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Motivation




Motivation

Unique era of particle physics
e Higgs discovery
e No SUSY seen at LHC, post-naturalness?
 Model-building wide open: new physics soon, or desert?

New physics may come from precision measurement, rather than new
on-shell states

e HL-LHC

e Higgs factories

e nEDM, eEDM

e Muon g-2

e Flavor violation

— Standard Model effective field theory



The space of EFTs

How do we build a quantum field theory?

* Write down a Lagrangian, built out of operators ©;, with couplings c;:

and then just quantize it. f \
Standard Model Lagrangian Higher-dimension operators



The space of EFTs

How do we build a quantum field theory?

* Write down a Lagrangian, built out of operators ©;, with couplings c;:

and then just quantize it.

e |s this guaranteed to create a consistent EFT? No! Not all couplings c¢; are allowed
e (Certain signs of couplings violate infrared physics principles:
e Unitarity
e Causality
e Analyticity
e Examples:
. . Cheung, GR [1407.7865]; Cheung, Liu, GR [1801.08546, 1903.09156];
* Einstein-Maxwell theory Bellgzzini, Lewandowski, Sera [1902.03250)
: 3 : Bellazzini, Cheung, GR [1509.00851];
o nghgr Curvat_ure gravity (R°, R™terms) Cheung. GR [1608.02942]
e Massive gravity cheung, GR [1601.04068]
° (8§b)4 and F4 Couplings Adams et al. [hep-th/0602178]
e Higher-point couplings Chandrasekaran, GR, Shahbazi-Moghaddam [1804.03153]
e Conformal galileon Nicolis, Rattazzi, Trincherini [0912.4258]
e a-theoremin D =14 Komargodski, Schwimmer [1107.3987]



The space of EFTs

Despite this progress, little has been previously done to apply IR consistency
program to SMEFT itself.

Compelling experimental reasons for doing so:

parameter space
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The space of EFTs

Despite this progress, little has been previously done to apply IR consistency
program to SMEFT itself.

Compelling experimental reasons for doing so:

parameter space

experimental
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region forbidden
by IR consistency

IR consistency conditions place powerful theoretical priors on parameter space.



The space of EFTs

Despite this progress, little has been previously done to apply IR consistency
program to SMEFT itself.

Compelling experimental reasons for doing so:

35.9 fb”" (13 TeV)
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LHC is already bounding higher-dimension operators in the SMEFT.



Bounding SMEFT

This talk:

Apply IR consistency (analyticity & causality) bounds to constrain SMEFT.
e Four-point operators
 Need number of momenta divisible by 4
e Will consider either all-bosonic or all-fermionic operators and scatter states of

fixed SM representation

—> Mass dimension-eight operators ~ 1/M*

In the SMEFT, there are: We will derive:
* 64 bosonic operators e 27 independent bounds
e 2763 fermionic operators e 25 independent families of bounds

that we need to consider.

Connect LHC searches with other experiments (hnEDM, Mu3e, etc.).

Powerful probe of fundamental physics (Lorentz invariance, causality, etc.): test of
axioms of QFT and string theory.



Infrared consistency




Example theory

We'll first briefly review how infrared consistency bounds the coefficients of an EFT,
based on analyticity, unitarity, and causality. Adams et al. [nep-th/0602178]

Example EFT. massless scalar with shift symmetry

_ 1 ©_(9¢)*

Two-to-two scattering amplitude:

2 ~ 4
M(s,t) = MZ(S2 + 4 u?) L

Forward amplitude (in state = out state):



Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:

.7 RN . [s_ 4c 1 A( )
, _
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the
forward amplitude:
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Analyticity

The Wilson coefficient of interest can be extracted via a contour integral of the

forward amplitude:
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using the optical theorem (unitarity):

Im A(s) = so(s)

Adams et al. [hep-th/0602178]



Causality

Equation of motion for £ = —1(9¢)* + % (9¢)*:

O¢ — — [06(06)* + 2(0"¢) (9" ¢)(8,0,¢)] = 0

Let’s expand about a condensate background:
¢=¢+ ¢, 0,6=q, = constant
SO

4cq? 8¢ y
(—1 + W) DQO + Wq“q Ei“&,go =0

At

7 N
— Y4

b %4

GR, Rodd [1908.09845]



Causality

k-

Expanding our perturbation in plane waves, ¢  e"** we have a dispersion relation:

4eq? 8c
(—1+W>k2+—(q-k)2=()

Writing the wave vector as &k, = (ko, k), the speed of the perturbation is:

. 8c(q - k)? | _ delg- k)
VvV = — —= — ~ -
k| k|?2(M* — 4cq?) M*kE

If ¢ < 0, then v > 1, and a causal paradox can be engineered by giving two bubbles
of condensate a large relative boost. Adams et al. [hep-th/0602178]



Bosonic

operator basis




Building blocks

We want all bosonic four-point operators that have four derivatives and/or field
Strengths_ Morozov (1984); Hays et al. [1808.00442]

* |ngredients:
e Gauge field strengths:

B, = 0,8, — 0,B,
W, =0, W, —0,W, + goc' KWW
G2, = 0,G% — 3,G% + g3 f**°GEG*

* Higgs: H. — ! (cbl +i¢2) i — 1 <_¢3+i¢4)

" V2 \ @3+ ids P2\ 1 — g

D, H = (8, + 5ig1 By + igo™ W) H




Building blocks

We want all bosonic four-point operators that have four derivatives and/or field
Strengths_ Morozov (1984); Hays et al. [1808.00442]

e Must be Lorentz and gauge invariant. Contract indices using:

v vpo IJ ITJK gab abc jabc
g,uye,up’é' , € 75 7f 7d

* Not all contractions are independent, due to identit]ies.
e Levi-Civita: €"*“enpys = —24 0l 6% 68 &7
e Schouten: ¢l*89grlv — g
e SU(N) identities
e Define
Bt = €'P B, /2
Wik — eweoypl /o

AUy VPO NG
G = ¢ Goo/2



Field strength self-quartics

Basis of independent operators:

of"  (BB)(BB) Of"  (G"G)(G'G")
05 (BB)(BB) 0s" (CEC2)(EPE")
OB (BB)(BB) o¢' (Eleyllcley
O}/V‘L (WIWI)(WJWJ) Ofl (Gaéb)(Gaéb)
ovt wiwhwoy 98 4@ Gb)(GCde)
Ogv‘* (WIWJ)(WIWJ) ng: dabedede(G )( Gd)
OXV"“ (WIWJ)(WI”WJ) ??4 (GaGa)(G )
5}4/4 (WIWI)(WJWJ) (32G (GaGb)( )
(75;"/4 (WIWJ) (WIWJ) (’)?4 dabedcde(GaGb) (GCGd)



Field strength cross-quartics

Basis of independent operators:

(/)B2VV2

(BB)(Wiw)
BB)(W!W!
B I)( I
BW!)(BW!
B )(WIWI
BB)(W

BW )(BWI
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Higgs self-quartics

Basis of independent operators:

o (D, H'D,H)(D*H'D"H)
o (D, H'D,H)(D"H'D"H)
ol (D*H'D,H)(D"H'D, H)



Higgs and field strength cross-quartics

Basis of independent operators:

2 2 H?BW i Ipo
O{—I B (D'LLHTDVH)BMPBVP Ol (DMH T DIU,H)BpUW
OH'E*  (DMH'D,H)B,,B" Of FW I(D"H'T'DVH) (B, W, — By,W,.”)
2
OH* B (D"H'D,H)B,, B Oz " (D*H't'D"H)(B,.,W,"B,,W.")
OIBW  (DrHYTI D, H)B,, W1
o OEET i(D"Hr! DY H)(B, Wi — B, , W)
o (D*H'D"H)W,, W,.* ~ 2 BW ; =
- KHp 03 (D“HTT DVH)(BP(MWV)'O _I_Bp(,uWy)p)
0" (D*H'D, H)W, ,W'r?
OH2W2 JLIK (prpt L prnwd wEe
S B ! N) up Vv OH*G? (D*HTD”H)G®, G2
OH"W DFHTD, HYW! Wwiee 5
Nl o ( M T) po N N . Ogi G (DMHTDMH)GgGGapa
H*W IJK I N J K J
(22 € (DFH'm D H)(WMOWV p_ WMPWV P) 6{{2G2 (D“HTDMH)GZGGGPU

oW i E(DrH T DY HY (W WEe W) wke)



Lower-dimension operators?

e Dimension-5 and dimension-7 operators always contain fermions.
Only contribute to four-point boson scattering at loop level.
— Can ignore at leading order.

e Contributions from SM scattering?
SM obeys perturbative unitarity, so amplitudes scale more weakly than s°.
—> SM amplitude does not contribute to our contour integral

e \We assume UV scale M is above the weak scale, so treat bosons as
massless to good approximation.

* One loophole left to consider: dimension-6 operators



Dimension-6 operators?

There are 15 bosonic operators at dimension six in the SMEFT: Grzadkowski et al. [1008.4884]

OB’ H'HB,, B* o’ el T KW v ew e
OH° B’ H'HB,,B" o KW IV W Kn
Offiy  HIWL Wi O IGiGLGY
OFW*  HIHW]I Wi 05 fobeGar GheGer
oif.s ~ H'HG,G™" Oy o (HYH)OHH)
Of. S HTHGS, G Ofins  (H'DHH)*(H'D,H)
oI’BW  [girlgp,, Wi o (HTH)3

O¥'BYW  mitrHB,, W




Dimension-6 operators?

There are 15 bosonic operators at dimension six in the SMEFT: Grzadkowski et al. [1008.4884]

W3 IJKVVII/VVJ,OVVK,LL
Qdirg—G ¢ p o Vo
w TIJK i IvyxsJdpir/ Ku
O(éign'G € : W, VbV,/ W
abcyav Ybp Icp
OFine JGE GG

G3 b bp
Odim_6 f'a CGal/Gychu

Single insertion gives amplitude lower-order in derivatives and zero contribution
to speed calculation.

We are working at leading order in the EFT, so need not consider multiple
insertions of quartic operators (loops).



Dimension-6 operators?

There are 15 bosonic operators at dimension six in the SMEFT: Grzadkowski et al. [1008.4884]

el KW Iy I oy Ki
el TKW W Iy K
abcyav Ybp Ycp
fore G GG
abc Yav b c
fabeGav G Gyen

Six-point: does not contribute to four-point scattering at leading order.



Dimension-6 operators?

There are 15 bosonic operators at dimension six in the SMEFT: Grzadkowski et al. [1008.4884]

3
T i
gggn_G ;abc(?cjﬁGIg;IbcIj/p
~ dim-6 M v.p
fabc Gav Ggp Ger

7

Give both 3- and 4-point vertices. Two insertions of 3-point vertex contributes
as ~ s?/M*, going like the square of the Wilson coefficient.
A priori obstructs the placement of positivity bounds.

Can remove this obstacle by scattering gluons with commuting colors:
Feutug =0

and similarly for the Ws.



Bosonic bounds




Single field strength quartics

We now will compute IR consistency bounds for the O,. Let’s start with
operators of the form F*. Generalizing to SU(N), we have:

of"  (F'F)(F'F")
03" (FUF)(FF)
o5"  (FUF")(PUF)
of"  (FUF")(FF)

05}7’4 dabedcde(Fan) (Fch)

05’4 dabedcde(Fan) (Fch)

OF" (F*F)(F°F?)
oF" (FeF)(FoF?)
@’54 Jabe gede (F Fb) (F° ﬁd)
654 Joce gbde (F Fb) (F° ﬁd)

1 a aurv
=gtk g +_ZC@



Single field strength quartics

To zeroth order in the ¢;, the Yang-Mills equation of motion is

This is satisfied by the SM background solution:

—Qa

A, Suiew

constant vector in color space arbitrary four-vector ~coordinate, 0, w = ¢,



Single field strength quartics

To zeroth order in the ¢;, the Yang-Mills equation of motion is

This is satisfied by the SM background solution:

—Qa
A, =ujew

We wish to consider plane-wave perturbation around this solution:
A, =A,+ 04
0A), = uges, et
where k2 = k - e5 = 0. Still solves the equations of motion if f**“ubuS = 0.



Single field strength quartics

We now compute the modified dispersion relation for the plane wave, to first
order in the ¢;. The resulting speed is:

e
M*esuskiN

v=1-—

€1 k)(ea - 0) — (k-0)(e1 - €2)]* A+ (el €S kP17 €,p0 )* B

—[(e1 - k)(e2 - £) — (k- £)(e1 - €2)]e) €5k L7 €1 po C'}

where

A= N [(2c1 + c3)(uru2)” + csutuz + 2(cs + c7)U? | 4 2¢7 [(uruz)? — uiuj)
B=N :(202 + C4)(U1u2)2 + C4U%Ug + 2(ce + CS)UQ: + 2c3 :(u1u2)2 - u%u%

C = N (251 -+ EQ)(UlUZ)Q -+ Egu%ug -+ 2(53 —+ E4)U2 —+ 254 :(U1U2)2 — u%u%
U® = d“bcug%




Single field strength quartics

We now compute the modified dispersion relation for the plane wave, to first
order in the ¢;. The resulting speed is:

8- 5 5
v=1-— VAN (AX + BY —I—C’XY)
where
k, = (ko, 0,0, |k|)
e/ =(0,1,0,0)

{,, = (cosfy,sin O cos Oz, sin 6 sin O cos O3, sin 01 sin O sin H3)

e, = F(cos ¢, sin ¢ cos ¢, sin ¢ sin ¢o cos @3, sin ¢1 sin ¢ sin ¢3)

X\ sin 61 cos 65 sin ¢ cos ¢o cos @1 + sin ¢ sin ¢ sin @3
Y ) \sin#;sinfscosfs sin ¢ sin ¢y cos ¢s cos 01 — sin 6 sin 65 sin 03



Single field strength quartics

We now compute the modified dispersion relation for the plane wave, to first
order in the ¢;. The resulting speed is:

8E?

- 2 (AX" + BY® + OXY)

v=1

Writing X = Z cosv, Y = Z sin), the causality bound becomes:

Acos? ) + Bsin? 1y + C costpsiny > 0

for all .



Single field strength quartics

Alternatively, we can obtain this bound from the forward four-point scattering

amplitude:
8
Apa(s) = AN {A(e1 - €2)°s” + Bleres — (€1 - €2)%]s” + 20 (€1 - €2) el €5 kT kS €10 p0r S }
o 2
— MjN [A cos? 1) + Bsin? ¢ + C cos ¢ sin zﬂ

Marginalizing over 1 gives the minimal set of independent conditions:

The third condition can be obtained by setting ¢ = +arctan v/ A/ B. Cannot be
found from bounding fixed-helicity amplitudes.



For SU(3),
A= 30?4 + 20?4 + 3(20?4 + 03G4) cos® ¢
B = 30554 + 20?4 + 3(2054 + 054) cos® ¢
C =355" + 265" +3(26%" +85) cos? ¢

where ujus = cos (. Marginalizing over (, we obtain the basis of bounds:




For SU(2), d**¢ — 0, f*¢ — !5 and we require u; = tus. Then
A= 4((:‘1/‘/4 + C§V4)
B = 4(03‘/4 + CXV4)
C =4+

Independent bounds:




For U(1), f**¢ — 0 and we have:

14:20}1B4
B:2CZB4
C = 2¢8

Independent bounds:




Field strength cross-quartics

Let’s now consider operators with more than one kind of gauge field strength.
In particular, let’s generalize to SU(/N) ® SU(n) and define

Oy = Fy F" o f40°
Oy = Fji, P f10, fA0°
O3 = Fy, [ Fp f4°°
Oy = Fa J’;AW ﬁa pra
01 Fa Frauy A pra
(9 Fa Frany A pro

~

03 _ FﬁyfA#VFpao'pra



Field strength cross-quartics

In a background of nonzero ZZ as before, the speed of propagation for a
fluctuation da;; of the SU(n)field is:

B AE? 5 o
v=1-— W(CgX —|—C4Y —I—CgXY)
Four-point forward scattering amplitude: L -
452 N t »
Ap2p2(s) = = [03 cos® 1) + ¢4 SiIIQZD + 3 coswsinw} H
M4 1 ?
S L

Bounds:




Field strength cross-quartics

Applying this to the basis in the SMEFT, we have:




Higgs quartics

Take the 3 (DH)* operators and expand in the real scalar fields ¢1.23.4:

1

4
O 1306 + 5 [(0u610"65)* + (0,610"62)? + (0,620"65)? + (0,620 61)°
1=1

2

+ % (091)%(062)* + (0¢3)* (064)?] — 010" 940, 920" P53 + 010" $30, 920" da

4

4 1 1

Oy — 1 Z(a¢i)4 1=
i—1

9 [(au¢1aﬂ¢3)2 + (8Mgb10“¢4)2 + (8u¢2(9u¢3)2 + (3“(/528“gb4)2]

Bl % (061)%(0¢2)* + (0¢3)*(9¢4)%] + (0 P10" $2) + (0ub30" p4)”
+ 0,,010" 940, 920" 93 — 0,010 930, 920" P4
4
OF" = = 37060 + 5 [(061)*(062)° + (06:)(005)? + (962)(965)’]
1=1

- % (061)°(8¢4)* + (8¢2)*(0¢4)” + (0¢3)* (D4)]



Higgs quartics

I . 11
Two-to-two Higgs scattering: |I)|II) — |II1)|TV) . o
Arbitrary superposition of ¢;: o
4 4 't' ~s~
D => ailgs) I =) il i)
i=1 i=1 o’ .
) ) 11 1\Y
1) = Zﬁﬂﬁbi) V) = Z 0i| i)
1=1 1=1

doilailP =318 =2 P =2 107 =1

Forward: o; =", B; =0;

2
S
s* part of forward amplitude: A (s) = » Kijuios B0 5o
ikl




Higgs/field strength cross-quartics

Four-point scattering of Higgs and B, W, G:

2
22 S
A(8) g2z = 1B
(5) YL,
2
H2W2 S
S = C
‘A( )H2W2 ]_ 2M4 "Osss
2 e *.

_ _H?G? S P .
or A(S)g2gz = ¢ T X .

At O(s?),

Bounds:




UV completions:

bosonic operators




Tree completions of (DH)* operators

Let’s look at some example completions of the operators:
OF' = (D, H'D,HYD'H'D'H) '+ cH' 1+ cH' > 0
of" = (D,H'D,H)(D"H' D" H) AR N
ol = (p*H'D,H)(D"H'D,H) >0

Tree-level completion: Massive state exchanged between (DH)?




Tree completions of (DH)* operators

Recall our bounds: Yl S




One-loop completions of gauge operators

Now let’s look at a large class of one-loop completions:

Consider a massive state ® coupled to the gauge bosons.

B/W/G B/W/G

B/W/G B/W/G

Generalization of how the electron couples to the photon in QED, and
integrating out the electron gives F* terms (Euler-Heisenberg Lagrangian)



One-loop completions of gauge operators

Wilson coefficients: Quevillon, Smith, & Touati [1810.06994]

scalar fermion vector
7 2l Lt i
o i e 210
| g [HARe) + h(Ra)] | gl [3ARe) + {BR)] | 63 [FFARs) - 55 (Rs)]
o 93 [35A(Ra) + 33612(R2)} 92 [§A(R2) + 336]2(R2)] 92 55 ARs) — F512(Ry)]
CgV4 95 [ AR;) — ] 95 [A(R2) - 48]2(R2)] 92 [%A(R2) + EIQ(RZ)]
] g3 [AR) — g < Ro)] | 92 [[AR) - 5(Ra)] | g7 [37AMR:) + 5 12(Ry)]
N [—A(Rg + LI (Ry )] g3 [AA(R3) + %IQ(R?)):I 93 [%A(Rs) - —[2(R3)}
5 95 [3:A(Rg) + 67212(R3)} 93 [§ARs) + g5 12(Rs)] | g3 [57ARs) — 55 1(Rs)]
C3G4 93 [16A(R3 ] 93 [A(RB) 418‘[2(R3)] 95 [%A(R?’) + 1_6[2(R3)]
cf4 93 [ ARs) — 336 (R3)] 95 [;ZA(R3) 33612(R3)} 93 [&A(R )+ 112]2(R3)]
c§’ 3593 12(Ra) 593 12(Rs) 5393 12(Ra)
054 mgsfz(RS) 224g§12(R3) 2249§]2(R3)
W =01 95Q°I(R») 9195Q°I(Ry) T69195Q I (Ra)
CQBzW2 169192@212(R2) 19193Q212(R2) 214639193622‘[2(1{2)
03],32W2 §9192Q212( 2) 297950 1>(Ro) 2219193Q212(R2)
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One-loop completions of gauge operators

Relevant bounds:

ci, >0
4
cg >0

Cs > 0
cfQW2 > ()
cfQGQ > (0
cf2G2 > 0
C§V2G2 > (0

Cy > 0



One-loop completions of gauge operators

Relevant bounds:
scalar case:

7 414
@91 > ()

1 414
Egl > 0

fermion case:

vector case:
261 44

32 Y1
243 04,4
59 ARy)
29 ARy) >
23293 A(R3) >
783010 (Ry) >
2T 93 A(R3) >
oA (R3) >
221919262 I3(Rz) >
22 9195Q°I>(Rg) >
2219193622[2(]13)
22 0195Q*(Rs) >
2L g59512(R2)I2(R3) >
22959512 (R2)(R3) >

> ()



One-loop completions of gauge operators

Relevant bounds:




Born-Infeld

A string-inspired UV extension of the SMEFT: Born-Infeld Lagrangian

1 1 -
L= M* {1 - \/ Lt g B FAR — g (F F A )3

A 1 a
where Fj, = (B,.,,W,,,G},)

EFT at low energies:

1 1
L — — _BNVBMV — Z

] WIL{VWI,U,V . lGa (aHY
(0134 OB oW L oWt L 0 054)

4 M

i 32M*

1
4+

(0132W2 +0232W2 —|—OlB2G2 _|_02BQG2 —I—O}/VQGQ —|—O¥V2G2)

16M4




CP violation and completing the square

We notice a pattern in the SMEFT positivity bounds—there are two distinct
forms:

1. ¢1 >0, co > 0 for ¢; 2 coefficients of CP-conserving terms

2. ¢ < 4cico for ¢ the coefficient of a CP-violating term

c
A
Bounds form a cone:
forbidden

region

EQ+02_<C%F,C+>O
where ci. = ¢; £+ ¢

allowed
region




CP violation and completing the square

Let’s take the U(1) OB terms as an example:

1 - N -
AL = —— [cf4(BM,,B“”)2 + B (B, B"™)? + cf4BM,,B“”BPGBP"}

The positivity bounds ¢, > 0, (¢8")? < 4¢P"cF” imply that AL can be written
as a sum of perfect squares:

042

AL = e

[(B,LLI/B'LW i BBMVEMV)2 i VQ(BMVB'LW . 5B,LLI/§MV)2i|

where o, 3,7 € R are chosen such that
a?(1+~%) = 20{34
0B (1+77) = 2¢5"
o?B(1—+") =3

e, ()2 /4cP" el = [(1-~2)/(1 +4?))?



CP violation and completing the square

UV completion of these terms via a dilaton ¢ or axion ¢ with mass mixing:

BL\ 2% Jf/
Sy

M ~, M2, o~ 2 y
LD = (6+0 = 5 5(0—9) + 0B B" +

B

B

208~ ~
P

Mass eigenstates: ¢ + ¢ (mass M) and ¢ — ¢ (mass M/|v|)

Integrating out ¢, 5 gives

C¥2

2M4

AL — [(BWBW + 8B, B")? + 4*(B,, B" — 5BW§W)2]



Fermionic

operator basis




Building blocks

We want all bosonic four-point fermionic operators that have two extra derivatives.
Counting can be found in Henning et al. [1512.03433], but not operators themselves.

* |ngredients: SM fermions

left-handed { «
L

u ¢ right-handed




Building blocks

We want all bosonic four-point fermionic operators that have two extra derivatives.
Counting can be found in Henning et al. [1512.03433], but not operators themselves.

* |ngredients: SM fermions

@
L
quarks e> leptons
U
d



Building blocks

We want all bosonic four-point fermionic operators that have two extra derivatives.
Counting can be found in Henning et al. [1512.03433], but not operators themselves.

* |ngredients: SM fermions

@
AN
SU(3) triplets € SU(2) doublets
(
d

* Each fermion field has a generation index m,n,p,q (e.g., e,,) running over
1,...,N¢, where in the SM, Ny = 3

* This defines flavor quantum numbers:
* Lepton flavor number (electron, muon, tau)
* Strong isospin
* Strangeness, bottomness, charm, topness



Building blocks

We want all bosonic four-point fermionic operators that have two extra derivatives.
Counting can be found in Henning et al. [1512.03433], but not operators themselves.

* |ngredients: SM fermions

@
AN
SU(3) triplets € SU(2) doublets
(
d

* Each fermion field has a generation index m,n,p,q (e.g., e,,) running over
1,...,N¢, where in the SM, Ny = 3

* Since we will scatter states of fixed SM representation, we require operators
containing an even number of each fermionic field, modulo flavor.



Building blocks

We want all bosonic four-point fermionic operators that have two extra derivatives.
Counting can be found in Henning et al. [1512.03433], but not operators themselves.

* As for the bosons, to construct the minimal basis, we must mod out by:
* Fierz/Schouten identities
* SU(N) identities
* Integration by parts
* Equation of motion (work in effectively massless limit, so @y = 0)



Self-hermitian self-quartics

Define currents:

JE Y] mn = 15m7u¢n JH ) = ﬁmTa%ﬂbn
T[] i = 0m T Yuthn JH ) = g Tyt

where ¢ = Q, L,e,d,u, 7'= SU(2) generator, T* = SU(3) generator

Operators:

Crmnpg € C

N]%(NJ% + 1)/2 independent real operators per line for each choice of ¥

Symmetry: Crinpg = Cpgmn
Hermitian condition: ¢,npg = Crmap



Self-hermitian cross-quartics 1

Define currents:

JH ) n = @Em’}’uwn JE ) gn = &mTaWuwn
T[]y = Um T Yuthn JH[) e = Tyt

where ¢ = Q, L,e,d,u, 7'= SU(2) generator, T* = SU(3) generator

Operators:
0J1[¢,X: :b:pn%’;qaujv :¢]mqa'u<]1/ [X]npa %Xzaﬂy
O [Q,L — b%ﬁ}fq% Jy Q]frlnqaﬂjy [L]f{zp
O 73[90, X] = 080y Ou T [¥]00 0T [X] s hx €{d,u,Q}

bpX . =bX €C and ¥ # X

N J‘% independent real operators per line for each choice of ¢, x

Hermitian condition: b,,npq = b

agpnm



Self-hermitian cross-quartics 2

Define tensors: cf. Dirac stress-energy tensor:
K,uz/ w mn — 7Lm’y,ual/wn T,Lu/ — _i(K,uz/ [w]mm ‘I_Kz/,u [w]mm
KMV w inn — &mTI’Y,uavwn _guVKpp[¢]mm)/2+h-C-
K,tu/ w ?’nn — mea'Vu@an

Operators:
Orc1[t,x] = = adspg Kuw [¥]mg K [X]np, P, x=any
Oka [Q,L — _a%ﬁ}?unu :Q]?Ianz/u [L]'rIzp
0K3 WaXZ — —CL%&%’SQKW/ :w]frzanV'u [X]’?’Ibp7 wax = {d7u7Q}

atX —aX¥ cC and ¥ # ¥

N J‘% independent real operators per line for each choice of ¢, x

ES

Hermitian condition: a,unpq = Gypnm



Lower-dimension operators?

e As before can ignore dimension-5 and dimension-7 operators, as well as SM
scattering contribution.

e Four-fermion dimension-6 operators can be present. Grzadkowski et al. [1008.4884]
e Generate s amplitudes via loop processes.

 We will assume a sufficiently weakly-coupled UV completion that we
can ignore these at leading order.



Fermionic bounds




Fermion scattering

Let’s first scatter right-nhanded leptons ¢,, in an arbitrary superposition of flavors:

|¢1> — Om |ém> ‘¢3> = Tm ’ém>
W) = B lem) Va) = Om |em)
Forward scattering, ( Ii;i : ézj ) , requires: Z: Z i%:

Forward amplitudes:

Ale"ete et) = Ale e etel) =45, amBnBaass®



Fermion scattering

Let’s first scatter right-nhanded leptons ¢,, in an arbitrary superposition of flavors:

|¢1> — O |ém> ‘¢3> = Tm ’ém>

W2) = Bm |em) V4) = Om |€m)




Density matrix bound

We can think of the outer products for a and 5 as matrices:

(e o *
pmn T am&n

These matrices are automatically idempotent (p* = p), hermitian, and Tr(p) = 1

—> The p’s are density matrices for a pure state on a
Hilbert space of dimension V.

po = ana, is the Schmidt decomposition.

Defining ¢©'» = &l p* pb  the positivity bound is then the requirement that
g Cup pq Pq



Structure of the flavohedron

Before we consider other operators, let’s explore the nontrivial structure of the
bound c,sz > 0 in an example toy theory:

e Two flavors
 CP-conserving, SO ¢mnpg € R
e Assume/define:

C1111 = C2222 = C1221 = C
C1122 — Co

C1112 = C1222 = (1

C1212 = C2

20,1,2 = Co,1,2/C

Then the bound becomes:

c>0
—2—|—4|£U1’ < To+ x9 < 2

2‘330—%2’ <2—£U0—$2—|—\/(330—|—£U2—|—2—4$1)(£C0—|—£B2—|—2—|—4£131)



Structure of the flavohedron

Forbidden Forbidden//\\\\ Forbidden

q, 4
////

Allowed

Then the bound becomes:

c>0
—2—|—4|£l31’ < To+ x9 < 2

2‘330—%2’ <2—£E0—£E2—|—\/($0+£U2—|—2—4$1)(£E0—|—332—|—2—|—4£131)




Structure of the flavohedron

Allowed

Forbidden .

Then the bound becc......

c>0
—2—|—4|£U1’ < To+ x9 < 2

2‘330—%2’ <2—£U0—$2—|—\/(330—|—£U2—|—2—4$1)(£C0—|—£B2—|—2—|—4£131)




SU(2) charges

Next, let’s consider the L* operators:

O1[L] = c5inpg O (I_/m%b n)0" (Lpy"' L)

Os[L] = c1impg O (Lin ! VL )0 ( L' y"Ly)

We can now scatter superpositions of generations and SU(2) charges:

|¢1> — amiLmi
|¢2> 5mz mi

Forward amplitudes:
ALTL"LYL™)= A(LTLTL™L™)

1 1
412 L, L,2 L2
= [(Cmnpq - Zcmnpq amzﬁ’mﬂpj Qgj + 5 2 Crmnpq mzﬁngﬁp] Qqi



SU(2) charges

Each operator is an SU(2) singlet, so without loss of generality, take:

1 cos 0
Umy = ( 0 ) Um and Bmz — ( 67j¢ sin 6 )Bm

4 1 4 1 4 * *
— [(Cﬁzfr}pq - Zcﬁzgpq) cos” + §Cﬁzn2pq] O‘mﬁnﬂpaq >0

Marginalize over 6 to obtain the bounds:




Quartic quark bounds

Analogously, for the Q*,e*, u* operators, we find:




Cross-quartic fermion bounds

Cross-quartic scattering (e.g., de — de) analogously allows us to derive the
bounds:




Flavor violation

e Some of our operators conserve flavor, while others are flavor-violating

* e.g., J,(e1v.e3)0"(esv"er) and 0, (e1v,.e2)0" (€27 e1)
have (AL.,AL,,AL;) = (0,0,0)

o Ou(€1v,e2)0"(€37"e1) has (AL.,AL,,AL,) = (0,+1,—1)

e Our bounds imply positivity of various flavor-conserving coefficients,

e.g., c1111, C1221 > 0.
Correspond to diagonal density matrices p®, p”

* More general matrices: magnitude constraints on flavor-violating operators



Flavor violation

 Consider a scattering with a,,, = (0,0, 1), B, = (0, cos 8, €'’ sin §)
Marginalizing over all (9, ¢) gives us a quadratic bound:

C1221C1331 > 161231 |2

e Flavor-violating operators are forbidden by unitarity from being too large:

Flavor-violating couplings are upper bounded by their flavor-conserving cousins.

e Reminiscent of our completing-the-square bounds we found for CP violation
for bosons.

e |n fact, one can show that the only possible CP-violating (i.e., imaginary
coupling) four-fermion operators are also flavor-violating, so the flavor bound
also constrains CP violation, just like for bosons. Generalizes to arbitrary U(1)
symmetry.



UV completion: fermionic operators

* The completing-the-squares pattern in the bounds again suggests the
structure of a UV completion.

e Suppose we have some collection of complex, two-Lorentz-index, SM
singlet fields ¢,.mn:

LD —m%0mn® Y + (my¢h 8,J,e]mn + h.c.)

Integrating out ¢ generates |y|°6,.q0np0,J0 [€]mn 0" J¥[€]pq

— =0V a8

» Well-defined UV completion: Kaluza-Klein graviton ¢,,,, coupling as xk¢"“1},,
generates ¢\ = K°(40mqOnp — Omnbpg)/2m°

e, 1l
= =2 (4alB? — |a- B 2m* >0



Phenomenological

conseguences




aQGCs

e Previously, focus on experimental signals of dimension-eight operators has
focused on the electroweak sector in anomalous quartic gauge-boson
couplings (aQGCs).

* |nduce corrections to SM couplings, e.g., WWWW, WW ZZ, WW Z~ or
induce non-SM couplings like ZZZZ

e Can be probed using channels like qq — qgWW, qq — qqZ Z

q

q > /W/Z
|44
o S5

¢ — W)z
\q

e (Can be distinguished from dimension-six operators, since these generate
triple boson couplings heavily constrained by LEP and LHC



aQGCs

Traditional set of operators used for studies of aQGCs:

T 3 4 Eboli, Gonzalez-Garcia, Mizukoshi
e 3 sgalar S-type” operators of the form (DH) . hep-oh 06061 18],
* 7 mixed “M-type” operators of the form (DH)“F Rauch [1610.08420];
. 8t “Ttype” A fthe f Jor Zhang, Zhou [1808.00010];
ensor ype  operators Or the 1orm Bi, Zhang, Zhou [1902.08977]

Our set of CP-even operators in the electroweak sector has:
e 3 S-type

e 8 M-type

e 10 T-type

Set of aQGCs used in the literature is missing OY, OF"W" and a linear
: . H2BW H?BW
combination of O, and Os :

Can show that these are indeed independent operators, so experiments have
been bounding an incomplete basis of aQGCs.

Moreover, experimental constraints (e.g., from the LHC) assume that all but
one, or all but two, of the aQGC couplings vanish: highly non-generic EFT.
Better: place bounds after marginalizing over other couplings.



aQGCs

LHC has already placed constraints on aQGCs:

100
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!
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Forbidden Allowed
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—100 —50

cso/M* [TeV™]  CMS constraint from [1901.04060]

H4 H4
Oso=05 , Os1 =05



aQGCs

LHC has already placed constraints on aQGCs:
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aQGCs

LHC has already placed constraints on aQGCs:
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IR consistency bounds can sharpen bounds and motivate new places to look.



Neutron EDM

Our IR consistency bounds on CP-odd operators are always connected with

CP-even bounds.
— Connect different experimental measurements?

Example: neutron electric dipole moment
e (GG operator has famously small coupling (strong CP problem)
e Dominant nEDM arises from higher-dimension operators?
 Dimension-6 operator fabCGZ”ijpég“ can generate nEDM in multi-Higgs
models. weinberg (1989) Depending on details of model, dimension-8
operators can provide dominant contribution. e.g.. Chemtob (1993)




Neutron EDM

Our IR consistency bounds on CP-odd operators are always connected with
CP-even bounds.
— Connect different experimental measurements?

Example: neutron electric dipole moment
e (GG operator has famously small coupling (strong CP problem)
e Dominant nEDM arises from higher-dimension operators?
 Dimension-6 operator f“bCGZ”ijpég“’ can generate nEDM in multi-Higgs
models. weinberg (1989) Depending on details of model, dimension-8
operators can provide dominant contribution. e.g.. Chemtob (1993)

For an operator ﬁG?’G, dimensional analysis tells us how to estimate the
NEDM: manohar, Georgi (1984); Georgi, Randall (1986)

|dn‘ ~

M4( )2 NC( M > ><10 € CIll

Experimental bounds require |d,,| < 1072° ecm, so the scale of M is being
probed to 100s of GeV



Neutron EDM

Our IR consistency bounds on CP-odd operators are always connected with
CP-even bounds.
— Connect different experimental measurements?

Example: neutron electric dipole moment
e (GG operator has famously small coupling (strong CP problem)
e Dominant nEDM arises from higher-dimension operators?
 Dimension-6 operator f“bCGZ”ijpég“’ can generate nEDM in multi-Higgs
models. weinberg (1989) Depending on details of model, dimension-8
operators can provide dominant contribution. e.g.. Chemtob (1993)

For an operator ﬁ(}?’é, dimensional analysis tells us how to estimate the

NEDM: manohar, Georgi (1984); Georgi, Randall (1986)

|dn‘ ~

A3 1 TeV 4
M4( )2 NC( > ><10 € CIll

Discovery of nonzero nEDM from dimension-8 operators would lead directly to
IR-consistency predictions for CP-even operators observable at the LHC.



Flavor change

Precision experiments are currently searching for flavor violation.

Our bounds could allow collider measurements to be connected to these low-
energy, precision experiments, analogous with CP.

e Muon-to-electron conversion:
e

M ’ NN NN ‘ é

€

e |f the Mu3e experiment Blondel et al. [1301.6113] finds nonzero Br(u — 3e) via cillm,

our bound:

e, 1l 2
0111102112 > ‘01112’

implies nonzero ¢}, ¢5i,, which could be tested at colliders in the dilepton

distribution.



Dimension 6 versus 8

e There are dimension-6 analogues of all of our operators Grzadkowski et al. [1008.4884]

By power counting, dimension-8 amplitudes are suppressed relative to
dimension-6 by (Ar/Auvuv)?

* For muon decay, Ajr ~ m,, SO how to distinguish dimension-8?
* In colliders, hard contribution gives Atg ~ v/s
e Higher-¢ angular distribution Alioli et al. [2003.11615]
¢ High-pT tail Greljo, Marzocca [1704.09015]

e Scaling means that higher mass scale can be more important than tighter
branching ratio bound in constraining dimension-8 operators:

Br(p — 3e) <1072 vs. Br(r — 3e) <1078 but (m,/m,)* ~ 10°
(m¢/m,)* ~ 10", FCNCs?



Other probes

Flavor-violating:
* Neutral meson mixing
See GR, Rodd [2004.02885] for other refs.
Flavor-conserving:
 Nonresonant dilepton, dijet events at colliders

Dimension-6 bounds into several TeV scale:
e Dilepton, diphoton, dijet, and top production at LHC
* Neutrino scattering ~ Fawlikowski et al. [1706.03783]
* Electron and atomic parity violation

UV motivations:
e KK graviton
e [ eptoquarks
e Fermion compositeness

Minimal flavor violation: Our bounds are orthogonal to the MFV hypothesis
(neither forbid nor mandate).

Similary, lepton universality is unprotected by our bounds:
a2l £ a%k) would generate AT'(B — K®ete™) £ AT'(B — K™ utp)



Future directions




Future directions

Multiple avenues for future work:

e Finding more connections between CP-even and CP-odd measurement

e Superpositions of SM representations, B-violating operators

e Deriving SMEFT bounds for operators containing both fermions and bosons
e Other EFTs? Connections to swampland program?

 More bounds beyond the forward limit: beyond-positivity techniques,

EFThedron, etc.?

Connecting the IR consistency program with the SMEFT and accessible
experimental signals represents an important new bridge between
phenomenology and formal theory, connecting physics at different energy
scales and offering both a test of fundamental properties of QFT up to very
high energies and a sharpening of our search for new physics.



