SN cℳ(L)

6k
= 6k

EL(0) = hw −
kw
4

= EL (w +
̂λ

2
ER) −

1
ω ( ̂ϵ+qLER + ̂ϵ−qREL +

1
2

( ̂ϵ+ER + ̂ϵ−EL)2)
ER(0) = h̄w −

kw
4

= ER (w +
̂λ

2
EL) −

1
ω ( ̂ϵ+qLER + ̂ϵ−qREL +

1
2

( ̂ϵ+ER + ̂ϵ−EL)2)
1. For  the spectrum is that of the deformed block  . 
2.  For  the spectrum is that of the  twisted sector of the symmetric 

product .

w = 1 ℳ(L)
def

w > 1 ℤw
(ℳ(L)

def)
N /SN



Spectrum for w = 1

ER = EL + ER = n +
1

2A (−B − B2 − 4AC)
 

 

A =
1
4 (( ̂ϵ+ + ̂ϵ−)2 − ̂λ)

B = − 1 + ̂ϵ+qL + ̂ϵ−qR + n ̂ϵ−( ̂ϵ+ + ̂ϵ−) −
̂λn

2

C = 2 (h̄1 −
c

24
−

q2
R

2 ) + (qR + n ̂ϵ−)2

1. : the theory is sick, high energy states become complex 

2. : the spectrum is real

A > 0

A < 0
28

For  the spectrum is that of the deformed block  .w = 1 ℳ(L)
def

If the boundary field theory deformation is given by , 
then the worldsheet couplings are related to the spacetime couplings as 

 .

−tTT̄ + μ+JT̄ + μ−TJ̄

t =
πR2 ̂λ

2
, μ± = 2R ̂ϵ±



• For a given negative  the high energy spectrum has Hagedorn 
entropy,  where 

. 

In particular,  as . The theory has multiple scales.

A
S = βHE

βH = 4πR
C |A |

12
βH → 0 |A | → 0

• The theory in the limit  is interesting. The inverse Hagedorn 
temperature vanishes. The  behavior of the energies depend on the 
sign of . States with  decouples. The states for which  

survive and their energies are given by .  The entropy 

goes as   
. 

 This is intermediate between Cardy and Hagedorn.

|A | → 0

B B > 0 B < 0
E = n +

C
|B |

S ∼ |B |E
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Spectrum vs Geometry 

1. In some region in the coupling space, the spectrum of the boundary 
theory is healthy (real energies). In the complementary region it is sick. 

2. In same region in the coupling space, the geometries are healthy (no 
singularities, CTC’s, etc). In the complementary region it is sick. 

Thus there is an “one to one correspondence” 
between COMPLEX ENERGIES of the boundary 
theory and CLOSED TIMELIKE CURVES in the 

dual geometry.
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Conclusion
1. Studied a class of solvable deformations of the worldsheet 

theory that correspond to irrelevant deformations of the 
boundary theory. 

2. Computed the spectrum of the deformed field theory from the 
string theory analysis. 

3. “Proposed a holographic dual.” 

4. Our technique provide a systematic way of realizing holography 
in non-AdS backgrounds. 

5. String theory analysis provides further evidence in support of 
symmetric product description of the long string sector of the 
spacetime theory.

31



Thank you!
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Backup slides

JSL(x; z) = 2xJ3
SL(z) − J+

SL(z) − x2J−
SL(z)

Φh(x; z) =
1
π ( 1

|γ − x |2 eϕ + e−ϕ )
2h

T(x) =
1
2k ∫ d2z (∂xJSL∂xΦ1 + 2∂2

xJSLΦ1) J̄SL(x̄; z̄)

D(x, x̄) = ∫ d2z (∂xJSL∂x + 2∂2
xJSL) (∂x̄J̄SL∂x̄ + 2∂2

x̄ J̄SL) Φ1(x̄; z̄),

J(x) = −
1
k ∫ d2zK(z)J̄SL(x̄; z̄)Φ1(x, x̄; z, z̄)

A(x, x̄) = ∫ d2zK(z)(∂x̄J̄SL∂x̄Φ1 + 2∂2
x̄ J̄SLΦ1)
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