Machine Learning for Particle Physics: What Can Humans Learn?

Andrew Larkoski Reed College

Based on related work in collaboration with:

Kaustuv Datta, Ian Moult, Eric Metodiev, Duff Neill, Gavin Salam, Jesse Thaler, Wouter Waalewijn

IPMU, February 17, 2020

Complexity vs. Information

Here is a cool image:

Likely, you know what it is, but I won't ruin the suspense yet.

You might think there there is a huge amount of information.

The more you zoom into the image, the more you see.

Complexity vs. Information

To understand this image, you might zoom in and find:

These look very different, and if you focus too much on small sections, you might not see the larger structure.

Complexity vs. Information

Then, if I tell you this is the Mandelbrot set, defined by the region of convergence from recursively applying:

$$f(z) = z^2 + c$$

You will likely be very surprised!

Complexity does not equal explosion of information

Fractals, like the Mandelbrot set, can have arbitrary complexity from simple rules

Machine Learning is Everywhere!

Canonical Problem: Binary Discrimination

Goal: Determine the output of a perfect machine

Canonical Problem: Binary Discrimination

Guiding Principles:

7

Neyman-Pearson Lemma

The optimal binary discriminant is monotonic in the likelihood

$$\mathcal{L}(\{x\}) = \frac{p_S(\{x\})}{p_B(\{x\})}$$

Neyman, Pearson 1933

Universal Approximation Theorem

A "good" machine can output any function of the input

Cybenko 1989; et al.

Outline

Machine Learning on Jets at the LHC

Insights into Quark vs. Gluon Discrimination

Simplifying the Discrimination Space

For More Information

Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning

> Andrew J. Larkoski* Physics Department, Reed College, Portland, OR 97202, USA

Ian Moult[†] Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA and Theoretical Physics Group, Lawrence_Berkeley National Laboratory, Berkeley, CA 94720, USA

Banjamin Nachman[‡] Physics Division, Lawrence Berkley National Laboratory, Berkes, CA 94720, USA

arXiv:1709.04464

Annual Review of Nuclear and Particle Science Deep Learning and Its Application to LHC Physics

International journal of science

Review Article | Published: 01 August 2018

Machine learning at the energy and intensity frontiers of particle physics

Alexander Radovic [™], Mike Williams [™], David Rousseau, Michael Kagan, Daniele Bonacorsi, Alexander Himmel, Adam Aurisano, Kazuhiro Terao & Taritree Wongjirad

Nature 560 (2018) no.7716, 41-48

9

Dan Guest,¹ Kyle Cranmer,² and Daniel Whiteson¹

¹Department of Physics and Astronomy, University of California, Irvine, California 92697, USA ²Physics Department, New York University, New York, NY 10003, USA

arXiv:1806.11484

Machine Learning on Jets at the LHC

Collision Events at the LHC

Example Event Display from CMS

Collision Events at the LHC

Collision Events at the LHC

CMS-EXO-12-059

Focus on one of the jets

What particle initiated this jet?

Is it just a quark or gluon, or something more interesting?

Canonical Discrimination Problem: QCD vs. W/Z boson jets

Sample Jet

Pixels = Location in (η, ϕ)

Color = Magnitude of p_T

Think of the jet as imaged by the detector

<u>After</u> pre-processing

de Oliveira, Kagan, Mackey, Nachman, Schwartzman 2015 Louppe, Cho, Becot, Cranmer 2017

16

Image: Background rejectior 104 Large number of inputs No pile-up DNN(image) (32x32 grid) BDT(expert) 10^{3} $D_2^{\beta=2}$ +mass $\tau_{21}^{\beta=1}$ +mass Expert BDT: Jet mass 102 <u>Very</u> small number of inputs (6 variables) 10 QCD Why is the image preferable to the expert BDT? 0.2 0.8 0.6 n 04W bosons Signal efficiency Baldi, Bauer, Eng, Sadowski, Whiteson 2016 other work:

> de Oliveira, Kagan, Mackey, Nachman, Schwartzman 2015 Louppe, Cho, Becot, Cranmer 2017

Simplifying the Discrimination Space

To make progress, use the guiding principles: <u>Systematic Improvability</u>

N-subjettinesses and related observables accomplish this

history: Thaler, van Tilburg, 2010, 2011 Stewart, Tackmann, Waalewijn 2010 Brandt, Dahmen 1979 Wu, Zobernig 1979 Nachtmann, Reiter 1982

Sensitive to radiation of off N axes in the jet

Systematically resolve more structure in the jet

Full Jet

Net p_T, η , ϕ selected for

1 useful quantity: jet invariant mass

Restrict m_J in a range about the mass of interest

Systematically resolve more structure in the jet

Two Subjets

Net p_T, η , ϕ , m_J selected for

2 useful quantities: relative p_T fraction relative angle

Systematically resolve more structure in the jet

Three Subjets

Net p_T, η , ϕ , m_J selected for

5 useful quantities:2 relative p⊤ fractions3 relative angles

Systematically resolve more structure in the jet

Four Subjets

Net p_T, η , ϕ , m_J selected for

8 useful quantities:3 relative p⊤ fractions5 relative angles

Can continue to resolve arbitrary structure

Measure observables to resolve *M*-body phase space

$$\sigma \sim \int \prod_{i=1}^{M} \left[\frac{d^4 p_i}{(2\pi)^4} 2\pi \delta(p_i^2 - m_i^2) \right] \delta^{(4)} \left(Q - \sum_{i=1}^{M} p_i \right) |\mathcal{M}|^2$$

3M-4 dimensional phase space

In general: M - 1 relative p_T fractions 2M - 3 relative angles

4 particle example

M-body Phase Space Machine Learning

Measure observables sensitive to 2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Analyzed with a deep neural network on GPU

Calculated ROC curves for QCD vs. Z boson

If information is finite, should see saturation

M-body Phase Space Machine Learning

Measure observables sensitive to 2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Insights into Quark vs. Gluon Discrimination

"The White Whale of Jet Physics"

-Jesse Thaler

Simple Picture of Quark/Gluon Jets

~Scale invariance of QCD = Particle Production is Poisson Process

Rate $\propto C_F = 4/3$ Rate $\propto C_A = 3$

Measure collection of N-subjettiness observables

Poisson Process implies

 $p_q(\{\tau_N\}) \sim e^{-C_F r(\{\tau_N\})} \qquad p_g(\{\tau_N\}) \sim e^{-C_A r(\{\tau_N\})}$ IRC safety of *N*-subjettinesses implies $r(\{\tau_N\}) \to \infty$ as any $\tau_N \to 0$

Where do jets live?

For visualization simplicity, just consider (τ_1, τ_2)

Where do jets live?

For visualization simplicity, just consider (τ_1, τ_2)

Where do jets live?

For visualization simplicity, just consider (τ_1, τ_2)

Quark vs. Gluon Likelihood

What are the properties of the likelihood ratio?

Ans: As any $\tau_N \rightarrow 0$, likelihood vanishes

 $\tau_{\rm N} \rightarrow 0$ is the fixed-order divergent limit

Quark vs. Gluon likelihood ratio is IRC safe!

IRC Safety of the Likelihood

Practical

IRC safe observables are good q/g discriminants out of the box

good τ_N discrimination well-known Gallicchio, Schwartz 2012 General

Independent of number of resolved emissions N

Non-vacuous

Pronginess discriminators (D₂, $\tau_{2,1}, \tau_{3,2}, ...$) all IRC unsafe Soyez, Salam, Kim, Dutta, Cacciari 2012 AlL, Moult, Neill 2014

Caveat Emptor

Does *not* mean that likelihood can be calculated at fixed-order

Conclusions

Huge LHC datasets motivate machine learning

One approach: throw everything into a black box

Systematic organization dramatically simplifies description

Don't force the machine to work so hard! Theory insight can get closer to Universal Approx. Thm.

Thanks!

https://xkcd.com/1838/

Don't forget that *you* are a domain expert!