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Complexity vs. Information

Here is a cool image:

Likely, you know what it is, but 
I won’t ruin the suspense yet.

You might think there there is 
a huge amount of information.

The more you zoom into the 
image, the more you see.
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To understand this image, you might zoom in and find:

These look very different, and if you focus too much on 
small sections, you might not see the larger structure.

Complexity vs. Information
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Then, if I tell you this is the Mandelbrot set, defined by 
the region of convergence from recursively applying:

You will likely be very surprised!

Complexity does not equal 
explosion of information

f(z) = z2 + c

Fractals, like the Mandelbrot 
set, can have arbitrary 

complexity from simple rules

Complexity vs. Information
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Machine Learning is Everywhere!
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Canonical Problem: Binary Discrimination

“Cat”

“Dog”

Machine

The machine learns 
distinguishing features

Machine

Machine

As a physicist, “machine” 
is just a black box

Goal: Determine the output of a perfect machine
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Canonical Problem: Binary Discrimination

Guiding Principles:
Neyman-Pearson Lemma Universal Approximation Theorem

...

...

A “good” machine can 
output any function of the input

The optimal binary discriminant 
is monotonic in the likelihood

L({x})

L({x}) = pS({x})
pB({x})

Neyman, Pearson 1933 Cybenko 1989; et al.

bkg sig L({x})

L({x})

x1

x2

xn

f1({x})

f2({x})

fn({x})
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Outline

Machine Learning on 
Jets at the LHC

Simplifying the 
Discrimination Space

Insights into Quark vs. Gluon 
Discrimination
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M-Body Discrimination
13 TeV, pT > 500 GeV, R = 0.8

Pythia8
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I. INTRODUCTION

The Large Hadron Collider (LHC) is currently the cen-
ter of attention in particle physics, providing a unique op-
portunity to probe the dynamics of the Standard Model
(SM) at the TeV scale, and to search for new physics.
One of the major new developments which has come to
play a central role at the LHC is jet substructure. Jets
are collimated sprays of particles resulting from quarks
and gluons produced at high energy; jet substructure is
a set of tools to exploit information from the radiation
pattern inside these jets. For example, jet substructure
can be used to identify boosted hadronically decaying
electroweak bosons and top quarks. Jet substructure
techniques have provided innovative advances in prob-
ing the SM, in addition to improving the sensitivity for
new physics searches. The surge of interest in jet sub-
structure at the LHC has been driven by the extended
energy reach, which has inspired new theoretical ideas
and reconstruction techniques to probe this previously
unexplored and exciting regime.

The renewed theoretical interest in jet structure has
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Abstract
Machine learning has played an important role in the analysis of high-energy
physics data for decades. The emergence of deep learning in 2012 allowed for
machine learning tools which could adeptly handle higher-dimensional and
more complex problems than previously feasible. This review is aimed at the
reader who is familiar with high-energy physics but not machine learning.
The connections between machine learning and high-energy physics data
analysis are explored, followed by an introduction to the core concepts of
neural networks, examples of the key results demonstrating the power of
deep learning for analysis of LHC data, and discussion of future prospects
and concerns.
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Machine Learning on Jets at the LHC
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Collision Events at the LHC

Example Event Display 
from CMS

CMS-EXO-12-059

pT
𝜂

𝜙
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Collision Events at the LHC

Example Event Display 
from CMS

Dijet Event

CMS-EXO-12-059
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Collision Events at the LHC

Focus on one of the jets

What particle initiated 
this jet?

CMS-EXO-12-059

Is it just a quark or gluon, 
or something more 

interesting?



14

Jet Identification as Image Recognition

Canonical Discrimination Problem: 
QCD vs. W/Z boson jets

W/Z W/Z

quark/ 
gluon

quark/ 
gluon

Lorentz 
boost

Lorentz 
boost
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Jet Identification as Image Recognition

Pixels = Location in (𝜂,𝜙)

Think of the jet as imaged 
by the detector

Sample Jet

Color = Magnitude of pT
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Jet Identification as Image Recognition

Baldi, Bauer, Eng, Sadowski, Whiteson 2016
other work: 

de Oliveira, Kagan, Mackey, Nachman, Schwartzman 2015
Louppe, Cho, Becot, Cranmer 2017

Bo
os

te
d 

W
Q

C
D

Signal efficiency
0 0.2 0.4 0.6 0.8 1

Ba
ck

gr
ou

nd
 re

je
ct

io
n

1

10

210

310

410
DNN(image)
BDT(expert) 

+mass=2β

2D
+mass=1β

21τ

Jet mass

No pile-up

After 
pre-processing

Q
C

D

W bosons

bett
er



17

Signal efficiency
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Image: 
Large number of inputs 

(32x32 grid)

Expert BDT: 
Very small number of inputs 

(6 variables)

Why is the image preferable 
to the expert BDT?

Jet Identification as Image Recognition

Baldi, Bauer, Eng, Sadowski, Whiteson 2016
other work: 

de Oliveira, Kagan, Mackey, Nachman, Schwartzman 2015
Louppe, Cho, Becot, Cranmer 2017
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Simplifying the Discrimination Space
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Human Learning on Jets

To make progress, use the guiding principles:
Systematic Improvability

jet

less information

more information

jet

Including more or less 
information in jet description 

is well-defined

Infrared and Collinear (IRC) Safety
Ensures calculability in perturbation theory

O( )
E ! 0

= O( )
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N-subjettinesses and related observables accomplish this

{pi}i2JJ

N-subjettiness

Datta, AJL 2017

history:
Thaler, van Tilburg, 2010, 2011
Stewart, Tackmann, Waalewijn 2010
Brandt, Dahmen 1979
Wu, Zobernig 1979
Nachtmann, Reiter 1982

⌧1

⌧2

⌧3

⌧ (�)N =
1

pTJ

X

i2J

pTi min
n
R�

1i, R
�
2i, . . . , R

�
Ni

o

Sensitive to radiation of off N axes in the jet

Human Learning on Jets
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Full Jet

Net pT, 𝜂, 𝜙 selected for

Systematically resolve more structure in the jet

Human Learning on Jets

1 useful quantity: 
jet invariant mass

Restrict mJ in a range 
about the mass of interest
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Human Learning on Jets

Two Subjets

Net pT, 𝜂, 𝜙, mJ selected for

Systematically resolve more structure in the jet

2 useful quantities: 
relative pT fraction 

relative angle
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Human Learning on Jets

Three Subjets

Systematically resolve more structure in the jet

5 useful quantities: 
2 relative pT fractions 

3 relative angles

Net pT, 𝜂, 𝜙, mJ selected for



24

Human Learning on Jets

Four Subjets

Systematically resolve more structure in the jet

8 useful quantities: 
3 relative pT fractions 

5 relative angles

Net pT, 𝜂, 𝜙, mJ selected for

Can continue to resolve 
arbitrary structure
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jet

1
2
3...

3M � 4 dimensional phase space

M

� ⇠
Z MY

i=1


d4pi
(2⇡)4

2⇡�(p2i �m2
i )

�
�(4)

 
Q�

MX

i=1

pi

!
|M|2

Human Learning on Jets

Measure observables to 
resolve M-body phase space

In general: 
M - 1 relative pT fractions 

2M - 3 relative angles
4 particle 
example
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M-body Phase Space Machine Learning

Measure observables sensitive to 
2-, 3-, 4-, 5-, and 6-body phase space + jet mass

Analyzed with a deep neural 
network on GPU

Calculated ROC curves 
for QCD vs. Z boson

If information is finite, 
should see saturation

Datta, AJL 2017
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Results:

Saturation observed at 
4-body phase space!

4-body phase space 
= 8 dimensional

M-body Phase Space Machine Learning

Measure observables sensitive to 
2-, 3-, 4-, 5-, and 6-body phase space + jet mass
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M-Body Discrimination
13 TeV, pT > 500 GeV, R = 0.8

Pythia8
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Datta, AJL 2017
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Insights into Quark vs. Gluon Discrimination
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“The White Whale of Jet Physics”
-Jesse Thaler

2

which evade all 2015 Run II searches [4] with conse-
quently fairly low values of fine-tuning.

Non-simplified MSSM scenarios are suggested by
well motivated ultra-violet scenarios of SUSY break-
ing, for example Gauge Mediation. While gauge me-
diated SUSY breaking provides a neat solution to the
SUSY flavour problem (i.e. the absence of large sources
of flavor violation in the soft terms), its minimal re-
alisations are in trouble because they typically predict
a SM-like Higgs mass that is too low compared to the
observed value around 125 GeV. A potentially fruitful
path was explored by introducing additional dynam-
ics to increase the SM-like Higgs boson mass predic-
tion while maintaining fairly low levels of fine-tuning,
see Refs. [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25].

In Ref. [26], we revisited a simple model by Delgado,
Giudice and Slavich [27] (DGS) that combines gauge
mediation (GM) and the next-to-minimal supersym-
metric Standard Model (NMSSM). The field content
of the model is the one of the NMSSM, plus two copies
of messengers in 5+5̄ representations of SU(5), denoted
by �i, �̄i, respectively (i 2 {1, 2}), with doublet and
triplet components �D

i , �̄D
i and �T

i , �̄
T
i . SUSY breaking

is parameterised by the spurion X = M + F✓2 (where
M is the messenger scale and ✓ is the Grassmann valued
N = 1 superspace coordinate). Aside from Yukawa in-
teractions, the superpotential contains spurion-messen-
ger couplings and singlet S-messenger couplings (first
introduced in the context of gauge mediation in Ref. [28])

W = . . .+ �SHuHd +


3
S3

+X
X

i

(D
i �̄D

i �D
i + T

i �̄
T
i �̄

T
i )

+S(⇠D�̄D
1 �D

2 + ⇠T �̄
T
1 �

T
2 ), (1)

where the singlet-messenger couplings unify at the grand
unified theory scale MGUT: ⇠D(MGUT) = ⇠T (MGUT) ⌘
⇠ with unified coupling ⇠. The scale of the SUSY break-
ing terms is fixed by the parameter m̃ = 1/(16⇡2)F/M .

It was shown in Ref. [26] that in the DGS model one
can obtain a 125 GeV Standard Model-like Higgs bo-
son with stops as light as 1.1 TeV, thanks to the mixing
of the Higgs with a singlet state at O(90 � 100) GeV
which is compatible with LEP data [29]. With these
Higgs constraints, essentially all parameters are fixed
except for the GM messenger scale which mainly con-
trols the phenomenology of the gravitino. The central
feature of the model, apart from the light Higgs that
might explain the LEP excess [30] is the peculiar struc-
ture of the light sparticle spectrum. The lightest spar-
ticle (LSP) is the gravitino1 G̃ with mass and couplings
1Another attractive feature of the NMSSM realisation of gauge
mediation is that the singlet allows the gravitino to be a good

Fig. 1 An example of LHC sparticle production in the DGS
model, followed by sparticle decay. In this example, we have four
hard prompt jets from gluinos decaying into quarks q and anti-
quarks q̄; the lightest neutralino Ñ1 may have an intermediate
life-time, producing displaced vertices, each generating bb̄. The
gravitino G̃ leaves a missing transverse momentum signature. The
lightest pseudo-scalar a1 has a lower branching ratio for decays
into ⌧ ⌧̄ than bb̄. The g̃ ! Ñ1 part of the decay may commonly
be more complicated, involving a cascade decay and concomitant
additional SM states.

effectively set by the GM messenger scale, the next-to-
LSP (NLSP) is a singlino-like neutralino Ñ1 of mass
around 100 GeV, and the next-to-NLSP (NNLSP) is
a bino-like neutralino Ñ2 or stau ⌧̃ , depending on the
GM messenger scale. The presence of the singlino alters
SUSY decay chains as compared to the MSSM, leading
to additional b-jets or taus. One distinctive feature of
this scenario is that the singlino decays to a gravitino
and a light singlet-like pseudoscalar a1 of mass around
20 GeV, with the latter decaying predominantly to bb̄
as well as to ⌧⌧ . Depending on the GM messenger scale,
the two b-jets may be produced far outside the detector
(when the Ñ1 is quasi-stable, at high GM scales) or at
low GM scales, they may be produced within the detec-
tor from displaced vertices (DVs). This peculiar feature
of a long-lived singlino decay was already noticed in
Ref. [27]. An example diagram showing LHC sparticle
production in the model is shown in Figure 1.

In this paper, we wish to evaluate the collider phe-
nomenology of the model. In section 2, we describe our
benchmark model, and describe the tools used for simu-
lation of the signal events and validation of our analysis.
In section 3, we re-cast the most constraining prompt
sparticle searches from the LHC in order to find out
how stringent the bounds on the model are and then
we estimate the future reach. In section 4, we detail a
study of DV signatures, starting with recasting the cur-
rent ATLAS multi-track DV + jets analysis and show-
ing that current searches are not sensitive to our model.
By changing the cuts, we suggest ways in which the DV
cuts can be loosened, and how cuts on accompanying
hard prompt objects can be used to combat background

dark matter candidate even for large reheating temperatures that
are compatible with thermal leptogenesis [31].

Allanach, Badziak, Cottin, Desai, Hugonie, Ziegler 2016
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FIG. 1. A comparison of 90% C.L. PDF uncertainties from CT18 (red curve), CT18Z (green
curve) and CT14HERA2 (blue curve) NNLO error ensembles at Q = 100 GeV. The error bands
are normalized to the respective central CT14HERA2 NNLO PDFs.

cross sections of (i) ATLAS 7 TeV [4] and CMS 7 [10] and 8 TeV [11] jet productions; and
(ii) ATLAS 8 TeV high-pT Z production [12].

CT18 analysis includes new LHC experiments on W , Z, Drell-Yan, high-pT Z, jet, and
tt̄ pair productions, up to 30 candidate LHC data sets. The alternative CT18Z fit contains
the following variations from the CT18 fit: (i) add in the ATLAS 7 TeV 4.6 fb�1, W and Z

rapidity distribution measurement [6] which is not included in the CT18 fit, (ii) remove the
CDHSW data, (iii) take charm pole mass to be 1.4 GeV, instead of the nominal value of 1.3
GeV, (iv) use a saturation scale, instead of the nominal scale of Q, for all the deep-inelastic
scattering (DIS) processes in the fit. The final CT18(Z) data ensemble contains a total of
3681(3493) number of data points and �

2
/Npt = 1.17(1.19) at the NNLO.

The relative changes between the CT14HERA2 NNLO [3] and CT18 NNLO ensembles
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FIG. 1. A comparison of 90% C.L. PDF uncertainties from CT18 (red curve), CT18Z (green
curve) and CT14HERA2 (blue curve) NNLO error ensembles at Q = 100 GeV. The error bands
are normalized to the respective central CT14HERA2 NNLO PDFs.

cross sections of (i) ATLAS 7 TeV [4] and CMS 7 [10] and 8 TeV [11] jet productions; and
(ii) ATLAS 8 TeV high-pT Z production [12].

CT18 analysis includes new LHC experiments on W , Z, Drell-Yan, high-pT Z, jet, and
tt̄ pair productions, up to 30 candidate LHC data sets. The alternative CT18Z fit contains
the following variations from the CT18 fit: (i) add in the ATLAS 7 TeV 4.6 fb�1, W and Z

rapidity distribution measurement [6] which is not included in the CT18 fit, (ii) remove the
CDHSW data, (iii) take charm pole mass to be 1.4 GeV, instead of the nominal value of 1.3
GeV, (iv) use a saturation scale, instead of the nominal scale of Q, for all the deep-inelastic
scattering (DIS) processes in the fit. The final CT18(Z) data ensemble contains a total of
3681(3493) number of data points and �

2
/Npt = 1.17(1.19) at the NNLO.

The relative changes between the CT14HERA2 NNLO [3] and CT18 NNLO ensembles

3

CTEQ-TEA Collaboration 2019

ATLAS-CONF-2018-031

Quark/Gluon jet discrimination impacts entire LHC program!
New Physics Searches 

8 quark-jet event!
Higgs Physics 

H →bb and H →gg are ~70% of total width

Gluon PDFs 
Large uncertainties at large x
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Simple Picture of Quark/Gluon Jets

gluon jetquark jet

~Scale invariance of QCD =  
Particle Production is Poisson Process

Rate ∝ CF = 4/3 Rate ∝ CA = 3
Measure collection of N-subjettiness observables

pg({⌧N}) ⇠ e�CAr({⌧N})pq({⌧N}) ⇠ e�CF r({⌧N})
Poisson Process implies

IRC safety of N-subjettinesses implies
r({⌧N}) ! 1 as any τN → 0 
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Where do jets live?

For visualization simplicity, just consider (𝜏1,𝜏2)

⌧1

⌧2
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Where do jets live?

For visualization simplicity, just consider (𝜏1,𝜏2)

⌧1

⌧2

/ CA

/ CF < CA

gluon jet
⌧gluonN > ⌧quarkN

Additivity then implies

Exponentially more likely to be 
quark than gluon here

quark jet
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Where do jets live?

For visualization simplicity, just consider (𝜏1,𝜏2)

⌧1

⌧2

/ CA

/ CF < CA

gluon jet
⌧gluonN > ⌧quarkN

Additivity then implies

Exponentially more likely to be 
quark than gluon here

quark jet

More likely to be gluon than 
quark here



Exponentially more likely to be 
quark than gluon here
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What are the properties of the likelihood ratio?

⌧1

⌧2 More likely to be gluon than 
quark here

Ans: As any 𝜏N → 0, likelihood vanishes

𝜏N → 0 is the fixed-order divergent limit

Quark vs. Gluon likelihood ratio is IRC safe!

L =
pg({⌧N})
pq({⌧N}) ! 0

Quark vs. Gluon Likelihood

AJL, Metodiev 2019
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IRC Safety of the Likelihood

Consequences

L(q, g)

General
Independent of number of 

resolved emissions N

qu
ar

k

glu
on

Non-vacuous
Pronginess discriminators 

(D2, 𝜏2,1, 𝜏3,2, …) all IRC unsafe

Practical
IRC safe observables are good 
q/g discriminants out of the box

good 𝜏N discrimination well-known
Gallicchio, Schwartz 2012

Caveat Emptor
Does not mean that likelihood 

can be calculated at fixed-order

AJL, Moult, Neill 2014
Soyez, Salam, Kim, Dutta, Cacciari 2012
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Conclusions

Huge LHC datasets motivate machine learning

One approach: throw everything into a black box

Don’t force the machine to work so hard! 
Theory insight can get closer to Universal Approx. Thm.

Systematic organization dramatically simplifies description
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https://xkcd.com/1838/

Thanks!

Don’t forget that you are a domain expert!


