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Complexity vs. Information

Here is a cool image:

Likely, you know what it is, but
| won't ruin the suspense yet.

You might think there there is
a huge amount of information.

The more you zoom into the
Image, the more you see.




Complexity vs. Information

To understand this image, you might zoom in and find:

These look very difterent, and if you focus too much on
small sections, you might not see the larger structure.



Complexity vs. Information

Then, if | tell you this is the Mandelbrot set, defined by
the region of convergence from recursively applying:

f(z) =2+ c

You will likely be very surprised!

Complexity does not equal
explosion of information

Fractals, like the Mandelbrot
set, can have arbitrary
complexity from simple rules
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Machine Learning is Everywhere!

I'm not a robot

 ap




Canonical Problem: Binary Discrimination

The machine learns
“Cat” distinguishing features

As a physicist, “machine”
IS Just a black box

CCDOg”

Goal: Determine the output of a perfect machine
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Canonical Problem: Binary Discrimination

Guiding Principles:

Neyman-Pearson Lemma Universal Approximation Theorem
The optimal binary discriminant A “good” machine can
is monotonic in the likelihood output any function of the input

o) = S §

fi{z})

fo({z})
bkg sig :

- fulfa})

Neyman, Pearson 1933 7 Cybenko 1989; et al.
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Machine Learning on Jets at the LHC

10



Collision Events at the LHC

CMS-EXO-12-059
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Collision Events at the LHC

CMS-EXO-12-059
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Collision Events at the LHC

CMS-EXO-12-059

Focus on one of the jets

What particle initiated
this jet?

Is It just a quark or gluon,
or something more
interesting”?




Jet Identification as Image Recognition

Canonical Discrimination Problem:

QCD vs. W/Z boson jets
'J((‘ AN\
'\/\/\/

Lorentz » @
boost

quark/ f((‘rff Lorentz  [quark/ f«—"f

gluon Ls 111 boost gluon [s LLL
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Jet Identification as Image Recognition
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Pixels = Location in (5,¢)

Color = Magnitude of pr

Think of the jet as imaged
by the detector



Boosted W

Jet Identification as Image Recognition

After
pre-processing
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Jet Identification as Image Recognition

Image:

Large number of inputs

(32x32 grid)

Expert BDT:

Very small number of inputs

(6 variables)

Why is the image preterable

to the expert BDT?

QCD Background rejection

—h —h —h
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Baldi, Bauer, Eng, Sadowski, Whiteson 2016

other work:
de Oliveira, Kagan, Mackey, Nachman, Schwartzman 2015
Louppe, Cho, Becot, Cranmer 2017



Simplitying the Discrimination Space
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Human Learning on Jets

To make progress, use the guiding principles:
Systematic Improvability

less information

formation i et desorptir i

IS well-defined . .
more information
jet jet
Infrared and Collinear (IRC) Safety
Ensures calculability in perturbation theory

o( =) o(==)
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Human Learning on Jets

N-subjettinesses and related observables accomplish this

273
N-subjettiness
.
J<€> {pi}iEJ/—\ / T
1
& = S premin { RY, RS, . R
Datta, AJL 2017 PrJ =5

history:
Thaler, van Tilburg, 2010, 201 | Ty : : : .
Brandt, Dahmen 1979
Wu, Zobernig 1979
Nachtmann, Reiter 1982 20
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Human Learning on Jets

Systematically resolve more structure in the jet
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Full Jet

Net pr, , ¢ selected for

1 useful quantity:
jet invariant mass

Restrict my in a range
about the mass of interest
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Human Learning on Jets

Systematically resolve more structure in the jet
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Two Subjets

Net pT, , ¢, my selected for

2 useful quantities:
relative pr fraction
relative angle
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Human Learning on Jets

Systematically resolve more structure in the jet
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Three Subjets

Net pT, , ¢, my selected for

5 useful quantities:
2 relative pr fractions
3 relative angles
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Human Learning on Jets

Systematically resolve more structure in the jet
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Four Subjets

Net pT, , ¢, my selected for

8 useful quantities:
3 relative pr fractions
5 relative angles

Can continue to resolve
arbitrary structure



Human Learning on Jets

Measure observables to
resolve M-body phase space

1
2
3

M

jet

d*p, =z
{(2754 216 (p; — m?)} 5 (Q — ZPz) M
1=1

|
3M — 4 dimensional phase space

o~ /I
|

1=1

In general:

M - 1 relative pr fractions ,\'\ 4 particle
2M - 3 relative angles ol ~\ example
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M-body Phase Space Machine Learning

Measure observables sensitive to
2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Analyzed with a deep neural
network on GPU

Calculated ROC curves
for QCD vs. Z boson

= <

If information is finite,
should see saturation

Datta, AJL 2017 26



M-body Phase Space

Machine Learning

Measure observables sensitive to
2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Results: |
1000

s

M-Body Discrimination
13 TeV, pt > 500 GeV,R=0.8 |

100}

Saturation observed at
4-body phase space!

QCD rejection rate

A

Q,;\\@‘ Pythia8

0/'

mass + 4—body
mass + S—body
mass + 6—body

mass
mass + 2—body
mass + 3—body

4-body phase space 0.1}
= 8 dimensional
Datta, AJL 2017 27
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Insights into Quark vs. Gluon Discrimination
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“The White Whale of Jet Physics”™

-Jesse Thaler

Quark/Gluon jet discrimination impacts entire LHC program!

PDF Ratio to CT14HERA2NNLO

New Physics Searches

8 quark-jet event!
q q

Higgs Physics

H —bb and H —>gg are ~ 70% of toz‘a/ width

~ b ATLAS Prellmlnary |-.-| Total Stat = Syst. — SM
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29



Simple Picture of Quark/Gluon Jets

~Scale invariance of QCD =
Particle Production is Poisson Process

£ 868 EEELEEEEE

pe({Tn}) ~ e

quark jet gluon jet
Rate « Cr=4/3 Rate «« Ca =3
Measure collection of N-subjettiness observables
Poisson Process implies
SOt () e

IRC safety of N-subjettinesses implies

r({rn}) — o© asany v — 0
30

—Car({7n})



Where do jets live?

For visualization simplicity, just consider (z1,72)

7-2A

1 —— T

31



Where do jets live?

For visualization simplicity, just consider (z1,72)

TQA

Exponentially more likely to be
.~ quarkthan gluon here
L Ty

FEEESEESE .

gluon jet Additivity then implies

(§ <§ (§ (§ T]gvluon ~ T]c\lfuark
x Cr < Cy

quark jet
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Where do jets live?

For visualization simplicity, just consider (z1,72)

T24 More likely to be gluon than

n quark here

Exponentially more likely to be
.~ quarkthan gluon here
L Ty

FEEESEESE .

gluon jet Additivity then implies

(§ <§ (§ (§ T]gvluon ~ T]c\lfuark
x Cr < Cy

quark jet
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Quark vs. Gluon Likelihood

What are the properties of the likelihood ratio”

T24 More likely to be gluon than

5 / quark here

5 : Exponentially more likely to be
/"" quark than gluon here

pe({ra})
= T1 5= o)) "

Ans: As any =Ny — O, likelihood vanishes

™ — 0O is the fixed-order divergent limit

Quark vs. Gluon likelihood ratio is IRC safe!

AJL, Metodiev 2019 34



IRC Safety of the Likelihood

Conseqguences

General

Independent of number of
resolved emissions N

Non-vacuous

_A_, Pronginess discriminators

L(q,9) (D2, 72,1, 732, ...) all IRC unsafe

Soyez, Salam, Kim, Dutta, Cacciari 2012
AJL, Moult, Neill 2014

Caveat Emptor

Does not mean that likelihood
can be calculated at fixed-order

Practical

IRC safe observables are good
g/g discriminants out of the box

good zndiscrimination well-known

Gallicchio, Schwartz 2012 35



Conclusions

Huge LHC datasets motivate machine learning

One approach: throw everything into a black box

Systematic organization dramatically simplifies description

Don't force the machine to work so hard!
Theory insight can get closer to Universal Approx. Thm.
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Thanks!

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

https://xkcd.com/1838/

Don't forget that you are a domain expert!

37



