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Motivation:
On-Shell Success Where Field Theory Fails
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* Image taken from Bern et al.  arXiv 1909.01358



Success of the On-Shell Program
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○ Six gluon planar N=4 SYM @ 6 and 7 Loops

○ Black Hole Binary Dynamics 

○ Non-renormalization and operator mixing in SMEFT

● The on-shell program addresses relativistic quantum physics without referring to action  

● Many recent cutting edge results, for example:  

Bern, Parra-Martinez, Sawyer ‘20

Bern, Cheung, et al ‘19, ….

Caron-Hout, Dixon, et al ‘19

○ Cosmological bootstrap   Arkani-Hamed, Baumann, et al ‘18

… and many more  

○ Massless amplitudes beyond polylogarithms   Bourjaily, McLeod, et al ‘18



The On-Shell Program - Faster, Stronger or also Deeper?
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○ Color-Kinematics duality and the Double copy 
           (Gravity = YM2 and other reltions)

● A key question is if the on-shell program allows for a deeper understanding of nature, 
which cannot be seen in conventional Field Theory  

● Some very suggestive hints:

Bern, Carrasco, Johansson ‘08

Bern, Carrasco, et al. ‘19  .... many more 

Classical Double Copy Monteiro, O’connell, White ‘14 …. 

○ Dual conformal invariance Drummond, Henn et al. ‘08

○ Amplituhedra Arkani-Hamed, Trnka ‘13 ...



Monopoles: Where “No” Lagrangian Exists
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● Since the days of Dirac, no clear way to write a local, Lorentz invariant Lagrangian for 
Monopoles & electric charges 

○ Schwinger approach:  non-local Lagrangian Schwinger ‘66

○ Zwanziger approach:  local Lagrangian, Zwanziger ‘71

loss of manifest Lorentz by introducing Dirac string

● Weinberg’s Paradox: 

○ Amplitude for charge monopole 1-photon exchange 
explicitly breaks Lorentz!

Weinberg ‘65

○ Resolution: Lorentz violation exponentiates away upon 
summing all soft corrections

Terning, Verhaaren  ‘19



Monopoles: an On-Shell Opportunity
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● The S-matrix for charge-monopole scattering is local and Lorentz invariant,

● The S-matrix has to be “special” in some way, otherwise why no Lagrangian?

● Dirac quantization should play a leading role

○ q ≡ e g  is half integer. Other half integers for the S-matrix?  - Spins and helicities!   

○ Helcities & spins are associated with 1 particle states  

○ q ≡ e g associated with charge-monopole pairs 

“pairwise”  helicity?

but we cannot see this in the field theory language



Charge - Monopole Scattering:
A Non-Relativistic Prelude
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Magnetic Monopoles

Sources of U(1) field* with non-trivial winding number
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● At  r>>m-1 effectively abelian  Dirac ‘31

● At  r~m-1 have non-abelian cores   ‘t Hooft / Polyakov ‘74

● Lead to charge quantization  Dirac ‘31,  Wu & Yang ‘76

* In this talk we only consider these

We won’t care.
For us they are just scattering particles.



Classically: An Extra Angular Momentum
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● In the presence of electrically and magnetically charged particles there’s a catch 

monopole M particle f
magnetic charge g electric charge e

● The E&M field has angular momentum, even at infinite separation! 

● Have to include this extra angular momentum in the quantum theory



    Thomson 1904

In the quantum theory            quantized  Dirac quantization

Distance independent!

monopole M particle f
magnetic charge g electric charge e
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Classically: An Extra Angular Momentum



Lipkin et al. ‘69

Dirac quantization
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Non-Relativistic Quantum Theory 

where  and A is the vector potential from a monopole at r=0  

Need two patches to define A : 

Zwanziger ‘68, Schwinger ‘69

● Naive                            no longer satisfies angular momentum algebra, instead 

is the conserved angular momentum operator

● For dyons, trivial generalization:  



The S-Matrix for
Charges, Monopoles and Dyons* 

* will use the words charge, monopole and dyon interchangeably  = a particle with electric and/or magnetic charges   

( e’
1 , g’

1 ) ( e’
m , g’

m )

( e1 , g1 ) ( en , gn )



Plan
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

○ LG covariant partial wave decomposition



The Quantum State of a Monopole and a Charge Zwanziger ‘72
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● How does Lorentz act on a 2-particle state with a scalar monopole and a scalar charge? 

○ Naively, because they are scalars:

But that can’t be true because that implies no  q12 ≡ e1 g2 - e2 g1  contribution to the angular momentum

○ Instead:

where φ is a pairwise little group phase associated with both momenta

● This is clearly the right definition as it assigns an extra angular momentum associated with the 
half-integer q12 ≡ e1 g2 , but we can also derive it by generalizing Wigner’s method of induced 
representations  



Wigner’s Method for Charge-Monopole States Zwanziger ‘72
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● Define the reference momenta in the COM frame

with

○ Always just a U(1) - rotations around the z-axis

Definition: Pairwise Little Group (LG) - All Lorentz transformations which leave both k1,2 invariant

○ We label charge-monopole pairs by their pairwise LG charge q12

○ q12 ≡ e1 g2 - e2 g1  by matching to NR limit
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● Define canonical Lorentz transformation  Lp  as the  COM  ￫  Lab  transformation 

● Wigner’s trick:

Zwanziger ‘72Wigner’s Method for Charge-Monopole States

Pairwise LG rotation

So that:

Where                                         . This is the  electric-magnetic two scalar state
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● We can easily generalize the two scalar state to arbitrary electric-magnetic multiparticle states 

Electric-Magnetic Multiparticle States

where                 are the matrices (phases) for each single particle massive (massless)  LG  

Spins / helicities Pairwise helicitiesPairwise LG phase

● Electric-magnetic multiparticle states are not direct products of single particle states!

● This is just the right amount of “non-locality” to explain the absence of a Lagrangian description
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● To define the S-matrix,  we define electric-magnetic in- and out- states as

The Electric-Magnetic S-Matrix

+ for ‘in’ - for ‘out’

Where                                                    . note the ± 

● Has to be there to reproduce the angular momentum in the E&M field in the classical limit:  

● The  ±  for the pairwise LG phase of the in / out state is very important! 

Zwanziger ‘72
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● The S-matrix then transforms as:

The Electric-Magnetic S-Matrix

with 

● The extra pairwise LG phase is the key element in our formalism

● Every electric-magnetic S-matrix must transform with this phase by construction! 



Plan
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

 ✔

 ✔

○ LG covariant partial wave decomposition
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The Standard Spinor-Helicity Formalism

● In the standard massless/massive spinor-helicity formalism, 

scattering amplitudes are formed from spinor helicity variables transforming covariantly

De Causmaecker et al. ‘82
                 Parke, Taylor ‘86
                                          ….
     Arkani-Hamed at al. ‘17

Lorentz trans.

Massless:

LG phase

Massive:

Lorentz trans. LG phase

Lorentz trans. LG SU(2) Lorentz trans. LG SU(2)

under the single particle LGs
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New Building Blocks for the S-Matrix: Pairwise Spinors

● Can’t saturate the S-matrix pairwise LG phase with the standard spinors

● Need new pairwise spinors transforming covariantly under pairwise LG

○ Associated with pairs of momenta 

○ Have U(1) phase even if momenta are massive

● Idea: define null linear combinations of every pair (pi , pj)  and decompose into massless spinors 
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New Building Blocks for the S-Matrix: Pairwise Spinors
● In the COM frame for every pair, define null reference momenta:

COM
momentum

● We can boost  k♭
ij  to get  p♭

ij   in the lab frame, which are null linear combinations of pi and pj

● By linearity,                                   where Lp is the same canonical transformation

which takes ki ⇾ pi , kj ⇾ pj.   Our pairwise spinors will have the same LG phase as the S-matrix 

The particles could 
be massive!



24

New Building Blocks for the S-Matrix: Pairwise Spinors

We can now define reference pairwise spinors as the “square roots” of the reference pairwise momenta

This mirrors the definition of regular spinor-Helicity variables, only with pairwise momenta. 

so that
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New Building Blocks for the S-Matrix: Pairwise Spinors

● In the lab frame, we define

Canonical Lorentz Canonical Lorentz

● By another “Wigner trick” we get 

2 pairs of spinors transforming covariantly under pairwise LG, with opposite weights

● Now we have everything we need to construct electric-magnetic amplitudes! 
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New Building Blocks for the S-Matrix: Pairwise Spinors
● By definition, in the  mi⇾0  limit, the pairwise spinors approach the regular spinors,

“P-conjugate” of丨i 〉 “P-conjugate” of  [ i |

● This will imply extra selection rules in the  mi⇾0  limit, since

In particular, it will impose a mandatory helicity-flip in the lowest partial wave for 
charge-monopole scattering. Stay tuned!



Plan
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

 ✔

 ✔

 ✔

○ LG covariant partial wave decomposition
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Constructing Electric-Magnetic Amplitudes

● We showed that the electric-magnetic S-matrix transforms as



29

Constructing Electric-Magnetic Amplitudes

● We showed that the electric-magnetic S-matrix transforms as*

In practice we work in the all-outgoing convention:
Have to flip helicity, but not pairwise helicity!
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Constructing Electric-Magnetic Amplitudes

● We showed that the electric-magnetic S-matrix transforms as*

● 1st surprise:     remember the beginning of every QFT textbook?

In practice we work in the all-outgoing convention:
Have to flip helicity, but not pairwise helicity!
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Constructing Electric-Magnetic Amplitudes

● We showed that the electric-magnetic S-matrix transforms as*

● 1st surprise:     remember the beginning of every QFT textbook?

doesn’t transform with the pairwise LG phase!

Forward scattering (i.e. no scattering) not an option for the electric-magnetic S-matrix!

In practice we work in the all-outgoing convention:
Have to flip helicity, but not pairwise helicity!
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Electric-Magnetic Amplitudes: a Cheat-Sheet 
● To construct electric-magnetic amplitudes, contract standard and pairwise spinors to get the 

right overall LG transformation. The rules are:  

● This will enable us to completely fix the angular dependence of amplitudes from LG and pairwise 
LG considerations. The dynamical information left unfixed is just like phase shifts in QM.

● Our results are fully non-perturbative, as we never rely on a perturbative expansion
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Electric-Magnetic Amplitudes: Examples 

● To construct electric-magnetic amplitudes, contract standard and pairwise spinors to get the 
right overall LG transformation  

● 1st example: Massive fermion decaying to 
massive fermion + massless scalar, q = e g = -1
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Electric-Magnetic Amplitudes: Examples

● 2nd example: Massive fermion decaying to 
massive scalar + massless vector, q = e g = -1

what about the -1 helicity case for the vector?

- No way to write a LG covariant expression, since                                             .

- Our first encounter with a pairwise LG selection rule
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Electric-Magnetic Amplitudes: Examples

● 3rd example: Massive vector decaying to to 
different massless fermions, q = e g = -1

- Here the number of pairwise spinors is not  -2q

- We need 4 pairwise spinors to contract with 4 standard spinors

- We use 3 pairwise spinors with (pairwise) LG weight ½ and on with -½ 

- h2 = - h3 = ½   case forbidden by selection rule

Can we systematize this? Yes!
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

 ✔

 ✔

 ✔
 ✔

○ LG covariant partial wave decomposition



Results 

Spherical Harmonics Monopole - Spherical Harmonics
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All 3-pt Electric-Magnetic Amplitudes
● Pairwise LG + individual LGs allow us to classify all 3-pt amplitudes

○ This generalizes the massive amplitude formalism by Arkani-Hamed at al. ‘17

○ Our amplitudes & selection rules reduce to theirs for q = 0  
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All 3-pt Electric-Magnetic Amplitudes
● Pairwise LG + individual LGs allow us to classify all 3-pt amplitudes

○ This generalizes the massive amplitude formalism by 

1. Incoming massive particle, two outgoing massive particles

(e1 , g1)

(e3 , g3)

(e2 , g2)
To saturate the individual SU(2)  LG for each particle, need

Si  symmetrized insertions of the massive spinor for particle i

s1

s2

s3

These need to be contracted with pairwise spinors for a 
Lorentz invariant amp. with overall -q23 pairwise LG weight 

q23 ≡ e2 g3 - e3 g2

Arkani-Hamed at al. ‘17

○ Our amplitudes & selection rules reduce to theirs for q = 0  
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All 3-pt Electric-Magnetic Amplitudes
1. Incoming massive particle, two outgoing massive particles

Most general term with pairwise LG weight   -q and   2 ŝ ≡ 2 (s1+s2+s3)   spinor indices: 

Define:

½ (ŝ-q) - (-½ (ŝ+q)) = -q

The sum is over all different ways to assign α, β, γ indices  (2 ŝ elements in 3 bins)
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All 3-pt Electric-Magnetic Amplitudes
1. Incoming massive particle, two outgoing massive particles

Most general term with pairwise LG weight   -q and   2 ŝ ≡ 2 (s1+s2+s3)   spinor indices: 

Define:

½ (ŝ-q) - (-½ (ŝ+q)) = -q

The sum is over all different ways to assign α, β, γ indices  (2 ŝ elements in 3 bins)

ŝ±q non-negative integers Selection rule: 

In particular a massive scalar dyon cannot decay to two massive scalar dyons 
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All 3-pt Electric-Magnetic Amplitudes
2. Incoming massive particle, outgoing massive particle + massless particle, unequal mass
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All 3-pt Electric-Magnetic Amplitudes
2. Incoming massive particle, outgoing massive particle + massless particle, unequal mass

This time, the massive part is

Need to contract with standard & pairwise spinors for LG weight h3 and pairwise LG weight -q

Define:

-½ ½ ½ -½
Most general massless part:
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All 3-pt Electric-Magnetic Amplitudes
2. Incoming massive particle, outgoing massive particle + massless particle, unequal mass

The j and k sums are over values that give non-negative integer powers, i.e.

Selection rule: 

In particular
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All 3-pt Electric-Magnetic Amplitudes
3. Incoming massive particle, outgoing massive particle + massless particle, equal mass
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All 3-pt Electric-Magnetic Amplitudes
3. Incoming massive particle, outgoing massive particle + massless particle, equal mass

For equal masses, we have                          as well as                         ,      

and we can define the famous “x-factor” from                                              :Arkani-Hamed at al. ‘17

and

the x-factor has LG weight 1, and pairwise LG weight 0

In this case there is no selection rule.
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All 3-pt Electric-Magnetic Amplitudes
4. Incoming massive particle, two outgoing massless particles
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All 3-pt Electric-Magnetic Amplitudes
4. Incoming massive particle, two outgoing massless particles

The massless part has helicity weights h2 and h3 under individual LGs, and a -q pairwise LG weight    

The massive part is just  

Defining                                                   ,  we have

With                                                        and  the i, j sum is over
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All 3-pt Electric-Magnetic Amplitudes
4. Incoming massive particle, two outgoing massless particles

Selection rule: 

For q = ±½, our selection rule is more restrictive than the non-magnetic case in  Arkani-Hamed at al. ‘17
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

 ✔

 ✔

 ✔
 ✔

 ✔

○ LG covariant partial wave decomposition
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2 ⇾ 2 Fermion-Monopole Scattering

● For 2⇾2 we cannot completely fix the amplitude and some dynamical information is needed

● However, just like scattering in NRQM, we can perform a partial wave decomposition

● Our PW decomposition will be fully Lorentz and LG covariant

● All of the dynamical information reduces to phase shifts, like in QM
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2 ⇾ 2 Fermion-Monopole Scattering

● For 2⇾2 we cannot completely fix the amplitude and some dynamical information is needed

● However, just like scattering in NRQM, we can perform a partial wave decomposition

● Our PW decomposition will be fully Lorentz and LG covariant

● All of the dynamical information reduces to phase shifts, like in QM

● At the lowest partial wave, selection rules + unitarity completely fix the amplitude,

reproducing the counterintuitive helicity flip of the NRQM result Kazama, Yang, Goldhaber ‘77

● For higher partial waves, our spinors combine to yield  Monopole-Spherical Harmonics
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Angular Momentum in a Poincaré Invariant Theory

● In a Poincaré invariant theory, angular momentum (squared) is defined as a quadratic Casimir

● From the momentum generator Pμ and the Lorentz generator Mμν , 

form the Pauli-Lubański operator:    Wμ = ½ εμν⍴σ Pν M⍴σ 

● The operator W2 is a quadratic Casimir of the poincare group, and its eigenvalues are given by:

W2 = - P2 J ( J+1)

where J is the total angular momentum
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Lorentz and LG covariant Partial Wave Decomposition

● Consider the electric-magnetic S-matrix for  2⇾2  scattering

● We want to decompose the electric-magnetic S-matrix into partial waves

so that J is associated with the total angular momentum of the incoming  particles

including their spin  and the “pairwise” angular momentum

● Formally, we need to represent the Lorentz group as differential operators acting on spinors

and then expand in a complete eigenbasis of the Pauli-Lubański Casimir operator W2
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Lorentz and LG covariant Partial Wave Decomposition

● The Lorentz generators in spinor space are well known: Witten ‘04

and they lead to the Casimir operator Jiang, Shu et al. ‘20



56

Lorentz and LG covariant Partial Wave Decomposition
● The generalization to electric-magnetic amplitudes is straightforward

● The eigenfunctions of W2 are symmetrized products of standard and pairwise spinors:

where 丨sk 〉can be any standard / pairwise spinor, and the f is any contraction of spinors 
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Lorentz and LG covariant Partial Wave Decomposition

● For the PW decomposition, we expand in an eigenbasis of W2 acting on the spinors / pairwise 

spinors associated with the incoming f and M: 

B J are the basis amplitudes,

M J are ‘’reduced matrix elements”,

is a  Normalization factor

all angular dependence

all dynamical info
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Lorentz and LG covariant Partial Wave Decomposition

● For the PW decomposition, we expand in an eigenbasis of W2 acting on the spinors / pairwise 

spinors associated with the incoming f and M: 

B J are the basis amplitudes,

M J are ‘’reduced matrix elements”,

is a  Normalization factor

all angular dependence

all dynamical info
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Lorentz and LG covariant Partial Wave Decomposition

● The form of basis amplitudes B J  is constrained by their J eigenvalue

1 2

3 4

eigenfunction of W2 for the incoming particles

● The C J  are called “generalized Clebsch-Gordan coefficients”  (more accurately “tensors”)

Jiang, Shu et al. ‘20

○ C J in  ( C J out  )  only depend on the spinors for the incoming (outgoing)  f and  M 

○ They saturate the LG and pairwise LG transformation of the S-matrix 

○ We can extract them from the 3-pt amplitudes  1, 2 ⇾ spin J   and   spin J ⇾  3, 4
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Lorentz and LG covariant Partial Wave Decomposition

● As an example consider the C J for  a scalar charge + scalar monopole, q = -1

● The 3pt amplitude s + M ⇾ spin J  is:

● We get the Clebsch by stripping away the massive spinor           :



Plan
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

 ✔

 ✔

 ✔
 ✔

 ✔

○ LG covariant partial wave decomposition ✔
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Fermion - Monopole Scattering

f M

f ’  M’

● Let’s look at a massive fermionic charge and a massive scalar monopole

● The C J is extracted from the “3-massive” 3-pt amplitude with selection rule 

○ In this case       ŝ = ½ + 0 + J ≥ |q|                       J ≥ |q|- ½

○ The J for lowest partial wave depends the pairwise helicity

○ This is the relativistic generalization of the NRQM modification of the angular 
momentum operator 

● Let’s focus on the lowest partial wave    J =|q|- ½   and extract  C J 
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Surprise at the Lowest PW:  Helicity Flip!

● We derived the basis amplitude for the lowest partial wave

● But we know from NRQM that this amplitude should be very surprising

● In fact, Kazama et al. ‘77 show that at the lowest PW, the helicity of the fermion should flip

between the initial state and the final state:    eL falling into a monopole comes out as eR !

can we reproduce this in our formalism?

● We take the  mf⇾0  limit to expose new selection rules
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Surprise at the Lowest PW:  Helicity Flip!
● As in Arkani-Hamed et al. ‘17, we take the  mf⇾0  limit by unbolding the massive spinors

○ Important: We have to make a choice of helicity when taking the massless limit

h1 = -½ h1 = ½

P-conjugate of 〈 1丨α 

○ In the  hf = hf’ = -½  (helicity-flip)*  case:

But in the massless limit                                        and so the q>0 amplitude vanishes

*In the all-outgoing convention, hf is minus the physical helicity of the fermion
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Surprise at the Lowest PW:  Helicity Flip!
○ In the  hf = hf’ = ½  (helicity -flip)  case:

But in the massless limit                                           and so the q<0 amplitude vanishes

○ In the  hf = -hf’ = ±½  (helicity non-flip) case, the amplitude vanishes for any q

● Conclusion: at the lowest PW, all helicity non-flip amplitude vanish!

q<0:   only RH fermion going to LH fermion q>0:   only LH fermion going to RH fermion
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Surprise at the Lowest PW:  Helicity Flip!
● In the COM frame:

where                               and                                  ,

● Substituting in the lowest PW amplitude:

f

M
f '

M '

θ

remember:

2 J +1 = 2 |q|



67

Surprise at the Lowest PW:  Helicity Flip!
● In the COM frame:

where                               and                                  ,

● Substituting in the lowest PW amplitude:

f

M
f '

M '

θ

● In principle, the M are dynamics-dependent, however, at the lowest PW, unitarity implies:  

remember:

WLOG
only one of them nonzero,

depending on q

●        is exactly the NRQM result from Kazma, Yang, Goldhaber ‘77

2 J +1 = 2 |q|
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Higher PWs:  Monopole-Spherical Harmonics
● For J > |q|- ½ we can use our general massive 3-pt amplitude to extract C J and B J:

and

● The magic unfolds in the COM frame:

where the D is the famous Wigner D-matrix:
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Higher PWs:  Monopole-Spherical Harmonics
● In the massless limit, we can write the compact result:

in the all-outgoing convention,      hin =  ½ (-½) for an incoming LH (RH) fermion

                                                      hout = -½ (½)  for an outgoing LH (RH) fermion

● This time the M are dynamics dependent, but they are only phase shifts:

Kazma, Yang, Goldhaber ‘77

obtained in NRQM by a tedious solution of the Dirac eq in monopole background



70

Higher PWs:  Monopole-Spherical Harmonics
● PW unitarity implies:

from NRQM:

and so the helicity-flip amplitude for J > |q|-½ vanishes, consistently with the NRQM result
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Higher PWs:  Monopole-Spherical Harmonics
● PW unitarity implies:

from NRQM:

and so the helicity-flip amplitude for J > |q|-½ vanishes, consistently with the NRQM result

● Finally:

Where the qYlm are the monopole-spherical harmonics derived in Wu, Yang ‘76 as eigenfunctions 

of the magnetically modified J2 and Jz

here they emerge from contracting pairwise spinors in a Lorentz and LG covariant way
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○ Pairwise little group and pairwise helicity

○ Electric Magnetic amplitudes: a cheat sheet

○ Pairwise spinor-helicity variables

● The manifestly relativistic, electric-magnetic S-matrix   

● Results  

○ All 3-pt electric-magnetic amplitudes. Novel selection rules.

○ The extra LG phase of the magnetic S-matrix

Higher partial waves: monopole spherical harmonics

○ Charge-monopole scattering:

Helicity-flip selection rule at lowest partial wave

 ✔

 ✔

 ✔
 ✔

 ✔

○ LG covariant partial wave decomposition ✔

 ✔



Conclusions
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● Solved the problem of constructing Lorentz covariant electric-magnetic amplitudes

● Identified electric-magnetic multiparticle states that are not direct products

● Defined the pairwise LG, helicity and spinor-helicity variables

● Fixed all 3-pt amplitudes 

● Fixed all angular dependence of 2⇾2 scattering and reproduced lowest PW helicity-flip

More applications to come...



Thank You! 
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Zwanziger’s Classical Relativistic Result

By Noether’s theorem: 

Zwanziger ‘71
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What’s the asymptotic             as  t ￫ ±∞ ? 

2 potential formalism
              Schwinger ‘66
              Zwanziger ‘68

Zwanziger’s Classical Relativistic Result Zwanziger ‘71
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By Noether’s theorem: 
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Dyons (e-
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n)  scattering to  (e+
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1), … , (e+
m,g+

m) 

What’s the asymptotic             as  t ￫ ±∞ ? 

No crossing symmetry half integer by Zwanziger-Schwinger condition

2 potential formalism
              Schwinger ‘66
              Zwanziger ‘68

Zwanziger’s Classical Relativistic Result Zwanziger ‘71
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PW Unitarity for the Electric-Magnetic 2⇾2  S-matrix 
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● The  2⇾2  S-matrices are:

Assuming only 2 particle 
intermediate states
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● Use the identity:

● Focusing on   (hin,hout)  =  (½ , -½) :



PW Unitarity for the Electric-Magnetic 2⇾2  S-matrix 
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● Everything simplifies,

● Repeating for all hin, hout

● Multiplying by                                      and integrating,

This is what happens in the non-magnetic case, and leads to the standard PW unitarity bound


