A Quantum Toroidal Categorification On Hilbert Schemes

Yu Zhao

October 13, 2020

Yu Zhao A Quantum Toroidal Categorification On Hilbert Schemes

★ Ξ →

Preview

• Schiffmann-Vasserot, Feigin-Tsymbaliuk constructed $\ddot{U}_{q_1,q_2}(\ddot{gl}_1)$ action on the Grothendieck groups of Hilbert schemes of points on surfaces.

伺 と く ヨ と く ヨ と

Preview

- Schiffmann-Vasserot, Feigin-Tsymbaliuk constructed *ü*_{q1,q2}(*gl*₁) action on the Grothendieck groups of Hilbert schemes of points on surfaces.
- It generalized the Heisenberg algebra action on the cohomology by Nakajima and Grojnowski.

伺 ト イヨ ト イヨト

Preview

- Schiffmann-Vasserot, Feigin-Tsymbaliuk constructed *ü*_{q1,q2}(*gl*₁) action on the Grothendieck groups of Hilbert schemes of points on surfaces.
- It generalized the Heisenberg algebra action on the cohomology by Nakajima and Grojnowski.
- In this talk, we will categorify the above $U_{q_1,q_2}(\ddot{gl}_1)$ action.

伺 ト イヨト イヨト

Hilbert Schemes and Cohomology

Given a quasi-projective smooth surface S over $k = \mathbb{C}$, we consider $S^{[n]}$ the Hilbert scheme of n points on S, and let

$$\mathcal{M} := \bigsqcup_{n=0}^{\infty} S^{[n]}$$

伺 ト イヨ ト イヨト

Hilbert Schemes and Cohomology

Given a quasi-projective smooth surface S over $k = \mathbb{C}$, we consider $S^{[n]}$ the Hilbert scheme of n points on S, and let

$$\mathcal{M} := \bigsqcup_{n=0}^{\infty} S^{[n]}$$

Theorem (Nakajima,Grojnowski)

The homology group $H_*(M)$ is a irreducible highest weight representation as a representation of the Heisenberg superalgebra associated with $H^*(X)$, where the highest weight vector is the generator of $H_0(X^{[0]}) \cong \mathbb{Q}$.

(日本) (日本) (日本)

Quantum Toroidal Algebra $U_{q_1,q_2}(gI_1)$

• $U_{q_1,q_2}(\ddot{gl_1})$ is an affinization of the *q*-Heisenberg algebra.

伺 ト イヨ ト イヨ ト

Quantum Toroidal Algebra $U_{q_1,q_2}(gl_1)$

- $U_{q_1,q_2}(\ddot{gl_1})$ is an affinization of the *q*-Heisenberg algebra.
- The study of $U_{q_1,q_2}(\ddot{gl_1})$ started from many different origins in algebraic geometry, representation theory and mathematical physics.

伺 ト イ ヨ ト イ ヨ ト

Quantum Toroidal Algebra $U_{q_1,q_2}(gl_1)$

- $U_{q_1,q_2}(\ddot{gl_1})$ is an affinization of the *q*-Heisenberg algebra.
- The study of $U_{q_1,q_2}(\ddot{gl_1})$ started from many different origins in algebraic geometry, representation theory and mathematical physics.
- Let $\mathbb{K} = \mathbb{Z}[q_1^{\pm 1}, q_2^{\pm 1}]_{([1], [2], [3], \cdots)}^{Sym}$ where "Sym" means symmetric in q_1 and q_2 and let $q = q_1q_2$. Then $U_{q_1, q_2}(\vec{gl}_1)$ is the \mathbb{K} -algebra with generators

$${E_k, F_k, H_l^{\pm}}_{k\in\mathbb{Z}, l\in\mathbb{N}}$$

modulo the following relations:

伺 ト イヨト イヨト

Quantum Toroidal Algebra $U_{q_1,q_2}(gl_1)$

$$(z - wq_1)(z - wq_2)(z - \frac{w}{q})E(z)E(w) =$$

= $(z - \frac{w}{q_1})(z - \frac{w}{q_2})(z - wq)E(w)E(z)$ (1)

$$(z - wq_1)(z - wq_2)(z - \frac{w}{q})E(z)H^{\pm}(w) =$$

= $(z - \frac{w}{q_1})(z - \frac{w}{q_2})(z - wq)H^{\pm}(w)E(z)$ (2)
[[E_{k+1}, E_{k-1}], E_k] = 0 $\forall k \in \mathbb{Z}$ (3)

together with the opposite relations for F(z) instead of E(z), and:

$$[E(z), F(w)] = \delta(\frac{z}{w})(1-q_1)(1-q_2)(\frac{H^+(z)-H^-(w)}{1-q})$$
(4)

where

୬୯୯

• Let $S^{[n,n+1]}$ be the nested Hilbert scheme parameterized by

 $\{(\mathcal{I}_n,\mathcal{I}_{n+1},x)\in S^{[n]}\times S^{[n+1]}\times S|\mathcal{I}_{n+1}\subset \mathcal{I}_n,\mathcal{I}_n/\mathcal{I}_{n+1}=k_x\}.$

伺 ト イ ヨ ト イ ヨ ト

• Let $S^{[n,n+1]}$ be the nested Hilbert scheme parameterized by

$$\{(\mathcal{I}_n,\mathcal{I}_{n+1},x)\in S^{[n]}\times S^{[n+1]}\times S|\mathcal{I}_{n+1}\subset \mathcal{I}_n,\mathcal{I}_n/\mathcal{I}_{n+1}=k_x\}.$$

• There is a unique tautological line bundle \mathcal{L} on $S^{[n,n+1]}$ whose fiber over a closed point is $\mathcal{I}_n/\mathcal{I}_{n+1}$.

伺 ト イ ヨ ト イ ヨ ト

Hilbert Schemes and Grothendieck Groups

• Let $S^{[n,n+1]}$ be the nested Hilbert scheme parameterized by

$$\{(\mathcal{I}_n,\mathcal{I}_{n+1},x)\in S^{[n]}\times S^{[n+1]}\times S|\mathcal{I}_{n+1}\subset \mathcal{I}_n,\mathcal{I}_n/\mathcal{I}_{n+1}=k_x\}.$$

• There is a unique tautological line bundle \mathcal{L} on $S^{[n,n+1]}$ whose fiber over a closed point is $\mathcal{I}_n/\mathcal{I}_{n+1}$.

$$e_k := [\mathcal{L}^k \mathcal{O}_{\mathcal{S}^{[n,n+1]}}], \quad f_k = [\mathcal{L}^{k-1} \mathcal{O}_{\mathcal{S}^{[n,n+1]}}]$$

could be regarded as operators: $K(\mathcal{M}) \to K(\mathcal{M} \times S)$ through the *K*-theoretic correspondences.

Theorem (Schiffmann-Vasserot, Feigin-Tsymbaliuk)

 There exists h_m ∈ K(M × S) which is a combination of symmetric product and wedge product of the universal ideal sheaf on M × S such that

$$[e_k, f_l] = \Delta_* \left(\frac{h_{k+l}}{1-q} \right)$$

where $\Delta : \mathcal{M} \times S \to \mathcal{M} \times \mathcal{M} \times S \times S$ is the diagonal embedding and $q = [\omega_S]$ is the canonical line bundle of S.

伺 ト イヨト イヨト

Theorem (Schiffmann-Vasserot, Feigin-Tsymbaliuk)

 There exists h_m ∈ K(M × S) which is a combination of symmetric product and wedge product of the universal ideal sheaf on M × S such that

$$[e_k, f_l] = \Delta_* \left(\frac{h_{k+l}}{1-q} \right)$$

where $\Delta : \mathcal{M} \times S \to \mathcal{M} \times \mathcal{M} \times S \times S$ is the diagonal embedding and $q = [\omega_S]$ is the canonical line bundle of S.

伺 ト イヨト イヨト

Theorem (Schiffmann-Vasserot, Feigin-Tsymbaliuk)

 There exists h_m ∈ K(M × S) which is a combination of symmetric product and wedge product of the universal ideal sheaf on M × S such that

$$[e_k, f_l] = \Delta_* \left(\frac{h_{k+l}}{1-q}\right)$$

where $\Delta : \mathcal{M} \times S \to \mathcal{M} \times \mathcal{M} \times S \times S$ is the diagonal embedding and $q = [\omega_S]$ is the canonical line bundle of S.

• e_k, f_k, h_k satisfy the relations in $U_{q_1,q_2}(\ddot{gl}_1)$.

伺 ト イ ヨ ト イ ヨ ト

Some Applications

 It also acts on the Grothendieck group of higher rank stable sheaves, and factors through the deformed W-algebra. It leads to a proof of AGT correspondences for U(r) gauge theory with matter. (Neguț)

伺 ト イヨ ト イヨ ト

Some Applications

- It also acts on the Grothendieck group of higher rank stable sheaves, and factors through the deformed W-algebra. It leads to a proof of AGT correspondences for U(r) gauge theory with matter. (Neguț)
- It induces a *W*-algebra action on the Chow groups of Hilbert schemes of points on surfaces which is studied by Li-Qin-Wang in the homology theory, which induced the Beauville conjecture on the Hilbert schemes of *K*3 surfaces (Maulik-Neguț).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Categorification of $U_{q_1,q_2}(\ddot{g}l_1)$

• The action of the positive part was also categorified by Negut

伺 ト イヨト イヨト

Categorification of $U_{q_1,q_2}(gl_1)$

- The action of the positive part was also categorified by Negut
- A monoidal categorification of the postive part is given by Porta-Sala through the Categorified hall algebra.

伺 ト イヨ ト イヨ ト

Categorification of $U_{q_1,q_2}(\ddot{gl}_1)$

- The action of the positive part was also categorified by Negut
- A monoidal categorification of the postive part is given by Porta-Sala through the Categorified hall algebra.
- We will categorify the commutator of the positive and the negative part:

$$[e_k, f_l] = \Delta_* \frac{h_{k+l}}{1-q}$$

by constructing natural transformations in derived categories explicitly.

Overview Quantum Toroidal Algebra Action on The Grothendied

The Main Theorem(Y. Zhao)

• For every two integers *m* and *r*, there exists natural transformations

$$\begin{cases} f_r e_{m-r} \to e_{m-r} f_r & \text{if } m > 0\\ e_{m-r} f_r \to f_r e_{m-r} & \text{if } m < 0\\ f_r e_{-r} = e_r f_{-r} \oplus \mathcal{O}_{\Delta}[1]. \end{cases}$$
(6)

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Overview Quantum Toroidal Algebra Action on The Grothendied

The Main Theorem(Y. Zhao)

• For every two integers *m* and *r*, there exists natural transformations

$$\begin{cases} f_r e_{m-r} \to e_{m-r} f_r & \text{if } m > 0\\ e_{m-r} f_r \to f_r e_{m-r} & \text{if } m < 0\\ f_r e_{-r} = e_r f_{-r} \oplus \mathcal{O}_{\Delta}[1]. \end{cases}$$
(6)

• When $m \neq 0$, the cone of above natural transformations has a filtration with associated graded object

$$\begin{cases} \bigoplus_{k=0}^{m-1} R\Delta_*(h_{m,k}^+) & \text{ if } m > 0 \\ \bigoplus_{k=m+1}^0 R\Delta_*(h_{m,k}^-) & \text{ if } m < 0 \end{cases}$$

where $h_{m,k}^+, h_{m,k}^- \in D^b(\mathcal{M} \times S)$ are combinations of wedge and symmetric products of universal sheaves on $\mathcal{M} \times S$.

The main theorem

• At the level of Grothendieck groups, we have the formula:

$$(1 - [\omega_S]) \sum_{k=0}^{m-1} [h_{m,k}^+] = h_m^+ \qquad m > 0$$

 $(1 - [\omega_S]) \sum_{k=m+1}^{0} [h_{m,k}^-] = h_{-m}^- \qquad m < 0$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The main theorem

• At the level of Grothendieck groups, we have the formula:

$$(1 - [\omega_{S}]) \sum_{k=0}^{m-1} [h_{m,k}^{+}] = h_{m}^{+} \qquad m > 0$$
$$(1 - [\omega_{S}]) \sum_{k=m+1}^{0} [h_{m,k}^{-}] = h_{-m}^{-} \qquad m < 0$$

• The extensions between $h_{m,k}^{\pm}$ are non-trivial and given by a explicit formula (which I will present if there is still time).

• • = • • = •

Overview Quantum Toroidal Algebra Action on The Grothendied

Some Remarks of the Main Theorem

• It is only a categorification in the weak sense. Maps between sheaves and relations between them should be pursued in the future.

直 ト イヨ ト イヨト

Overview Quantum Toroidal Algebra Action on The Grothendied

Some Remarks of the Main Theorem

- It is only a categorification in the weak sense. Maps between sheaves and relations between them should be pursued in the future.
- We could also consider the categorification of the action on higher rank stable sheaves with a refinement of the techniques.

伺 ト イヨ ト イヨト

We consider the following triple/quadruple moduli space $\mathfrak{Z}_+, \mathfrak{Z}_-, \mathfrak{Y}$ parameterize diagrams:

respectively, of ideal sheaves where each successive inclusion is colength 1 and supported at the point indicated on the diagrams. We consider line bundles $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}'_1, \mathcal{L}'_2$ over triple/quadruple moduli spaces with fiber $\mathcal{I}_n/\mathcal{I}_{n+1}, \mathcal{I}_{n-1}/\mathcal{I}_n, \mathcal{I}_n/\mathcal{I}'_{n+1}, \mathcal{I}'_{n-1}/\mathcal{I}_n$ respectively.

The forgetful morphism induces a Cartesian diagram:

The forgetful morphism induces a Cartesian diagram:

Theorem (Vanishing Theorem)

•
$$R\alpha_{-*}\mathcal{O}_{\mathfrak{Y}} = \mathcal{O}_{\mathfrak{Z}_{-}}$$

Rα_{+*}O_𝔅 = O_{W₀}, where W₀ and W₁ = S^[n,n+1] are two irreducible components of 𝔅₊.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The forgetful morphism induces a Cartesian diagram:

Theorem (Vanishing Theorem)

•
$$R\alpha_{-*}\mathcal{O}_{\mathfrak{Y}} = \mathcal{O}_{\mathfrak{Z}_{-}}$$

Rα_{+*}O_𝔅 = O_{W₀}, where W₀ and W₁ = S^[n,n+1] are two irreducible components of 𝔅₊.

Given the above two equailities, we are able to compare $e_m f_l$ and $f_l e_m$ through line bundles on \mathfrak{Y} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Discrepancy)

• X be a normal variety that mK_X is Cartier for $m \in \mathbb{Z}_{>0}$

伺 ト イヨト イヨト

Definition (Discrepancy)

- X be a normal variety that mK_X is Cartier for $m\in\mathbb{Z}_{>0}$
- Suppose $f: Y \to X$ is a birational morphism from a smooth variety Y.

Remark

In birational geometry, people care more about pairs (X, D), where D is a \mathbb{Q} of \mathbb{R} Cartier divisor. We will not present the definition of pairs for simplicity, but it is essential in part of our proof.

Definition (Discrepancy)

- X be a normal variety that mK_X is Cartier for $m\in\mathbb{Z}_{>0}$
- Suppose $f: Y \to X$ is a birational morphism from a smooth variety Y.
- There are rational numbers $a(E_i, X)$ such that

$$\mathcal{O}_Y(mK_Y) \cong f^*\mathcal{O}_X(mK_X) \otimes \mathcal{O}_Y(\sum_i ma(E_i, X)E_i).$$

Remark

In birational geometry, people care more about pairs (X, D), where D is a \mathbb{Q} of \mathbb{R} Cartier divisor. We will not present the definition of pairs for simplicity, but it is essential in part of our proof.

Definition (Discrepancy)

- X be a normal variety that mK_X is Cartier for $m\in\mathbb{Z}_{>0}$
- Suppose $f: Y \to X$ is a birational morphism from a smooth variety Y.
- There are rational numbers $a(E_i, X)$ such that

$$\mathcal{O}_Y(mK_Y) \cong f^*\mathcal{O}_X(mK_X) \otimes \mathcal{O}_Y(\sum_i ma(E_i, X)E_i).$$

• $a(E_i, X)$ is called the discrepancy of E_i with respect to X.

Remark

In birational geometry, people care more about pairs (X, D), where D is a \mathbb{Q} of \mathbb{R} Cartier divisor. We will not present the definition of pairs for simplicity, but it is essential in part of our proof.

An Overview of the Minimal Model Program

Definition (Classifacation of singularities)

Let X be a normal variety. Assume that mK_X is Cartier for some m > 0. We say that X is

terminal	if a(E,X) is 〈	> 0, for every exceptional E
canonical		\geq 0, for every exceptional <i>E</i>
klt		>-1, for every E
plt		> -1, for every exceptional E
dlt		$>-1, ext{ if } center_X E \subset ext{non-snc} X$
lc		≥ -1 . for every <i>E</i>

Remark

For S_2 and equidimensional schemes, we could also define "semi-lc", "semi-dlt".

The Structure Theorem

• klt singularities are rational singularities.

• • = • • = •

The Structure Theorem

• klt singularities are rational singularities.

• Every irreducible component of a semi-dlt scheme is normal. By explicit computing the discrepancy, we have the following structure theorem for the geometry of $\mathfrak{Y}, \mathfrak{Z}_-, \mathfrak{Z}_+$

Theorem (Structure Theorem)

- I is smooth (Neguț);
- \mathfrak{Z}_+ is semi-dlt and W_0 is a canonical singularity (Y. Zhao).
- \mathfrak{Z}_{-} is a canonical singularity (Y. Zhao).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Review

• We categorify the commutation of e_k , f_l action on the Grothendieck groups of Hilbert schemes

伺下 イヨト イヨト

Review

- We categorify the commutation of e_k , f_l action on the Grothendieck groups of Hilbert schemes
- For higher rank stable sheaves, \mathfrak{Z}_+ is no longer equi-dimensional, and the influence of DAG has to be accounted for.

伺 ト イヨ ト イヨト

Review

- We categorify the commutation of e_k , f_l action on the Grothendieck groups of Hilbert schemes
- For higher rank stable sheaves, \mathfrak{Z}_+ is no longer equi-dimensional, and the influence of DAG has to be accounted for.
- It is a toy model of the categorical version "Drinfeld Double of the CoHA", and we expect the generalization to other more complicated settings.

伺 ト イヨ ト イヨト