Faint high-redshift galaxies and their Lyman-alpha emission

Lutz Wisotzki Leibniz Institute for Astrophysics Potsdam (AIP)

together with The MUSE Collaboration

Content

- \succ Motivation: Lyman- α emission as a probe of the high-z universe
- Blind surveys in Deep Fields with MUSE

- Properties of faint Ly-α selected galaxies
- \blacktriangleright Extended Ly- α emission around high-z galaxies
- \blacktriangleright Implications for the demographics of Ly- α emitters
- \blacktriangleright What is the origin of extended Ly- α haloes?

z=0.00 **MW progenitors were** numerous and faint Copyright R. Teyssler (2008)

The growth history of a `simulated MW':

ARE YOUNG GALAXIES VISIBLE?

R. B. PARTRIDGE AND P. J. E. PEEBLES Palmer Physical Laboratory, Princeton University Received August 5, 1966; revised September 8, 1966

High-redshift Ly- α emitters from narrowband imaging

+ spectroscopic follow-up!

Ouchi+ 2008

MUSE: 300 × 300 spaxels, 0.2" × 0.2" per spaxel

2nd generation instrument for ESO VLT

multi unit spectroscopic explorer

- Integral Field Spectrograph in optical domain:
 - 1' × 1' field of view (in Wide Field Mode)

JSC in a nutshell:

- 0.2" × 0.2" spatial pixels
- \rightarrow 90,000 spectra on 24 spectrographs
- (Ground-layer) Adaptive Optics support
- developed by consortium of 6 institutes + ESO
- □ in operation since 2014; with AO since 2017

ATP

Integral field spectroscopy: The concept

The MUSE principle: Slicing the focal plane

MUSE: 300 × 300 spaxels, 0.2" × 0.2" per spaxel

Keck Cosmic Web Imager: 58 × 24 spaxels, 0.35" × 0.35"

MUSE-Deep and MUSE-Wide

The Hubble Deep Field South, observed with MUSE

Hubble:

300 Ly α emitters with spectra within 2 arcmin²

Wisotzki+ 2018

(continuum subtracted)

Redshifts in the MUSE-Deep UDF mosaic

Redshifts in the MUSE-Deep UDF mosaic

Magnitudes and redshifts in MUSE-Wide DR1 (44 arcmin² in CDFS)

Stellar masses of galaxies in MUSE-Wide

Spectral stacks of LAEs (z > 2.9) as function of stellar mass

Feltre+ 2020, submitted

Lyman- α emitters <u>un</u>detected by HST

Maseda+ 2018

Faint LAEs have an elevated ionizing photon production efficiency

Maseda+ 2020

Extended Lya emission around low-mass galaxies

in 30h exposure with MUSE with 0.7 arcsec Seeing:

Wisotzki+ 2016

Previous searches for extended Lyman-α emission from normal galaxies: Narrowband imaging and stacking of 100s ... 1000s of galaxies

Extended Lya emission

Wisotzki+ 2016

Lyα haloes around individual galaxies at z>3 are ubiquitous

Growth curves of Lyman-α haloes in MUSE Deep data

Going even fainter: Stacking of extremely faint LAEs

Surface brightness profile of median-stacked image:

Wisotzki+ 2018

Lyα "haloes" vs. Lyα "blobs"

<u>Lyα blobs:</u>

- Giant nebulae (>100 kpc at SB > 10⁻¹⁸ erg s⁻¹ cm⁻² arcsec⁻²)
- known since 20 years.
- Rare!
- Often the "main" galaxy is unclear;
- very often related to AGN.

Lyα haloes:

- 1–2 orders of magnitude fainter than blobs!
- also much smaller;
- extremely common;
- always around a galaxy;
- normal, low-mass star-forming systems.

Hayashino+ 2004

Questions arising:

- Why does more than ~50% of the Lyα emission come from extended regions? How is it produced (and powered)?
- 2. What are the implications for the demographics of Ly α emitting galaxies?

Questions arising:

- Why does more than ~50% of the Lyα emission come from such extended regions? How is it powered?
- 2. What are the implications for the demographics of $Ly\alpha$ emitting galaxies?

Lyman- α haloes and the Ly α luminosity function

- Extended nature of Lyα haloes relevant for demographics in 2 ways:
 - Measurements through small apertures or spectrograph slits loose a large fraction of the total Lyα flux
 - Lyα luminosities / equivalent widths / escape fractions biased low!
 - Extended sources are harder to detect that point sources at given total flux
 - Huge impact on actual flux limits and selection function of Lyα emitter surveys (not just MUSE, but all!)

Real galaxy, typical Lyα halo

Point source

Reassessing the Ly α luminosity function at z > 3

Selection function for MUSE-Wide from fake source insertion experiments:

 \Rightarrow Ly α surveys are (generally!) less deep than thought.

Herenz+ 2019

Reassessing the Ly α luminosity function at z > 3

Reassessing the Ly α luminosity function at z > 3

- Space density higher than previous estimates by factor 3–5 at faint end.
- LF rising steeply down to faintest luminosities.
- If Ly α mostly powered by hot stars \rightarrow significant impact on LyC production

How well do we know the LAE selection function?

Selection function for MUSE-Wide from fake source insertion experiments:

Questions arising:

- 1. Why does more than ~50% of the Lyα emission come from such extended regions? How is it produced (and powered)?
- 2. What are the implications for the demographics of $Ly\alpha$ emitting galaxies?

A typical Lyα halo at z≈4: A closer look

Phenomenological model: Compact core ≈ UV continuum + extended exponential

• Scale length of halo

Most of the observed Lya photons come from the halo!

- Lyα halo luminosity fraction: $X_h = L_{halo} / L_{total}$
- $\Box \quad \text{Measured values: } 10\% < X_h < 100\%, \quad \text{average: } 65\%$
- **No** correlation with sizes or luminosities!

Leclercq+ 2017

A typical Lyα halo at z≈4: A closer look

Equivalent width increase from ~10 Å at r=0 \rightarrow >10⁴ Å at r > 10 kpc

 \rightarrow Extended Ly α emission cannot be produced in situ by stars!

Can Lya haloes be faked by satellite galaxies?

Momose+ 2014

Origin of the extended Lya emission

- **1.** Lyα from recombination inside galaxies, then scattered outwards?
 - Required: Young stars in the galaxies; enough circumgalactic H I
 - A simple expanding shell + Radiative Transfer model can roughly reproduce the observed Lyα spectra, but it fails on the radial profiles.
 - Other models do OK for the radial profiles, but don't get the spectra right.
 - Extended haloes also not predicted in galaxy formation simulations.
 - → Plausible scenario, but physics still to be understood!

Lyα escape from galaxies: A two-stage challenge!

Origin of the extended Lya emission

- 1. Ly α from recombination inside galaxies, then scattered outwards?
- 2. Ly α from collisional excitation in accreting intergalactic gas?
 - Predicted by simulations, but very uncertain;
 - could maybe explain "Lyα blobs" residing in very overdense locations;
 - but probably subdominant in low-mass haloes;

$Ly\alpha$ cooling radiation in numerical simulations

Origin of the extended Lya emission

- 1. Ly α from recombination inside galaxies, then scattered outwards?
- 2. Ly α from collisional excitation in accreting intergalactic gas?
- 3. Ly α from UV fluorescence?
 - requires that enough Lyman Continuum photons escape from galaxies;
 - \rightarrow Ly α nebulae around luminous quasars!
 - not clear whether relevant for `normal' LAE haloes
 - At transition to IGM: Fluorescence by UV background becomes relevant.

Lyα nebulae around quasars

Origin of the extended Lya emission

- 1. Ly α from recombination inside galaxies, then scattered outwards?
- **2.** Lyα from collisional excitation in accreting intergalactic gas?
- 3. Ly α from UV fluorescence?

All still very uncertain!

 \rightarrow Further insights from <u>spatially resolved spectra</u> of Ly α haloes.

- Also provided by (the same) MUSE Deep Field data
- but very high S/N requirements \rightarrow only brightest LAEs possible

Evidence for a scattering origin of Ly haloes from spatially resolved MUSE spectroscopy

Leclercq+ 2020

Evidence for a scattering origin of Ly haloes from spatially resolved MUSE spectroscopy

Leclercq+ 2020

Conclusions

With MUSE we have introduced a completely new approach to perform deep spectroscopic surveys

This has opened a window to study the population properties of low-mass galaxies at high redshifts.

Star-forming galaxies at 3 < z < 6 are nearly <u>always</u> surrounded by large gaseous haloes with cool-warm gas, producing extended Lyα emission by scattering

Nearly all the sky is covered by Lyα emission from high-redshift galaxies

The next step: The MUSE eXtremely Deep Field (MXDF)

- 155h exposure of a single circular field, 1' diameter
- with ground-layer adaptive optics: median image quality of 0.48"
- possibly the deepest optical spectroscopic observation ever.

Data are taken – stay tuned ...

